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Abstract

Combinatorics is an essential component of many mathematical areas, and its study has ex-

prienced an impressive growth in recent years. This survey contains a discussion of two of the

main general techniques that played a crucial role in the development of modern combinatorics;

algebraic methods and probabilistic methods. Both techniques are illustrated by examples, where

the emphasis is on the basic ideas and the connection to other areas.

1 Introduction

Mathematical Research deals with ideas that can be meaningful to everybody and there is no doubt

that it also lies behind most of the major advances in Science and Technology. Yet, mathematicians

often tend to formulate their questions, results and thoughts in a way that is comprehensible only

to their colleagues that work in a closely related area. One of the goals of the conference ”Visions in

Mathematics” was to try and present the main areas in mathematics in a way that can be interesting

to a general mathematical audience, and possibly even to a general scientific audience. Although

this is a difficult task, it is not impossible, and I believe that many of the lectures achieved this goal.

Following the spirit of the conference, this survey is also aimed to a general mathematical audi-

ence. I try to explain two of the main techniques that played a crucial role in the development of

modern combinatorics: algebraic techniques and probabilistic methods. The focus is on basic ideas,

rather than on technical details, and the techniques are illustrated by examples that demonstrate

the connection between combinatorics and related mathematical areas.

My choice of topics and examples is inevitably influenced by my own personal taste, and hence it

is somewhat arbitrary. Still, I believe that it provides some of the flavour of the techniques, problems

and results in the area, which may hopefully be appealing to researchers in mathematics, even if their

main interest is not Discrete Mathematics.
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2 Algebraic techniques

Various algebraic techniques have been used successfully in tackling problems in Discrete Math-

ematics over the years. These include several tools that I will not discuss here, like tools from

Representation Theory applied extensively in enumeration problems, or spectral techniques used in

the study of highly regular structures. In this section I describe mainly two representative algebraic

tools. The first one may be called Combinatorial Nullstellensatz, is based on some basic properties

of polynomials, and has applications in Combinatorial Number Theory, Graph Theory and Combi-

natorics. The second one may be called the dimension argument, and has had numerous applications

over the years. The examples given here illustrate the basic ideas. More examples can be found in

various survey articles and books including [25], [3], [11], [12].

2.1 Combinatorial Nullstellensatz

The classical Hilbert’s Nullstellensatz (see, e.g., [45]) asserts that if F is an algebraically closed

field, f, g1, . . . , gm are polynomials in the ring of polynomials F [x1, . . . , xn], and f vanishes over all

common zeros of g1, . . . , gm, then there is an integer k and polynomials h1, . . . , hm in F [x1, . . . , xn]

so that

fk =
n∑
i=1

higi.

In the special case m = n, where each gi is a univariate polynomial of the form
∏
s∈Si(xi − s), a

stronger conclusion holds, as follows.

Theorem 2.1 Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn].

Let S1, . . . , Sn be nonempty subsets of F and define gi(xi) =
∏
s∈Si(xi− s). If f vanishes over all the

common zeros of g1, . . . , gn (that is; if f(s1, . . . , sn) = 0 for all si ∈ Si), then there are polynomials

h1, . . . , hn ∈ F [x1, . . . , xn] satisfying deg(hi) ≤ deg(f)− deg(gi) so that

f =
n∑
i=1

higi.

As a consequence of the above one can prove the following,

Theorem 2.2 Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn].

Suppose the degree deg(f) of f is
∑n
i=1 ti, where each ti is a nonnegative integer, and suppose the

coefficient of
∏n
i=1 x

ti
i in f is nonzero. Then, if S1, . . . , Sn are subsets of F with |Si| > ti, there are

s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, . . . , sn) 6= 0.
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These two results are proved in [5], where it is proposed to call them Combinatorial Nullstellensatz.

The proofs are based on some simple properties of polynomials. It turns out that these results are

related to some classical ones, and have many combinatorial applications.

One of the classical results that follow easily from Theorem 2.2 is the following theorem, conjec-

tured by Artin in 1934, proved by Chevalley in 1935 and extended by Warning in 1935.

Theorem 2.3 (cf., e.g., [41]) Let p be a prime, and let

P1 = P1(x1, . . . , xn), P2 = P2(x1, . . . , xn), . . . , Pm = Pm(x1, . . . , xn)

be m polynomials in the ring Zp[x1, . . . , xn]. If n >
∑m
i=1 deg(Pi) and the polynomials Pi have a

common zero (c1, . . . , cn), then they have another common zero.

The proof follows in a few lines by applying Theorem 2.2 to the polynomial

f = f(x1, . . . , xn) =
m∏
i=1

(1− Pi(x1, . . . , xn)p−1)− δ
n∏
j=1

∏
c∈Zp,c 6=cj

(xj − c),

where δ is chosen so that f(c1, . . . , cn) = 0.

Another classical result that follows from a similar reasoning is the Cauchy-Davenport Theorem,

which is one of the fundamental results in Additive Number Theory, see, e.g., [35]. This theorem

asserts that if p is a prime, and A,B are two nonempty subsets of Zp, then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Cauchy proved this theorem in 1813, and applied it to give a new proof to a lemma of Lagrange

in his well known 1770 paper that shows that any integer is a sum of four squares. Davenport

formulated the theorem as a discrete analogue of a conjecture of Khintchine (proved a few years

later) about the Schnirelman density of the sum of two sequences of integers. The original proofs

of the theorem given by Cauchy and Davenport are purely combinatorial. As observed in [8], there

is a different, algebraic proof, which extends easily and gives several related results. This proof is,

again, a simple application of Theorem 2.2. It readily extends to provide bounds for restricted sums

in finite fields. If h = h(x0, x1, . . . , xk) is a polynomial over Zp and A0, A1, . . . , Ak are subsets of Zp,

then the method provides a lower bound (which is often tight) for the cardinality of the set

{a0 + a1 + . . .+ ak : ai ∈ Ai, h(a0, a1, . . . , ak) 6= 0}.

When h is the polynomial
∏
k≥i>j≥0(xi − xj) the above set corresponds to sums of disticnt

elements. By applying Theorem 2.2 to an appropriate polynomial, and by observing that the relevant

coefficient in this case can be computed from the known results about the Ballot problem (see, e.g.,
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[32]), as well as from the known connection between this problem and the hook formula for the

number of Young tableaux of a given shape, one can obtain a tight lower bound for the number of

such sums. The very special case of this result in which k = 1, A0 = A and A1 = A − {a} for an

arbitrary element a ∈ A, implies the following theorem, conjectured by Erdős and Heilbronn in 1964

(cf., e.g., [20]) and proved, after various partial results by several researchers, by Dias Da Silva and

Hamidoune [16], using some tools from linear algebra and the representation theory of the symmetric

group.

Theorem 2.4 ([16]) If p is a prime, and A is a nonempty subset of Zp, then

|{a+ a′ : a, a′ ∈ A, a 6= a′}| ≥ min{p, 2|A| − 3}.

This special case can be proved directly by assuming it is false, taking C to be a set of cardinality

2|A| − 4 containing all sums of distinct elements a1, a2 ∈ A, with a2 6= a for some fixed a ∈ A,

and then by applying Theorem 2.2 to the polynomial f(x, y) = (x − y)
∏
c∈C(x + y − c) to get a

contradiction.

Erdős, Ginzburg and Ziv [21] proved that every sequence of 2n− 1 elements of the cyclic group

Zn contains a subsequence of exactly n terms whose sum (in Zn) is 0. This is tight, as shown, for

example, by the sequence consisting of n − 1 zeros and n − 1 ones. The main part of the proof of

this statement is its proof for prime values of n = p, as the general case can then be easily obtained

by induction. Kemnitz [29] conjectured that for every prime p, every sequence of 4p− 3 elements of

Z2
p contains a subsequence of exactly p terms whose sum (in Z2

p) is zero. Rónyai has proved, very

recently, that 4p− 2 elements suffice. His proof can be described as an application of Theorem 2.2.

This is done by first proving the following lemma.

Lemma 2.5 ([6]) If (a1, b1), . . . , (a3p, b3p) ∈ Z2
p and

∑3p
i=1(ai, bi) = 0 (in Z2

p), then there is an

I ⊂ {1, 2, . . . , 3p}, |I| = p, such that
∑
i∈I(ai, bi) = 0.

To prove the lemma, consider the polynomial

f(x1, x2, . . . , x3p−1) = (1− (
3p−1∑
i=1

aixi)p−1)(1− (
3p−1∑
i=1

bixi)p−1)(1− (
3p−1∑
i=1

xi)p−1)−
3p−1∏
i=1

(1− xi).

Then the coefficient of
∏3p−1
i=1 xi is nonzero, and hence, by Theorem 2.2 with S1 = S2 . . . = S3p−1 =

{0, 1} there are xi ∈ {0, 1} such that f(x1, . . . , x3p−1) is not zero. As f(0, 0, . . . , 0) = 0, not all xi
are 0. If

∑3p−1
i=1 xi is not zero modulo p then f(x1, . . . , x3p−1) = 0, hence this sum is either p or 2p.

In both cases we get the desired result, where in the second case we apply the fact that the sum of

all 3p vectors is 0.

4



To prove, next, that any sequence (a1, b1), (a2, b2), . . . , (a4p−2, b4p−2) of elements of Z2
p contains

a subsequence of precisely p terms whose sum is 0, apply Theorem 2.2 to the polynomial

f(x1, x2, . . . , x4p−2)

= (1−(
4p−2∑
i=1

aixi)p−1)(1−(
4p−2∑
i=1

bixi)p−1)((1−(
4p−2∑
i=1

xi)p−1)(2−
∑

J⊂{1,2,...,4p−2},|J |=p

∏
j∈J

xj)−2
4p−2∏
i=1

(1−xi),

with S1 = S2 = . . . = S4p−2 = {0, 1}. As the coefficient of
∏
i xi is nonzero there are xi ∈ {0, 1} such

that f(x1, . . . , x4p−2) 6= 0. It is easy to check that not all xi are zero. It also follows that
∑
i xi must

be divisible by p; if it is p we are done, if it is 3p the desired result follows from the lemma, and the

last ingredient is the fact that if it is 2p then the term

2−
∑

J⊂{1,2,...,4p−2},|J |=p

∏
j∈J

xj

is zero and hence so is f . This completes the proof.

Theorem 2.2 has various applications in Graph Theory, including ones in Graph Coloring, which

is the most popular area of the subject. We sketch below the basic approach, following [10]. See also

[33] for a related method.

A vertex coloring of a graph G is an assignment of a color to each vertex of G. The coloring is

proper if adjacent vertices receive distinct colors. The chromatic number χ(G) of G is the minimum

number of colors used in a proper vertex coloring of G. An edge coloring of G is, similarly, an

assignment of a color to each edge of G. It is proper if adjacent edges receive distinct colors. The

minimum number of colors in a proper edge-coloring of G is the chromatic index χ′(G) of G. This is

equal to the chromatic number of the line graph of G.

A graph G = (V,E) is k-choosable if for every assignment of sets of integers S(v) ⊂ Z, each of

size k, to the vertices v ∈ V , there is a proper vertex coloring c : V 7→ Z so that c(v) ∈ S(v) for all

v ∈ V . The choice number of G, denoted ch(G), is the minimum integer k so that G is k-choosable.

Obviously, this number is at least the chromatic number χ(G) of G. The choice number of the line

graph of G, denoted here by ch′(G), is usually called the list chromatic index of G, and it is clearly

at least the chromatic index χ′(G) of G.

The study of choice numbers was introduced, independently, by Vizing [47] and by Erdős, Rubin

and Taylor [23]. There are many graphs G for which the choice number ch(G) is strictly larger than

the chromatic number χ(G) (a complete bipartite graph with 3 vertices in each color class is one such

example). In view of this, the following conjecture, suggested independently by various researchers

including Vizing, Albertson, Collins, Tucker and Gupta, which apparently appeared first in print in

the paper of Bollobás and Harris ([13]), is somewhat surprising.
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Conjecture 2.6 (The list coloring conjecture) For every graph G, ch′(G) = χ′(G).

This conjecture asserts that for line graphs there is no gap at all between the choice number and the

chromatic number. Many of the most interesting results in the area are proofs of special cases of this

conjecture, which is still wide open.

The graph polynomial fG = fG(x1, x2, . . . , xn) of a graph G = (V,E) on a set V = {1, . . . , n} of

n vertices is defined by fG(x1, x2, . . . , xn) = Π{(xi− xj) : i < j , ij ∈ E}. This polynomial has been

studied by various researchers, starting already with Petersen [37] in 1891. Note that if S1, . . . , Sn

are sets of integers, then there is a proper coloring assigning to each vertex i a color from its list

Si, if and only if there are si ∈ Si such that fG(s1, . . . , sn) 6= 0. This condition is precisely the one

appearing in the conclusion of Theorem 2.2, and it is therefore natural to expect that this theorem

can be useful in tackling coloring problems. By applying it to line graphs of planar, cubic graphs,

and by interpreting the appropriate coefficient of the corresponding polynomial combinatorially, it

can be shown, using a known result of Vigneron [46] and the Four Color Theorem, that the list

chromatic index of every 2-connected cubic planar graph is 3. This is a strengthening of the Four

Color Theorem, which is well known to be equivalent to the fact that the chromatic index of any

such graph is 3. An extension of this result appears in [18].

Additional results on graph coloring and choice numbers using the algebraic approach are described

in the survey [2].

2.2 The dimension argument

In order to prove an upper bound for the cardinality of a set, it is sometimes possible to associate

each member of the set with a vector in an appropriately defined vector space, and show that the set

of vectors obtained in this manner is linearly independent. Thus, the cardinality of the set is at most

the dimension of the vector space. This simple linear-algebra technique, which may be called the

dimension argument, has many impressive combinatorial applications. In this subsection we describe

a few representative examples.

Borsuk [15] asked if any set of points in Rd can be partitioned into at most d + 1 subsets of

smaller diameter. Kahn and Kalai [30] gave an example showing that this is not the case, by

applying a theorem of Frankl and Wilson [24]. Here is a sketch of a slightly modified version of this

counterexample, following Nilli [36]. The main part of the proof uses the the dimension argument.

Let n = 4p, where p is an odd prime, and let F be the set of all vectors x = (x1, . . . , xn) ∈ {−1, 1}n,

where x1 = 1 and the number of negative coordinates of x is even.

Lemma 2.7 If G ⊂ F contains no two orthogonal vectors then |G| ≤
∑p−1
i=0

(n−1
i

)
.
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To prove the lemma note, first, that the scalar product a ·b of any two members of F is divisible by

4, and since there is no a ∈ F for which −a is also in F the assumption implies that there are no

distinct a and b in G so that a · b ≡ 0 (mod p). For each a ∈ G define a polynomial over the finite

field GF (p) as follows: Pa(x) =
∏p−1
i=1 (a · x− i), where here x = (x1, . . . , xn) is a vector of variables.

Note that by the assumption

(i) Pa(b) = 0 (in GF (p)) for every two distinct members a and b of G, and

(ii) Pa(a) 6= 0 for all a ∈ G.
Let P a be the multilinear polynomial obtained from the standard representation of Pa as a sum

of monomials by using, repeatedly, the relations x2
i = 1. Since P a(x) = Pa(x) for every vector x

with {−1, 1} coordinates, the relations (i) and (ii) above hold with every P replaced by P .

It is easy to see that this implies that the polynomials P a for a ∈ G are linearly independent.

Therefore, |G| is bounded by the dimension of the space of multilinear polynomials of degree at most

p− 1 in n− 1 variables (since x1 = 1) over GF (p), which is
∑p−1
i=0

(n−1
i

)
, completing the proof of the

lemma.

For any n-vector x = (x1, . . . , xn), let x ∗x denote the tensor product of x with itself, i.e., the vector

of length n2, (xij : 1 ≤ i, j ≤ n), where xij = xixj . Define S = {x ∗ x : x ∈ F}, where F is as

above. The norm of each vector in S is n and the scalar product between any two members of S is

easily seen to be non-negative. Moreover, by Lemma 2.7 any set of more than
∑p−1
i=0

(n−1
i

)
members

of S contains an orthogonal pair, i.e., two points the distance between which is the diameter of S.

It follows that S cannot be partitioned into less than 2n−2/
∑p−1
i=0

(n−1
i

)
subsets of smaller diameter.

The vectors in S lie in an affine subspace of dimension
(n

2

)
, and hence if

2n−2/
p−1∑
i=0

(
n− 1
i

)
>

(
n

2

)
+ 1,

the set S is a subset of Rd for d =
(n

2

)
that cannot be partitioned into at most d+1 subsets of smaller

diameter. The smallest d for which this holds (with n = 4p, p an odd prime) is d = 946 =
(44

2

)
obtained by taking p = 11.

For an undirected graph G = (V,E), let Gn denote the graph whose vertex set is V n in which two

distinct vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are adjacent iff for all i between 1 and n either

ui = vi or uivi ∈ E. The Shannon capacity c(G) of G is the limit limn→∞(α(Gn))1/n, where α(Gn) is

the maximum size of an independent set of vertices in Gn. This limit exists, by super-multiplicativity,

and it is always at least α(G).

The study of this parameter was introduced by Shannon in [40], motivated by a question in

Information Theory. Indeed, if V is the set of all possible letters a channel can transmit in one
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use, and two letters are adjacent if they may be confused, then α(Gn) is the maximum number of

messages that can be transmitted in n uses of the channel with no danger of confusion. Thus c(G)

represents the number of distinct messages per use the channel can communicate with no error while

used many times.

The (disjoint) union of two graphs G and H, denoted G + H, is the graph whose vertex set is

the disjoint union of the vertex sets of G and of H and whose edge set is the (disjoint) union of the

edge sets of G and H. If G and H are graphs of two channels, then their union represents the sum

of the channels corresponding to the situation where either one of the two channels may be used, a

new choice being made for each transmitted letter.

Shannon [40] proved that for every G and H, c(G + H) ≥ c(G) + c(H) and that equality holds

if the vertex set of one of the graphs, say G, can be covered by α(G) cliques. He conjectured that

in fact equality always holds. Counter examples are given in [4], where it is shown that there are

graphs G and H satisfying c(G) ≤ k and c(H) ≤ k, whereas c(G + H) ≥ k
(1+o(1)) log k

8 log log k and the

o(1)-term tends to zero as k tends to infinity.

The construction is based on some of the ideas of Frankl and Wilson [24], together with a method

for bounding the Shannon capacity of a graph using the dimension argument. This bound, described

below, is strongly related to a bound of Haemers [27].

Let G = (V,E) be a graph and let F be a subspace of the space of polynomials in r variables

over a field F . A representation of G over F is an assignment of a polynomial fv in F to each vertex

v ∈ V and an assignment of a point cv ∈ F r to each v ∈ V such that the following two conditions

hold:

1. For each v ∈ V , fv(cv) 6= 0.

2. If u and v are distinct nonadjacent vertices of G then fv(cu) = 0.

In these notations, the following holds.

Proposition 2.8 Let G = (V,E) be a graph and let F be a subspace of the space of polynomials in

r variables over a field F . If G has a representation over F then c(G) ≤ dim(F).

This is proved by associating each vertex of an independent set of maximum cardinality in a given

power of G, an appropriate polynomial in the corresponding tensor power of F , and by showing that

these polynomials are linearly independent. The details can be found in [4].

Many additional applications of the dimension argument appear in [12], [11], [25].
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3 Probabilistic methods

The discovery, demonstrated in the early work of various researchers, that deterministic statements

can be proved by probabilistic reasoning, led already more than fifty years ago to several striking

results in Analysis, Number Theory, Combinatorics and Information Theory. These are demonstrated

in early papers of Paley, Zygmund, Kac, Shannon, Turán and Szele, and even more so in the work

of Paul Erdős. It soon became clear that the method, which is now called the probabilistic method,

is a very powerful tool for proving results in Discrete Mathematics. The early results combined

combinatorial arguments with fairly elementary probabilistic techniques, whereas the development

of the method in recent years required the application of more sophisticated tools from probability

theory. There is, by now, a huge amount of material on the topic, and it is hopeless to try and survey

it in a comprehensive manner here. My intention in this section is therefore merely to illustrate the

basic ideas with a few representative examples. More material can be found in the books [9], [42]

and [28].

The Ramsey number R(k, t) is the minimum number n such that every graph on n vertices

contains either a clique of size k or an independent set of size t. By a special case of the celebrated

theorem of Ramsey (cf., e.g., [26]), R(k, t) is finite for every positive integers k and t, and in fact

R(k, t) ≤
(k+t−2
k−1

)
. In particular, R(k, k) < 4k. The problem of determining or estimating the numbers

R(k, t) received a considerable amount of attention, and seems to be very difficult in general.

In one of the first applications of the probabilistic method in Combinatorics, Erdős [19] proved

that if
(n
k

)
21−(k2) < 1 then R(k, k) > n. Therefore, R(k, k) > b2k/2c for all k > 2. The proof is

(by now) extremely simple; Let G = G(n, 1/2) be a random graph on the n vertices {1, 2, . . . , n},
obtained by picking each pair of distinct vertices, randomly and independently, to be connected

with probability 1/2. Every fixed set of k vertices of G forms a clique or an independent set with

probability 21−(k2). Thus
(n
k

)
21−(k2) (< 1) is an upper bound for the probability that G contains a

clique or an independent set of size k. It follows that with positive probability G is a graph without

such cliques or independent sets, and hence such a graph exists !

A proper coloring of a graph is acyclic if there is no two-colored cycle. The acyclic chromatic

number of a graph is the minimum number of colors in an acyclic coloring of it. The Four Color

Theorem, which is the best known result in Discrete Mathematics, asserts that the chromatic number

of every planar graph is at most 4. Answering a problem of Grünbaum and improving results

of various authors, Borodin [14] showed that every planar graph has an acyclic 5-coloring. He

conjectured that for any surface but the plane, the maximum possible chromatic number of a graph
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embeddable on the surface, is equal to the maximum possible acyclic chromatic number of a graph

embeddable on it. The Map Color Theorem proved in [39] determines precisely the maximum possible

chromatic number of any graph embeddable on a surface of genus g. This maximum is the maximum

number of vertices of a complete graph embeddable on such a surface, which turns out to be

b7 +
√

1 + 48g
2

c = Θ(g1/2).

The following result shows that the maximum possible acyclic chromatic number of a graph on such

a surface is asymptotically different, thus disproving Borodin’s conjecture.

Theorem 3.1 ([7]) The acyclic chromatic number of any graph embeddable on a surface of genus

g is at most O(g4/7). Moreover, for every g > 0 there is a graph embeddable on a surface of genus g

whose acyclic chromatic number is at least Ω(g4/7/(log g)1/7).

The proof of the O(g4/7) upper bound is probabilistic, and combines some combinatorial argu-

ments with the Lovász Local Lemma. This Lemma, proved in [22], is a tool for proving that under

suitable conditions, with positive probability, none of a large finite collection of nearly independent,

low probability events in a probability space holds. This positive probability is often extremely small,

and yet the Local Lemma can be used to show it is positive. The proof of the Ω(g4/7/(log g)1/7) lower

bound is also probabilistic, and is based on an appropriate random construction. Note that the state-

ment of the above theorem is purely deterministic, and yet its proof relies heavily on probabilistic

arguments.

The final example in this section is a recent gem; it is based on a simple result in graph the-

ory, whose proof is probabilistic. This result has several fascinating consequences in Combinatorial

Geometry and Combinatorial Number Theory. Some weaker versions of these seemingly unrelated

consequences have been proved before, in a far more complicated manner

An embedding of a graph G = (V,E) in the plane is a a planar representation of it, where each

vertex is represented by a point in the plane, and each edge uv is represented by a curve connecting

the points corresponding to the vertices u and v. The crossing number of such an embedding is the

number of pairs of intersecting curves that correspond to pairs of edges with no common endpoints.

The crossing number cr(G) of G is the minimum possible crossing number in an embedding of it in

the plane. The following theorem was proved by Ajtai, Chvátal, Newborn and Szemerédi [1] and,

independently, by Leighton [31].

Theorem 3.2 The crossing number of any simple graph G = (V,E) with |E| ≥ 4|V | is at least
|E|3

64|V |2 .
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The proof is by a simple probabilistic argument. By Euler’s formula any simple planar graph with

n vertices has at most 3n − 6 edges, implying that the crossing number of any simple graph with

n vertices and m edges is at least m − (3n − 6) > m − 3n. Let G = (V,E) be a graph with

|E| ≥ 4|V | embedded in the plane with t = cr(G) crossings. Let H be the random induced subgraph

of G obtained by picking each vertex of G, randomly and independently, to be a vertex of H with

probability p (where p will be chosen later). The expected number of vertices of H is p|V |, the

expected number of its edges is p2|E|, and the expected number of crossings in its given embedding

is p4t, implying that the expected value of its crossing number is at most p4t. Therefore, p4t ≥
p2|E| − 3p|V |, implying that

cr(G) = t ≥ |E|
p2
− 3
|V |
p3
.

Without trying to optimize the constant factor, take p = 4|V |/|E| ( ≤ 1), to get the desired result.

L. Székely [43] noticed that this result can be applied to obtain a surprisingly simple proof of

a result of Szemerédi and Trotter in Combinatorial Geometry [44]. The original proof is far more

complicated.

Theorem 3.3 Let P be a set of n distinct points in the plane, and let L be a set of m distinct lines.

Then, the number of incidences between the members of P and those of L (that is, the number of

pairs (p, l) with p ∈ P, l ∈ L and p ∈ l) is at most c(m2/3n2/3 +m+ n), for some absolute constant

c.

Székely’s proof is short and elegant: denote the number of incidences by I. Let G = (V,E) be the

graph whose vertices are all members of P , where two are adjacent if and only if they are consecutive

points of P on some line in L. Clearly, |V | = n and |E| = I − m. Note that G is already given

embedded in the plane, where the edges are represented by segments of the corresponding lines in

L. In this embedding, every crossing is an intersection point of two members of L, implying that

cr(G) ≤
(m

2

)
≤ m2/2. By Theorem 3.2, either I −m = |E| < 4|V | = 4n, that is, I ≤ m+ 4n, or

m2

2
≥ cr(G) ≥ (I −m)3

64n2
,

showing that I ≤ (32)1/3m2/3n2/3 +m. In both cases I ≤ 4(m2/3n2/3 +m+n), completing the proof.

G. Elekes found several applications of the last theorem to Additive Number Theory. Here, too,

the proofs are amazingly simple. Here is a representative result. A related one appears in [17].

Theorem 3.4 For any three sets A,B and C of s real numbers each,

|A ·B + C| = |{ab+ c : a ∈ A, b ∈ B, c ∈ C}| ≥ Ω(s3/2).
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To prove this result, define R = A ·B + C, |R| = r and put

P = {(a, t) : a ∈ A, t ∈ R}, L = {y = bx+ c : b ∈ B, c ∈ C}.

Thus P is a set of n = sr points in the plane, L is a set of m = s2 lines in the plane, and each line

y = bx + c in L is incident with s points of P , that is, with all the points {(a, ab + c) : a ∈ A}.
Therefore, by Theorem 3.3, s3 ≤ 4(s4/3(sr)2/3 + sr + s2), implying that r ≥ Ω(s3/2), as needed.

4 The algorithmic aspects

The rapid development of theoretical Computer Science and its tight connection to Discrete Mathe-

matics motivated the study of the algorithmic aspects of algebraic and probabilistic techniques. Can

a combinatorial structure, or a substructure of a given one, whose existence is proved by algebraic or

probabilistic means, be constructed explicitly (that is, by an efficient deterministic algorithm)? Can

the algorithmic problems corresponding to existence proofs be solved by efficient procedures? The

investigation of these questions are often related to other branches of mathematics. Here we merely

mention a few open problems motivated by these questions.

As mentioned in the last paragraph of subsection 2.1, the list chromatic index of any planar cubic

2-connected graph is 3. Can the corresponding algorithmic problem be solved efficiently? That is,

can we color properly the edges of any given planar cubic 2-connected graph using given lists of three

colors per edge, in polynomial time ?

This problem, as well as several similar applications of Theorem 2.2, are widely open. Note that

any efficient procedure that finds, for a given input polynomial that satisfies the assumptions of

Theorem 2.2, a point (s1, s2, . . . , sn) satisfying its conclusion, would provide efficient algorithms for

all these algorithmic problems. It would thus be interesting to find such an efficient procedure.

Probabilistic proofs also suggest the study of the corresponding algorithmic problems. This is

related to the study of randomized algorithms, a topic which has been developed tremendously during

the last decade. See, e.g., [34] and its many references. Even the simple proof of Erdős, described

in Section 3, that there are graphs on more than b2k/2c vertices containing neither a clique nor an

independent set of size k leads to an open problem which seems very difficult. Can we construct,

explicitly, a graph on n ≥ (1 + ε)k vertices with neither a clique nor an independent set of size k, in

time which is polynomial in n, where ε > 0 is any positive absolute constant ?

The above problems, as well as many related ones, could be viewed as a victory of algebraic

and probabilistic techniques. They illustrate the fact that these methods often supply solutions

to problems that we cannot solve constructively. I am convinced that the study of algebraic and

12



probabilistic methods, as well as the related search for more constructive proofs, will keep playing a

major role in the future development of Discrete Mathematics.
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