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ABSTRACT

Given a family of sets S, where the sets in S admit k ‘degrees of freedom’, we prove
that not all (k + 1)-dimensional posets are containment posets of sets in S. Our results
depend on the following enumerative result of independent interest: Let P(n,k) denote
the number of partially ordered sets on n labeled elements of dimension k. We show that
log P(n, k) ~ nklogn where k is fixed and n is large.
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1. Introduction

Let S be a family of sets. We say that a partially ordered set P has an S-containment representation
provided there is a map f : P — S such that « < y iff f(z) C f(y). In this case we say that P is an S-order.

For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]).
Similarly, angle orders are the containment orders of angles in the plane, where an angle includes its interior
(see [3]). The containment orders of d-dimensional boxes are discussed in [4] where it was shown that this
family of posets is exactly the set of 2d-dimensional posets.

Note that circles admit three ‘degrees of freedom’: two center coordinates and a radius. An angle admits
four degrees of freedom: the two coordinates of its vertex and the slopes of its rays. Further, it is known
that not all 4-dimensional posets are circle orders [9] nor are all 5-dimensional posets angle orders [7]. These
are confirming instances of the following intuitive notion:

If the sets in S admit k degrees of freedom, then not all (k 4+ 1)-dimensional posets are S-orders.

Our main result is to prove (a precise version of) this intuitive principle.
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2. Enumeration of k-dimensional posets

Recall that the dimension of a partially ordered set P is the minimum number of linear extensions whose
intersection is P. Alternatively, it is the smallest k so that the elements of P can be mapped to points in
R” so that x < y iff each coordinate of x’s point is less than or equal to the corresponding coordinate of y’s
point. (See [2,6].)

Denote by P(n, k) the number of posets with element set {1,...,n} and dimension at most k.

By f(n) ~ g(n) we mean that the limit f(n)/g(n) as n tends to infinity is 1.
Theorem 1. For k fixed and n large we have log P(n, k) ~ nklogn.

Proof. First, one has P(n,k) < (n!)¥ < n™ as there are n! possible linear orders on {1,...,n} and we
intersect & of them to form every possible k-dimensional poset. This gives log P(n, k) < nklogn.

Second, let m = n/logn. Let B; denote the set of m boxes in R of the form
[0,m+1] x - x [0,m+1] x [i,i + 3] x [0,m+ 1] x -+ x [0,m + 1]

where there are k factors and [i,4 + %] is the jth factor with 1 < ¢ < m. Each box has 2k corners and is
uniquely determined by its two extreme corners: the one with the smallest values in each coordinate and
the one with the largest. Also, notice that by choosing one box from each B; one determines a cube (with
side length %) which is the intersection of the & boxes. There are m* such cubes.

We define a k-dimensional poset on {1,...,n} as follows: Let the first 2mk elements be assigned to
the extreme corners of boxes in By,...,Br. Now to each element of {2mk + 1,...,n}, assign a point in
one of the mF small cubes. Note that each assignment of the remaining elements to cubes gives a different
k-dimensional poset, as an element in the poset lies between the two elements corresponding to the extreme

points of a box iff the point assigned to it lies in that box. Thus we have,

nk—2k%n/logn
) )

> k\n—2km _
P(n,k) > (m") <logn
whence log P(n, k) > n(k — o(1)) logn.l

Remark. Our construction uses the fact that km boxes in R¥ can determine at least m* cells. A more

exact estimate for this problem appears in [5]. For our purposes here our estimate suffices.

3. Degrees of Freedom
We now make the intuitive notion of ‘degrees of freedom’ precise. Let S be a family of sets. We say the
sets in S have k degrees of freedom provided:

1. Each set in S can be uniquely identified by a k-tuple of real numbers, i.e., there is an injection

f:8— RF and



Degrees of Freedom vs. Dimension Page 3

2. There exists a finite list of polynomials pi,pa,...,ps in 2k variables with the following property: If

S, T € S map to (z1,...,2%), (Y1,-..,yr) € RF respectively, then the containment S C T can be
determined based on the signs of the values p;(z1,..., 2k, y1,...,yx) for 1 < j <t.

For example, let us consider circles (disks) in the plane. Suppose we have two circles C; and Cy with

centers and radii given by z;,y;,r; (i = 1,2). One checks that we have C; C Cj iff both of the following

hold: , , )
(1 —22)" + (Y1 —y2)” — (r1 —r2)” <0

rp—1ry <0
Thus the family of circles in the plane admits three degrees of freedom. Similarly, the containment of one
angle in another can be expressed in terms of a finite list of polynomial inequalities.
Our main result depends on the following result due (essentially) to Warren [10] (see also [1]): Let
P1,---,Pr be polynomials in ¢ variables. Let s(pi1,...,p,) denote the number of sign patterns (pluses,

minuses and zeroes) of the r polynomials have as their variables range over R’. That is,

$(o10e--.0) = |{ sl ) sl () x € R}

Theorem 2. Let p1,...,p, be as above and suppose the degree of each polynomial is at most d. If r > £

then

Sedr]”
7 )

s(p1y--,pr) < [
Proof. Warren [10] places an upper bound of (4edr/f)* on the number of sign patterns in which one counts
only plus/minus sign patterns. One can extend this result to include zeroes by “doubling” each polynomial
as follows:

Let S denote the set of all sign patterns (plus/minus/zero) for ps,...,p,. Clearly S is finite; indeed

|S| < 3. Now let X denote a finite subset of R in which each sign pattern is represented exactly once. Put
e=zmin{[p;(x)| :x € X, pj(x) #0, and 1 < j <r}

and let q;-r =pj +€and ¢; = p; —e. Note that for each x € X, qj(x) # 0 and ¢; (x) # 0, and that the
sign patterns of the ¢’s attained at points in X are all distinct. The result now follows by applying Warren’s
Theorem to the ¢’s.li

We use this to achieve our main result:

Theorem 3. Let S be a family of sets admitting k degrees of freedom. Then there exists a (k+1)-dimensional

poset which is not an S-containment order.

Proof. Let S be a family of sets admitting k degrees of freedom. Let S,, denote the family of S-orders on

{1,...,n}. For each n-tuple of sets in S, (S1,...,5,), we have a (potentially) different poset depending on
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the sign pattern of r = 2(;)15 polynomials in £ = nk variables which have some maximum degree d (which is

independent of n). Hence by Theorem 2:

%}&ﬁ] = [O(l)n]nk. (%)

n

S| < l

Were every (k + 1)-dimensional poset an S-order we would have log P(n,k + 1) < log|S,|, contradicting
Theorem 1.1

Remark. Our proof in Theorem 3 is nonconstructive. One can, however, give an explicit (k+1)-dimensional
poset which is not an S-containment order as follows. Choose n sufficiently large so that P(n,k+1) > |S,|;
this can be done explicitly using inequalities (x) and (xx). Let P be the partially ordered set which is the
disjoint union of all (k 4 1)-dimensional posets on n elements. Necessarily, P is not an S-containment order
and dim P =k + 1.

Theorem 3 gives a common proof for the known results concerning circle and angle orders. We can also
apply it to a prove a conjecture due to [9]:

Consider the family of p-gons in the plane. These are described by 2p real variables (the x, y coordinates
of the corners) and the containment of one p-gon in another can be determined by a list of polynomial
inequalities as follows:

First note that given four points A = (a1,a2), B = (b1,b2), C = (c1,¢2) and D = (dy,ds) in general

position, the line segment AB intersects the line segment CD iff

1 ay; a2 1 ayp ag
det 1 b by . 1 by b <0
1 C1 Co 1 dl d2
and
1 C1 (6] 1 C1 Co
det 1 di do 1 di ds < 0.
1 a; a 1 b1 bg

Thus the intersection of two line segments can be determined by examining the signs of two quadratic

polynomials.
Now suppose that we are given two p-gons V' and W where the vertices of V' (in order) are vq,va,...,v,
where v; = (v;1,v;2). Likewise, the vertices of W are w; = (w;1,w;2) for i = 1,...,p. Without loss of

generality (and for ease of exposition) we may assume that the 2p points are in general position and that
no two have the same y-coordinate. Furthermore, by rescaling, we may assume that the two polygons are
contained in the rectangle [—1,1]2.

Now, to test if V is contained in W it suffices to show that the boundaries of the two p-gons do not

intersect and that one of V'’s vertices is contained in the interior of W. To show that the boundaries do not
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intersect, one checks that for all 4,5 € {1,...,p} the line segments v;v,; and w;w,; (subscript addition
modulo p) do not intersect. This can be done by examining the signs of 2p? polynomials. Next we test if v;
lies in the interior of W by counting the number of times a horizontal ray emerging from v; intersects the
boundary of W; this count is odd if and only if v; is in the interior of W. Since all vertices are contained
in [—1,1]?, we check if the line segment (v11,v12)(2,v12) intersects w;wjt for j = 1,...,p. Hence by
computing 2p further polynomials, we determine if v; is contained in the interior of W.

The authors of [9] proposed the problem: Is there a (2p 4+ 1)-dimensional order which is not a p-gon
order? The existence of such an order is now readily verified using our Theorem 3.

Finally, it is known [3] that all 4-dimensional posets are angle orders and it is conjectured that all
3-dimensional posets are circle orders (see [8,9]). In [9] it is shown that all 2p-dimensional posets are p-
gon orders. One is tempted to conjecture: If S admits k degrees of freedom (and no fewer) then every
k-dimensional poset is an S-containment order. This, however, is false as the following simple example
shows. Let S be the family of all horizontal rays in the plane which point in the positive x-direction. The
S-containment posets are exactly the disjoint unions of chains. One now checks that S admits two degrees

of freedom, but 2t1:2} the subsets of a 2-set poset, is not an S-poset.
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