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ABSTRACT. Given an n-element set C' C R? and a (sufficiently generic) k-element multiset V C R¢,
we can order the points in C' by ranking each point ¢ € C according to the sum of the distances from
¢ to the points of V. Let W;(C) denote the set of orderings of C' that can be obtained in this manner

as V varies, and let 173" (n) be the maximum of |V (C)| as C' ranges over all n-element subsets

of R%. We prove that 153" (n) = ©4,,(n***) when d > 2 and that ¢"3*(n) = Oy (nAT*/21=1 " As a
step toward proving this result, we establish a bound on the number of sign patterns determined
by a collection of functions that are sums of radicals of nonnegative polynomials; this can be
understood as an analogue of a classical theorem of Warren. We also prove several results about the
set W(C) = J,~, Yx(C); this includes an exact description of W(C) when d = 1 and when C is the
set of vertices of a vertex-transitive polytope.

1. INTRODUCTION

Let d > 1 and n, k > 0 be integers, and consider a set C' = {cy,...,c,} of candidate points in R,
Given a multiset V = {v1,..., v} of k vantage points in R?, define the function Dy : R? — R by
Dy (x) = > iz — vill, where [|—|| denotes the Euclidean distance and [k] = {1,..., k}. We say
V' distinguishes the points in C' if the values Dy (c1), ..., Dy(cy) are distinct. If V' distinguishes the
points in C, then there is a unique permutation o of [n] such that Dy (cy(1)) <+ < Dy (co(n)); in
this case, we say V witnesses the tuple (c,(1), - - ., C5(n)), and we denote this tuple by E‘C,. Throughout
this paper, we will identify this tuple with the function ¥ : [n] — C that sends i to Co(i)> as these
two objects clearly contain equivalent information.

Let U (C) be the set of tuples E‘C/ witnessed by k-element multisets of R? that distinguish the
points in C, and let ¢ (C) = |¥(C)|. In other words, ¥ (C) counts the possible rankings of C,
where the ranking of a point is determined by the sum of its distances from k vantage points.

The quantity 1 (C) was first studied by Good and Tideman [GT77], who viewed the points in C'
as political candidates and the single vantage point v; as a voter who ranks the candidates based on
how far away they are in the Fuclidean metric. They proved that

1 (C) < s(n,n)+s(n,n—1)+ -+ s(n,n —d)

for every set C, where s(n,r) denotes an unsigned Stirling number of the first kind; moreover, they
showed that this upper bound is tight. Zaslavsky [Zas02] provided a different proof of this inequality
using hyperplane arrangements. Carbonero, Castellano, Gordon, Kulick, Ohlinger, and Schmitz
[CCGKOS21] continued this line of work by showing that the minimum possible value of ¢, (C) is
2n — 2; this minimum is independent of the dimension d because it is attained when the points in C'
are arranged on a line. They also constructed additional point configurations C' for which ¢4 (C)
attains other values, and they initiated the investigation of ¢ (C) for larger values of k (with a
focus on the case k = 2).

Let 13%*(n) be the maximum value of ¢4 (C) as C ranges over all n-element subsets of RY. One
of our main results is the following theorem. The k = 2 case asymptotically settles a problem raised
in [CCGKOS21].
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Theorem 1.1. Ifd > 2 and k > 1 are fixed, then @bgjzx(n) = @d,k(nz‘jk), Ifd=1and k> 1 is
fized, then f‘gx(n) = @k(n4fk/21—2).

Given a tuple F = (f1,..., fm) of real-valued functions on R" and a point = € RY, we obtain
the sign pattern er(x) = (e1,...,&m), where g; = sgn(f;(x)) € {0,1,—1}. A sign pattern is proper
if its entries are all nonzero. When F is a tuple of polynomials of bounded degree, a classical result
of Warren [War68] provides an upper bound for the number of distinct proper sign patterns of the
form ex(z) as x varies over R%. In Section 2, we prove an analogue of Warren’s theorem which may
be of independent interest. This theorem (Theorem 2.2) bounds the number of proper sign pattern
of the form €z(x) when the functions in F are sums of radicals of nonnegative polynomial functions.
We then apply this theorem in Section 3 to prove the upper bounds ¢gi*(n) = Ogx(n?¥*) and

Tein) = O (n*T%/21=2) in Theorem 1.1. Sections 4 to 6 are devoted to proving the lower bounds

Pax(n) = Qg (n2*) and P (n) = Qp(n*1%/21=2) in Theorem 1.1. Our constructions are delicate
and technical and proceed by induction on the number of vantage points.

In Section 7, we turn our attention to the set W(C') = U,>; Yx(C). This is the collection of
orderings of C' that are witnessed by arbitrarily large (finite) multisets that distinguish the points
in C. We say a tuple (z1,...,2,) of points in R¢ is protrusive if for every i € [m — 1], the point
Zi+1 is not in the convex hull of x1,...,2;. A simple argument involving the triangle inequality
shows that every tuple in W(C) is protrusive. We show that W(C) is exactly equal to the set of
protrusive orderings of the points in C' when d = 1 (Theorem 7.2), when n < 4 (Theorem 7.4), and
when C' is the set of vertices of a vertex-transitive polytope (Theorem 7.7). In a different direction,
we construct a 6-element set C' C R? such that some protrusive orderings of C' are not in ¥(C). We
leave open the problem of determining whether a similar construction exists with only 5 points.

2. SIGN PATTERNS OF SUMS OF RADICALS

It is natural to try to estimate the number of proper sign patterns arising from a tuple F =
(fi...., fm) of real-valued functions on R". A classical result of Warren gives an upper bound for
the case where fi,..., f, are polynomials.

Theorem 2.1 ([War68, Theorem 3]). Let N,m, A be positive integers, and let F = (f1,..., fm),
where each f; is a polynomial in Rlz1,...,zN| of degree at most A. Then the number of distinct
proper sign patterns of the form ex(x) for x € RN is at most 2(2A)N Zévzo 2%?).

This theorem has many combinatorial applications (see, e.g., [Alo95] for some early applications).
We will prove an analogue of Warren’s theorem for functions that are sums of radicals of nonnegative
polynomials.

Theorem 2.2. Let N,m, A, r,s be positive integers with v > 2, and let F = (f1,..., fm), where
each f; is of the form f; = Z;;l aimjgilés with r; < r a positive integer, each a;; a real number,
and each g;j a polynomial in Rlz1,...,xn| of degree at most A such that g; j(x) > 0 for all
x € RN, Then the number of distinct proper sign patterns of the form ex(x) for x € RN is at most
2(25"2A)N 300 24(7).

Warren deduced Theorem 2.1 from a topological statement about the connected components of
the complement of a real algebraic variety. Our proof of Theorem 2.2 will follow the same strategy,
and we will use Warren’s topological statement as a black box. For a function p: RV — R, let
V(p) == {x € RN : p(z) = 0} denote its zero set.

Lemma 2.3 ([War68, Theorem 2]). Let N,m, A be positive integers, and let f1,..., fm € Rlz1,...,ZN]
be polynomials of degree at most A. Then the set RN \ U™, V(f;) has at most 2(2A)N SN, 2 )
connected components.



We will also require the following basic fact about products of “Galois conjugates.”
Lemma 2.4. Let r,s > 2 be integers, let w = e2mi/s and let &1, ...,& be variables. Then
[T (Ga+w2e+-+uwg)
0<ty,....tr<s—1
is a polynomial in &F,... & .
Proof. Let
X,...&)= ]I (a+o2e+-+ug).

0<ta,...,tp<s—1
We claim that for each 1 < j <, we have

X(&1,-0 &) = X(&, -0 -1, w85, vty -5 &)
Indeed, for j = 1, we can write
Wl + w6+ W = w(@ + W e+ Wl T,
So
X(wér,&2,...,&) = W H (&1 + W&y + -+ W)

—1<tg,... tr<s5-2

yoor

= JI @+e&+-+ul) =X (G, &),

0<ta,...t,<s—1
where in the second equality we used the fact that w=' = w*~!. When j > 1, we may assume that
j = r and write
G+wPh+ - +wl(wé) =& &+ F T,
we then conclude as in the j = 1 case, and this establishes the claim.
For a = (a1,...,0p) € Z5,, write £% == &Y+ &2, Then there are unique constants b, (with «
satisfying aq + -+ + a,. = s"71) such that

X, &) =Y bat®.

Suppose o = (ai,...,q,) is such that «; is not a multiple of s. Then the coefficient of £ in
X, &—1,wE, s -+, &) 18 Dow®i. But, by the claim, this also equals b,. Since w® # 1, we
conclude that b, = 0. U

We can now prove Theorem 2.2.

Proof of Theorem 2.2. Given x € R™ and a small positive real number 4, let
ri
Fiola) = aij(gi (@) + 6V
j=1

that is, f;s is obtained by replacing each g;; with g;; + ¢ in the definition of f;. Let F5 =
(f1.65- -+ fm.s)- For each fixed x € RY| the quantity f;s(z) is continuous in d. Therefore, if e#(z) is
proper and ¢ is sufficiently small, then ex(x) = ez, (). It follows that if J is sufficiently small, then
the number of proper sign patterns cannot decrease when we replace F with Fs. This shows that it
suffices to prove the theorem when g; j(z) > 0 for all € RY; we will henceforth assume this.

If some f; is the zero function, then no proper sign patterns are achieved, so the result is obvious.
Otherwise, we claim that for each 4, we can find a nonzero polynomial f; € Rlz1,...,zn] of degree
at most s"2A such that V(f;) € V(f;). To see how this claim finishes the proof, note that by
applying Lemma 2.3, we find that RN \ U™, V(f;) has at most 2(2s"2A)N SN 2%(") connected
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components. Since the sign pattern ex(x) must be constant on every such connected component,
we conclude that ez () assumes at most 2(2s"2A)N YN 2k (") proper values as x varies over
RN\ U™, V(f;). For each ¢ € {1 —1}"™, the set {z : ex(x) = £} is open, so it cannot be contained
in the nowhere dense set [JI™; V(f;). Hence, there are at most 2(2s" 2A)N SN 2k (") proper sign
patterns of the form e ]:(:L‘)

Now we fix an ¢ and prove the claim. First, take a minimal subset G of the set {911 /18, e 11 {,f}
such that f; is in the linear span of G; without loss of generality, we may choose the ordering of the

polynomials g; 1, ..., gir, so that G = {g%s, .. ,gZ " } and write f; = Z ]gzé Note that the

elements of G are linearly independent and that o/ i; 7 0 for all j. Since f, is not the zero function,

r; > 0. Moreover, if r; = 1, f; is never zero, in which case we may set f; = 1. It remains to consider
the case where 7, > 2.

Let § = a”g7§ , w=e2™/s and
- t
fi= I @+e2e+-+wric).
Ogtg,...,tr(gsfl
Lemma 2.4 guarantees that f; is a polynomial in Gits oo Gin! and hence is a polynomial in
R[z1,...,zy]. The degree of fiin &, .. &, s s"i1 so its degree in Gils-- s Gigl 1 s"i~2. Hence,
the degree of f; in z1,...,zy is at most §TT2A < $T2A. B
As it is obvious that V(f;) C V(f;), it suffices to show that f; is not the zero polynomial. To
see this, note that since gilf, e gllf, f are linearly independent and a; ; # 0 for all j € [r7], the
t
function &1 + w2& + -+ +w T‘fr : RN — C cannot be the zero function for any choice of to, ..., t,.

Moreover, this function is analytlc because we assumed that g; ;(x) > 0 for all j € [r;] and 2 € RV,
This implies that fl cannot be zero, since the product of nonzero complex-valued analytic functions
cannot be zero. U

We remark that the same proof yields a similar bound in the more general case where the
fractional power appearing in the definition of the function f; is s;, and the integers s; are not
necessarily all equal. We omit the details since this more general statement is not needed here.

The following example shows that the functions f; considered in Theorem 2.2 can have many
sign changes even when N =1 and A = s = 2 are fixed.

Proposition 2.5. Let ¢ be a positive integer, and let 0 < & < 2/¢ be a real number. For a =
(a1, ..., a0) € {=1,1}, define fa: R — R by

:Za,<\/x—z +52—\/(x—i)2>.

=1

Then sgu(fa(j)) = a; for all j € [4].

Proof. Notice that the i = j summand in the definition of fa(j) equals da;. For i # j, Bernoulli’s

inequality tells us that
‘\/]—z )2+ 0% — \/(]-Z)

Hence, the total contribution to fa(j) of the terms with i # j is at most (£ — 1)§%/2 < 4. It follows
that the i = j term dominates the sum, so sgn(fa(j)) = a;. O

52 52
<— < —.
o " 2
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In particular, if we let ¢ = 2™ for some positive integer m and choose ai, ..., a,, appropriately,
then the tuple of functions (fa,,.--, fa,,) can take on all 2™ proper sign patterns of length m.
Thus we can achieve 2™ proper sign patterns even while fixing N = 1 and A = s = 2, at the
expense of letting r = 2™*! grow exponentially. Somewhat informally, this implies that the bound
in Theorem 2.2 must have at least a linear dependence on r if it is to depend polynomially on m.
This is very far from our bound (which is exponential in r), and it would be interesting to close this
gap.

A simpler, though still interesting, problem in this direction concerns the case where we fix
N =m=1and A = s =2 and consider a function f: R — R which is a linear combination of r
square roots of everywhere-positive quadratic polynomials. Instead of considering the number of
proper sign patterns of f, which is obviously bounded above by 2, we instead consider the number
of connected components of R\ V(f). Using a similar “multiplication by conjugates” trick, this can
be bounded above by 2"~! 4+ 1. On the other hand, we can achieve 2r — 1 connected components by
letting

flz) =1+ Z(—l)ial-l/l()(\/:ﬁ +a?— ai>
i=1
for a sequence 0 < a1 < --- < a,_1 that grows extremely quickly. Again we have a linear lower

bound and an exponential upper bound; it would be interesting to narrow the gap.

3. THE UPPER BOUND IN THEOREM 1.1
Using the tools from the previous section, we can quickly establish the upper bound in Theorem 1.1.
Lemma 3.1. Ifd > 1 and k > 1, then ¢7*(n) = Og.1(n?).

Proof. Let C' = {c1,...,c,} € R% be a set of n (distinct) candidate points. Consider the multiset of
vantage points V = {v1,..., v} C R? as a variable. For each of the (g) choices of 1 < i < j <n,
define the function

k k
fii(V) = Dy(c;) = Dy (c;) = llei —vell = > _llej — el
/=1 /=1

Writing each vantage point in coordinates as v, = (vél), ceny véd)), we see that the functions f; ;

satisfy the hypotheses of Theorem 2.2 with the parameters N = dk, m = (3), A =2, r = 2k, and
s = 2. We conclude that the functions f; ; witness at most

dk (n)
2(22k)dk§)24( z > — Od,k(TLQdk)

distinct proper sign patterns. The signs of the functions f; ; fully determine the relative sizes of the
quantities Dy (¢;), 50 1¥k(C) = Og (n?¥). Since this holds for every choice of C, we conclude that
YIX (1) = Oy (n?¥), as desired. O

Lemma 3.1 settles the upper bound for all £ when d > 2 and for odd k¥ when d = 1. The following
lemma handles the remaining cases.

Lemma 3.2. Ifk > 2 is even, then ¢{'3*(n) = O (n?=2).

Proof. Given a multiset V' = {v1, ..., v} with vy <wvg < -+ <y, let

Uk/2 + Vg/241 Vg/2 T Vk/o+1
V:{Ulv"'vvk/Z—b / 2 / 5 / 2 / ,’Uk/2+2,-..,Uk .
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We claim that if V distinguishes C, then V also distinguishes C' and we have Z% = E‘C/. To
see this, note that Dy achieves its minimum precisely on the interval [vy /s, vy/241]. Moreover,
Dyy(z) = Dy (z) for all © & [vy/2, Vg /241], while Dy-(z) < Dy () for all z € [vy/2, v /241]. Therefore,
the values in (Dy-(c))ccc are the same as in (Dy(c))cec, except that the minimum may decrease.
This cannot change the relative order.

As a result, to determine Wy (C'), one needs to consider Zg only for multisets V' of k points in

which two points are identical. Arguing as in the proof of Lemma 3.1 gives ¢{"2*(n) = Op(n?F=1),
as desired. |

4. THE LOWER BOUND IN THEOREM 1.1: GENERAL TECHNIQUES

4.1. Overview of the proof strategy. Before diving into the technical details of the proof
of Theorem 1.1, we will give a qualitative high-level description of our strategy.

It is reasonable to expect that a generic n-element set C' C R will have 1);,(C) within a constant
factor of @bén,‘jx(n) The difficulty in proving the lower bound in Theorem 1.1 thus lies in finding a
set C' that both “behaves generically” and has enough structure to be analyzed. To achieve this, our
construction of C' will contain features on many different scales. When d > 2, this will let us use
asymptotic estimates such as v1+ R? ~ R and vR? + aR — R =~ a/2 for large R, which simplify
the square roots inherent in Euclidean distances.

For a fixed d, our proof proceeds by inductively turning a construction with k vantage points
into a construction with k + 2 vantage points. When d = 1, our base cases are k = 1 and k = 2; the
result for the former is already known, and the result for the latter is an immediate consequence.
When d > 2, our base cases k = 0 and k& = 1 are trivial and already known, respectively. The
inductive step takes a set C’ from our inductive hypothesis and adds two carefully-chosen sets C
and Oy “flanking” C’ such that C” is located roughly halfway between Cy and C3. We make the
scale of C and Cy much larger than the scale of C’, and we make the separation distances between
C’, C1, and Cy even larger.

We place two vantage points w1 and ug near C and Cs, respectively, and place k additional
vantage points vy, ..., vy close to C'. The quantity ||¢ — u1|| + ||¢ — ug|| will be essentially constant
(in fact, exactly constant when d = 1) on C’ due to the large separation distances, so the relative
order of the points of C’ will be entirely determined by the k vantage points near C’. At the same
time, for each ¢ € Cy U Cy, since the scale of Cy, Cs, u1, and us exceeds that of C’ and vy, ..., v,
the variation in the quantity |jc —ui|| + ||c — ua|| (as w1 and ug vary) will vastly exceed the variation
in the quantity Y ;||c — v;|| (as the v;’s vary), so the relative order of the points in C; U Cy will be
entirely determined by the vantage points u; and uy. As a result, the relative orderings of the sets
C" and C7 Uy can be determined independently, and the total number of orderings of C’ U C; U Cs
will be at least the product of the numbers of orderings of the two component parts.

To formalize the notion of large separations, we define “effective distance functions” that control
the relative order of the points in C7 U Cs in the limit where the scales of C; and C5, as well as their
separation distance, go to infinity. This perspective allows us to reduce the original problem to a
two-“vantage-point” subproblem involving the effective distance functions. For any given individual
solution to the subproblem, we will be able to complete the inductive step by choosing sufficiently
large scales and separation distances, but this limiting process can be forgotten entirely when solving
the subproblem itself. After this stage, the proofs for d = 1 and for d > 2 diverge.

For d = 1, our effective distance functions are piecewise linear and can be analyzed manually.
The argument for d > 2 is more complicated. After the initial reduction via large separations, our
next reduction scales C'y to be much larger than Ci; this further simplifies the effective distance
functions. We will take C; and C3 to be two (scaled) copies of a (d — 1)-dimensional configuration
C* such that 11 (C*) = Q4(n?(@=1); they will be located on two hyperplanes H; and Hj orthogonal
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FIGURE 1. A schematic illustration of our general recursive approach for d > 2.
Dots representing vantage points are large and red.

to the separation axis. The projection of u; onto H; will determine the relative ordering of the
points in C; for each i, and then the orthogonal distances from w1, us to Hy, Ho will determine the
interleaving of points from C; and points from Cs in the ordering of C; U Cy. Thanks to our prior
simplification work, this interleaving process can be analyzed almost exactly, and we will show that
generically there are ©(n*) possible interleavings. Combined with ©4(n?@=1) orderings of each of
C1 and Cs, this will give @d(n4d) total orderings of C7 U Cy. A schematic of the entire construction
is shown in Figure 1.

4.2. Pairs of flanking points. We begin by formalizing the notion of an infinite separation
limit through the definition of effective distance functions. For the remainder of the proof, write
e1 = (1,0,0,...) for the first standard basis vector in RY,

Definition 4.1. Let k& be a nonnegative integer, let U= (t1,109) € R? x R? be an ordered pair of
points, and let ¢ € R? be a point. Define

ﬁ;ﬁ(e) = ||é — || + ((k+1)é+G2) -e;  and f)iﬁ(@) =& = dg|| + (k+ 1)é+14y) - e1.
To motivate these definitions, we consider the multiset of vantage points
V= {ﬁl + Rep, —iio — Rel,O,...,O}
N——
k points
and the candidate points ¢; = ¢; + Req and co = —é — Req, where R is a large positive real number.

With 1iq, 19, é1, ¢ held constant, we have

b;,(j(él) = (Dy(c1) — (k+1)R) and DiU(ég) =

= lim = lim
R—o0 R—o0

(Dv(CQ) — (k + 1)R)

So, if we care about the relative sizes of quantities of the form Dy (c1), Dy (c2) in the regime where
R is large, then it suffices to understand the relative sizes of the quantities Dli o(61), Di (62). We

now define an analogue of ¢, (C) for these effective distances. In what follows, we write AL B to
denote the disjoint union of the sets A, B (even if A, B have nonempty intersection as sets).

Definition 4.2. Let k be a nonnegative integer, and let ¢y and (5 be sets of points in R%
Given U € R? x R?, let D, i C1UC2 — R be the function that equals Di fon C and equals

DiU on Cy. Let f]gl’cz be the function [|C;| + |Co|] — €y U Cy such that Dk\? o 2?‘]1,02 is
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increasing (if such a function exists), and let W, (C1, o) be the set of all such 221,02' Finally, let
P (Cr, Co) = [W1(Cr, Co).

The following three lemmas capture the main steps of our inductive argument. The first is for all
d, the second is for d = 1, and the third is for d > 2.

Lemma 4.3. Let d > 1, k > 0, and m > 0, with the additional constraint that m = 0 if k = 0.
Then, for sets C1,Co C R%, we have

VR (m+ 1|+ |Col) = di(Cr, o)™ (m).
Lemma 4.4. For k,m > 1, there exist sets C1,Co C R of size 2m such that zﬂk(él, C’g) > m?.

Lemma 4.5. Ford > 2, k > 0, and m > 1, there exist sets C’l,ég C R of size m such that
r(C1, Ca) = Qq(m*?).

Before proving these lemmas, let us see how they imply the desired estimates on ngzx(n) for fixed
d, k. We proceed by induction on k. For the inductive step, we note that combining Lemmas 4.4
and 4.5 yields that for all d > 1 and k > 1, there exist sets C’l,é'g of size at most n/3 with
1/3;@(6’1, éz) = Qq(n?), so after applying Lemma 4.3 we find that

YEEs2(n) > Yania([n/3] + |G +1Cal) = Qa(n* )= (In/3)).
Therefore it suffices to show the base cases k =1, 2.

The base case k = 1, i.e., that ¥7{*(n) = Qq(n??) for all d > 1, follows from the result of [GT77;
Zas02] discussed in Section 1. In the k = 2 case, we wish to prove that Pas¥(n) is Qn?) ifd=1
and Qg4(n*?) otherwise. In the d = 1 case, this follows from the fact that Y%*(n) > ¢%*(n), which
can be easily proven by putting the two vantage points at the same place. In the d > 2 case, we
use Lemma 4.5 to find sets €} and Cy of size |n/2] such that ¢ (Cy, Cy) = Q4(n*?). Then, by
Lemma 4.3 we have

YESN(n) > UE5¥(2(n/2]) = ¢r(Ch, Co) = Qa(n?),
where we use the trivial fact that ¢/75*(0) = 1.

We now dispose of Lemma 4.3; the proofs of Lemmas 4.4 and 4.5 will occupy the following two
sections.

Proof of Lemma 4.3. Let C' be such that ¢ (C") = glzx(m) Then, for a positive real number R,
let Cy = R3¢1 + RCy, Cy = —R3e; — RCy, and C = C' U Cy U Cs. Since €7, Cy, and Cy are disjoint
for R sufficiently large, it suffices to show that
Ur+2(C) > ¥r(C)i(Ch, Ca)
for all sufficiently large R > 0. R R R A
Given two functions o’: [|C'|] = C" and 6 [|C1] + |Ce|] — C1 U C4, define o' B6: [|C|] — C to
be the function given by
/(s < !
(o' B () = {" W=l
p(6(i—|C"])) i>1C7],
where ¢ is the Ilaturz%l map C’l L C’g — C1 U Cs. In other words, if ¢’ is an ordering of C’ and & is
an ordering of C7 LI Cy, then o' H & is the ordering of C' that concatenates ¢’ and & (when viewed
as tuples). Now take an ordered pair U = (@1, G2) € R? x R and a multiset ¥V’ C R? of size k, and
let u1 = R3e; + Rily, us = —R3e; — Rilp, and V = V' U {u1, uz}. The lemma will follow from the
statement that X¢ = Egi 2! 221,02 for all sufficiently large R.
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We now estimate Dy (c) in three different ways, according to which of C’, C, Cy contains c. First,
for ¢ € C’, we have

Dy (c) = Dyi(c) + | RPe1 + Ry — ¢|| + || Re1 + Rig + .
Since R3e; + Rily — c = [R3 + (Rii; — ¢) - e1)er + O(R), we have

IR%1 + Ray — c|| = \/(R? + (Ray — c) - e1)? + O(R?)
= (R®+ (Rtiy — ¢) - e1)y/1 + O(R™4)
= R34+ (Riiy —c)-e; + O(R™Y).
Similarly,
|R3e1 + Rig + ¢|| = R* + (Rig + ¢) - e1 + O(R™Y),
SO
Dy (c) = 2R3 + R(@y + 1i2) - e1 + Dy(c) + O(R™Y).
Now, for & € C}, we compute
Dy (R?e1 + R¢) = |R%e1 + Ré — RPeq — Ry || + ||R%e1 + Ré + RPey + Ris|| + Dy/(R%e1 + Re)
= R||¢ — || + ||2R%e1 + R(¢+ a2)| + k|| R*¢1 + Re|| + O(1).
As above, we can estimate
|2R3e1 + R(é+412)|| = 2R*+ R(é+112)-e1 +O(R™') and ||R%;+Ré|| = R3e1+Ré-ey +O(R™Y).
So
Dy (R3e; + Ré) = (k+ 2)R® + Rﬁ;ﬁ(e) +0(1).
Similarly, for ¢ € Cs, we have

Dy(—RPe; — Ré) = (k + 2)R* + RD? ;(¢) + O(1).

Finally, comparing these estimates, we see that for large enough R, the quantities Dy (¢) for ¢ € C’
are all smaller than the quantities Dy (c) for ¢ € C; U Cy (here using the assumption that C’ is
empty if £ = 0); moreover, the relative order of the points in C’ is ¢’, and the relative order of the
points in C; Uy is ¢ 0 G. O

5. THE LOWER BOUND IN THEOREM 1.1: d =1

To prove Theorem 1.1 when d = 1, it remains only to prove Lemma 4.4.

Proof of Lemma 4.4. Let ay,...,an and by, ..., by be real numbers that are sufficiently generic
that the m? differences a; — b; for 4, j € [m] are all distinct (for instance, a; = i/m and b; = i will
work). Now let R be a real number, and define the sets

Ci={k(R+a1),...,k(R+am),k(3R+a1),..., k(3R +am)},
Co={(k+2)(R+b1),....(k+2)(R+bp),2(k+2)R+k(R+b1),....2(k+2)R+ k(R + bp)}.

We claim that for large R, we have @k(é’l, C’g) > m.
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FIGURE 2. A schematic illustration of the construction in Lemma 4.4.

For each fixed choice of wy,ws € R, let U = (k(k + 2)w1, 2(k 4+ 2)R + k(k + 2)ws). Then, for
sufficiently large R (depending on wy, wsy), we may compute

Dl o (E(R+ a:)) = k(k + 2)(R+ a;) — k(k + 2)w1 + 2(k + 2)R + k(k + 2)ws,

Dl o (EBR+ a:)) = k(k + 2)(3R + a;) — k(k + 2)wy + 2(k + 2)R + k(k + 2)w,

D2 A ((k +2)(R+ b)) = k(k 4+ 2)(R+ b)) + k(k + 2wy + 2(k + 2)R + k(k + 2)wo,

D;} (2 (k+2)R+k(R+b)) k(k+2)(3R 4 b;) + k(k + 2)wy + 2(k + 2)R — k(k + 2)w,.

Canceling many common terms, the relative order of the 2m numbers D}C g(k(R + ai)) and

Di o ((k +2)(R+ b)) is given by the relative order of the numbers
a1 — Wi, ..., Gy — W1, by +wi, .., by + w1

Since the differences a; — b; are distinct, these numbers assume m? + 1 > m? different orderings as

wq varies.
At the same time, the relative order of the numbers Dli 5 (k(BR+a;)) and Dz o (2(k+2) R+k(R+b;))

)

is given by the relative order of
a1 — (w1 —wg),...,am— (w1 —’LU2),b1—|—(w1 —WQ),...,bm+(W1 —ZUQ).

As w; — wy varies, these numbers also assume at least m? orderings. Since w; and w; — wy can vary
independently, we obtain at least m* distinct elements of W (C4, Cs). This concludes the proof. [

6. THE LOWER BOUND IN THEOREM 1.1: d > 2

We now pick up where we left off at the end of Section 4.

6.1. A further reduction. In this section, we reduce Lemma 4.5 to a problem involving simpler
distance functions.

Definition 6.1. Let d > 2 be a positive integer. Given a quadruple

~

V = (01,09, %,9) e R R X R x Ry
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and a point ¢ € R4, let

DL(e) =/ + = v |2 =& and D (&) = jl|é - v
For two sets 5’1, Cy C R define D‘V/: Cy U Cy — R to be the function that equals ﬁ‘l/ on Cy and
equals b‘Q/ on Cy. Let igl’GQ: [|C1| 4 |Ca|] = C1 U Cy be the function such that ﬁ‘v/ o igl’GQ is
increasing (if such a function exists). Let W(C},Ca) be the set of all possible 2‘6;1,5'2 as V varies,
and let ¢(Cq, Ca) = [¥(Cq, Co)|.

As in Definition 4.2, the first two functions in Definition 6.1 can be viewed as effective distance
functions for a suitable infinite separation limit. The setup of this infinite separation limit is as
described in the statement of the following lemma.

Lemma 6.2. Let k > 0 and d > 2 be integers, and lvet Cv'l,VCv’ng Rd_l be finite point sets. For
sufficiently large R > 0, we have ({0} x C1,{0} x RC2) > ¢(C4, C?).

Proof. For each V = (91,0, %, ) € R x R x R x Ry, define U = (((%,9y), (R?/(2§), R)).
Then, for ¢ € C, we have
2 2

. R y R
1 N . . S .
Dk,0(<070)) =/llé = 0|* + 2% + 2% Dy (¢) + 2% +T.

For ¢ € (s, we have

) RA R2 437211& — 9512
Diﬁ((O,Ré)):\/R2H5_@2H2+ +:E:—\/1+M+;E

472 27 R
R? 4°|1¢ — Ba|? 4 %2 R 2
~ (g ) ti=D2(E) + 2 4 i+ OR2).
% < SR (R |+2 +(C) % iy (R™7)

In particular, if R is sufficiently large, then the relative order of the quantities D; 5 ((0,¢)) (for
¢ e () and lA?i (0, R¢)) (for ¢ € Cy) is the same as the relative order of the quantities D‘l/(é) (for
¢e ) and D‘Z/(é) (for ¢ € Cy). This concludes the proof. g

This lemma shows that in order to prove Lemma 4.5, it remains only to find sets 5’1, Cy C R41!
each of size m such that 1 (Cy, Cy) = Qq(m?*?).

6.2. The final construction. Since the remainder of the argument is concerned with only the
“check” variables and functions, we will dispense with diacritics except for ¢, W, D}, and 231’02.
The goal of this section is to prove the following lemma.

Lemma 6.3. Ford > 2 and C C R finite, we have QL(C, C) > (|(2}‘)2(w1§c)).

Lemma 4.5 can now be deduced by choosing C' to be some m-element subset of R%~! with
Y1(C) = O4(m>@=1): for the existence of such a set C, see the discussion in Section 1. For the rest
of this section, fix a choice of C C R4™! (d > 2).

We start with some preliminary results that will help us understand D‘l/ For a > 0, define the
function ¥,: R = R as J,(z) = Va2 + a? — z. For a,b > 0, define ¥, : RU {—00,+00} — R by

Vo(x)/Op(z) z€R
Yap(x) =41 T =—00
a?/b? x = +o0.
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We record several facts about 9, that will be useful in the sequel.

Lemma 6.4. Let a > b > 0. Then 9,3 is a continuous and strictly increasing function. Also,
if p>q >0 and p/q < a®/b?, then the unique x € R U {00} satisfying 94(x)/Vp(z) = p/q is
determined up to a sign by
L (2% — b2p?)?
Apq(p — q)(a*q — b?p)
(In particular, when x = +o0o, the numerator of the above fraction is nonzero, and the denominator
is zero.)

Proof. Tt is clear that J,(x) is a smooth and positive function of x, so ¥,(x) /() is also smooth
and positive. To show that v, (x)/9y(x) is strictly increasing on R, we start by noting that

€ 1= 19(1(11)

V()= —o =T
)= e Vi@

L tog g (a) = 2al) ____1

dx V() VaZ+a?
d Vo) 1 1
— 10 — —
o o) T VTR Vit a
which shows that ¥4 (z)/9(x) is strictly increasing.
We now establish that ¥, ; is continuous at x = +00. Combined with 1, ; being strictly increasing

on R, this also implies that 1, is strictly increasing on its entire domain. In the limit z — —oo0,
we have ¥q(x) = (2 + 04(1))x and likewise for Jy(z), so ll)m Va(x)/9p(z) = 1. In the limit 2 — oo,
Tr— —00

Consequently,

It follows that

>0,

we Taylor-expand

CL2

afe) = o1+ 0/ = 1) = 25 (a/a)? + Ol(af)h)) = 5+ 0u(a™)
(and likewise for ¥(x)), and we see that xlggo Vo () /() = a? /b2

It remains to derive the final formula of the lemma. The cases when p/q € {1,a?/b*} can be
easily checked by hand. Now suppose that x € R and 9,(x)/9(z) = p/q € (1,a%/b?), which is
equivalent to

qVa? +a? —pVa? + 12 = (¢ - p).
Squaring both sides gives

(0% + 4)a? + a%% + Vp? — 2pqy/ (a2 + a2) (2% + b?) = (p — g)%?,
which can be rearranged to

2pqy/ (22 + a2)(a2 + b2) = 2pqz® + (a®q® + bpP).

Squaring again, we get
4225t + A(a? + B)p2a? + 422 pR g = ApPPat + A(a®@ + b2p)paa? + (a2¢® + bPpP)?,
which simplifies to
4pq(p — q)(a*q — bp)a® = (a’¢® — b*p*)%.
o (22 — b2p?)?
4pq(p — q)(a*q — b*p)
(Note that aq — b*p # 0 since p/q < a?/b?.) O

Hence
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We now turn to the expressions appearing in ﬁ‘zf For v € R41 let
Aw) ={llv = al*/llv = e2l” : e1,e0 € C, o = ea]| > [lv = e}
Say a pair of points (v1,v2) € (R41)2 is good if the following conditions hold:
e vy and vy are not elements of C.
e A(v1) and A(vy) are disjoint and each have size (‘g‘).
e If z € R and ¢y, ¢9,c3,¢4 € C are such that (c1, ) # (e3,c¢4), |[v1 — 1] > ||Jvr — e2||, and
|lvg = cs|| > ||lvr — c4]|, then 19||1)1—(:1||,||v1—(:2||(:l7) and 19”@1_(33”’”1,1_(34”(13) are not both in A(vg).

The following lemma says that generic pairs are good; actually verifying all of the conditions for
goodness is unfortunately somewhat tedious and notation-heavy.

Lemma 6.5. The set of good pairs is dense and open in (R4~1)2.

Proof. Let C = {c1,...,cm}. Define the following subsets of (R41)2:
e Let Q be the set of (v1,v2) such that vi, v do not lie in C.
e For distinct «, 5 € [m], let stg C Q be the set of (v1,v2) such that [ju1 — cof| # [Jv1 — gl

e For distinct a, 8 € [m], let Q((fﬁ) C Q be the set of (v1,v2) such that ||va — cql| # [Jva — cs]l-

e For o, 3,7, € [m] with a # 8, v # J, and (o, 3) # (v,90), let fo’%w C Q be the set of
2

flvr—cal| lvr—eq |12
(v1,v2) such that or=cs|? # R

* For ,8,7,0 € [m] with o # f§, v # 6, and (@, §) # (v,0), let Q(oigw C Q be the set of
Il _a|2 lva—c |2
(01, v2) such that 2= # i=chps-

e For o, 3,7,0 € [m] with a # [ and v # 0, let QSL')M C Q be the set of (v1,v2) such that

[v1—ca? 4 l[va—cy|?

[or—cpll®> 7 Tlva—csl?
e For o, 3,7,9,e,(,n,0 € [m] with « # 8, v # 5, € # (, n # 0, and {«, S} # {v,d}, let
Qg?ﬁ)v&@@ C Q be the set of (v1,v2) such that there does not exist an z € R U {£oc} with
| Jos — .l oz — cql?
(%) s —eallllor el () = oz a0 oyl flos el (@) = o

A vz — col?

We first claim that the intersection of all these sets is precisely the set of good pairs. First of all,

the first condition in the definition of a good pair is precisely the condition that the pair is in 2; we
¢ lm—cal? . Jvizcpl?
o1 —csll? [[vi—call?

1, the set A(vy) has size (%) if and only if the mn numbers [jv; — co|[? for o € [m] are all distinct
and nonzero and their non-unit ratios are all distinct; the latter condition is exactly equivalent to

will henceforth work within this set. Since at most one o can be greater than

(v1,v9) lying in QS& and Qfﬁ)“ﬂs for all a, 3,7,d. Similarly, the condition |A(vz)| = ('y) is equivalent

to (v1,v2) lying in Q((fﬁ) and Qt(jﬁ)vé for all a, 8,v,9. Now, assuming that [A(v1)| = |A(v2)| = (),
(%)

apy
2
as «, 3,7, 0 vary, the sets of values attained by the quantities HE_Z;‘HQ and

A(v)U{1l/t:t € A(vy)} and A(ve) U{1/t:t € A(ve)}, respectively.
To finish justifying the claim, we must show that, under the assumption of the first two conditions
in the definition of goodness, the third condition also holds if and only if (v, v2) lies in all of the

the condition that A(vi) N A(vp) = @ is equivalent to (vq,v2) lying in Q5 s for all o, 3,7, d, since

v2—cy |2 :
Toa—cyZ 2T€ given by

sets Qfﬁ)%gqne. The “if” direction is clear. For the converse, suppose x € R U {—o00, 00} and the
indices «, 3,7, 0, ¢,(,n, 0 satisfy (3¢). We cannot have = +00 since we assumed that the second
condition of goodness holds. After possibly swapping (o, ¢) with (5, () and/or swapping (v, n) with
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2 _ 2
(6,60), we may assume that Hg and sz—_zz%; are greater than 1. Then both of these quantities

lie in A(vq), so (v1,v2) is not good.

Since finite intersections of dense and open subsets are dense and open, it suffices to show that
each of the sets defined above is dense and open. This is obvious for 2. Moreover, since open
subsets of open subspaces are open and dense subsets of dense subspaces are dense, it suffices to
show that the rest of the sets are dense and open subsets of €.

The openness of Slsﬁ), Slfﬁ), Q%w, SZ((fgw, and 52(()275 is clear, as each can be easily expressed

as the preimage of the open set R?\ {(x,z) : * € R} C R? under a suitable continuous map. To
see that ng/gv&(n@ is open, consider the set Q C Q x (R U {#00}) (we omit indices for brevity)

consisting of the triples (v1, v2, x) satisfying (). This is a closed subset since ¥, is continuous.
Also, Qflgv&(m? is the complement of the image of  under the projection map € x (RU {£o0}) — Q.

The openness of Qg?ﬁ)wéacné? now follows from the well-known fact that for topological spaces X and
Y with Y compact, the projection map X x Y — X is closed.
We now check denseness. This is obvious for Q(lg and Qf/g For Q(sg,y 5, it suffices to show that

a (e
lvr = call*llor = esl® = [Jor = calPflor = e |12

is not the zero polynomial in v1. To see this, note that setting v1 = ¢4 gives [|co — csl|?|lca — ¢y ||%
which is nonzero unless o = . Similarly, setting v; = cg yields a nonzero value unless 3 = . But
these cannot both occur due to our assumption that («, 5) # (7,9). The argument for leﬁ)v

identical. To show that 91(156)75 is dense, it suffices to check that

5is

lor = call*v2 = esl1* = [lor = call* o2 — 5

is not the zero polynomial in vy, vo; this is true since setting v2 = ¢, yields ||y — ¢s]|2[lv1 — call?,
which is clearly nonzero.
It remains to handle Qt(fﬁ)?v SeCnb- If (v1,v9,x) satisfies (), then two applications of the last part
of Lemma 6.4 yield that
(173 — r1p73:)? (114759 — T1573,)

7’257“24(7“25 - 7“24)(7’1a7“2< - 7’1,87'25) B 7”2777’29(7‘277 - 7’29)(7’177’29 - 7“157“277)

where we abbreviate r;, = ||v; — ¢,||?. Clearing denominators (which is still fine when x = +00), we
get

rant20(ran — 120) (114720 — T16729) (11a75¢ — 11573:)?
= roerac (r2e — Tac) (T1aTac — T1472:) (114739 — T1675,)°-

It will suffice to show that these are not equal as polynomials in vy, v3. Assume instead that these
two polynomials are equal. The set of v5 such that the left-hand side is zero for all vy is precisely
the set consisting of ¢;, cg, and the points equidistant from ¢, and cy.' Analyzing the right-hand
side likewise, we conclude that {c;.cp} = {c.,cc}. Without loss of generality, we have e = 1 and
¢ = 0. Now, after canceling factors that appear on both sides of our equation, we get

(r1yrag = T15722) (11075 = 11675.)° = (r1arac — g2 (riyr3e — r1575.)%

Since o # 3, the polynomials 71, and r1g are linearly independent, so no nontrivial linear combination of them is
the zero polynomial. Applying similar reasoning to r14 and r1s5, we conclude that (r1y7r20 — rlgrgn)(rmrgc - 7'137'35)2
can never be the zero polynomial in v; for any value of vs.
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Plugging in v = ¢, yields

2

lce — cé”lorlvrla = lce — Cé”lorloﬂ’2

1y
So a = ~. Similarly, plugging in v2 = ¢, implies § = d. This yields the desired contradiction. [
For the next step, we fix vy, vo € R* ! and consider ne:c as z and y vary. Let us write

(v17v2?‘r’y)
[(v1,v2) = [{(a,b) € A(v1) x A(ve) : a > b}|.

Lemma 6.6. If (vi,v2) is good, then as V wvaries over {(vi,v2)} x R x Rsq, there are at least
I'(v1, v2) possibilities for the function Eg’c.

Proof. Let N = I'(v1,v2). Let Z be the set of quadruples (¢, ca, 3, ¢4) € C* such that

v — 3]l |lvg — e
vz —call  |lvr — 2]

1<

For i € {1,2}, each element of A(v;) is associated with a unique ordered pair of elements in C' since
|A(v;)| = (‘g'). So |Z] = N. Lemma 6.4 tells us that for £ = (¢1,co,c3,c4) € Z, there is a unique
z¢ € R such that

Doy —er | (TE) vz — cs]?

Doy —ea)(Te) vz —call?

Moreover, since (vi,v2) is good, these x¢’s are all distinct. Now order the elements of Z as
€W . &M 5o that

Te() <0< Te(n)-

Write £U) = (ng)7 ng), c:(,)j), cf,tj)) and z; = Te(s) - Choose arbitrary real numbers z/, ..., z’y such that
r1 <) <zo<ah<---<axy <zl For each j, we have
. ,. . . ]
Dhor=c? 1) =) @) oy — |2
or—e@1 T3~ O () oy — |2

by construction, so we can find some y; > 0 such that

||7,1_Céj)||(x;') < yjHUZ - Cz(lj)”Q < yjHU2 - ci(ij)”Q < 19”7,1_(351')”(;6;')'

Let Vj = (v1,v2,7,y;). Note that D‘l,](c) = V)jy,—¢| () and D%/](c) = yjllva — ¢||>. So the
previous string of inequalities reads

DY () < DY () < DY () < DY ().

We claim that the N functions f]gjc are all distinct. Indeed, for j' < j, we cannot have
Dl ((j) < D? ((j) < D? ((j) < D} ((j)
Vj/ CQ) Vj/ C4) Vj/ 63) Vj/ 1 )

since this would imply that

. , y
o=@ @) o = )12
! > )
Do (@)~ Jlvg — |12

contrary to the fact that a:;/ < xj. Thus i%/c #* i‘c/;c for all 7/ < j, completing the proof. O
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Proof of Lemma 6.5. For each o € Wi(C), let X, = {v € R : ¥¢ = ¢}; this is an open
and nonempty subset of R4, Let U be the set of tuples (vr)-cy, (o) € (RE1)P1(C) such that
(Vsy vgr) is good for all distinct 0,0’ € W1(C). Notice that U is dense and open. Since the set
[ocw, )Xo © (R¥=1)¥1(C) is open, the set U N [locw, () Xo is nonempty. Thus, we can find a
tuple (vo)scw,(c) such that v, € X, for all o and (UU, vy) is good for all o # o’.

Fix some o # o/, and consider the functions Z( ) for x € R and y € R+y. Each such

Vo ,Vs/ %Y
yoo and D?

c,cC
('Ug,'U ! xvy)

2
C) > Z [(vg,ver) = % Z (I'(vo, vo) + T'(ver, vo)) = 9 Z <‘(27|> <‘(27’> <w1;C)>’

o#a’! o#o’! o#a!
as desired. N

function “extends” o and ¢’, in the sense that D} )oa’ are both increasing

(Vo v, ,2,Y (Vo vyr,2y

functions. In particular, o and ¢’ can both be recovered from »& SO

7. UNLIMITED VANTAGE POINTS

In this section, we study the set W(C) = Ug>q Yr(C) of orderings of a set C' = {c1,...,cp} € R?
of candidate points that can be obtained using an arbitrarily large (finite) multiset of vantage points.
That is, U(C) is the set of all tuples X{/ that can be obtained by choosing a finite multiset V' of
vantage points in R? that distinguishes the points of C.

We first observe that the triangle inequality places a constraint on the tuples in W(C'). Let us say

a tuple (z1,...,x,) of points in R? is protrusive if for every i € [n — 1], the point z;, 1 is not in the
convex hull of z1,...,z; (so the convex hull of z1,...,z;41 “protrudes” out of the convex hull of
Tlyen, Xg).

Proposition 7.1. Let C = {c1,...,c,} € R%. Every tuple in W(C) is protrusive.

Proof. Let V' be a finite multiset of vantage points in R? that distinguishes the points in C, and
let 3 = (¢y(1), - - - Co(n)) be the witnessed ordering of C. Fix i € [n — 1]. We need to show that
Co(i+1) 18 ot in the convex hull of ¢, (1), ..., ¢s(;)- Suppose otherwise. Then there exist nonnegative

real numbers A1, ..., A; such that 7y_; Ay = 1 and ¢, 41) = 22:1 AeCy(r)- We have

Dy (co(i41) = Y _lleairn — vl =D Z)‘ﬁ 0—v)| <D ZMHCU(K -l = ZMDV Co(r))

veV veVili=1 veV (=1
This contradicts the fact that Dy (cy1)) < -+ < Dy (cy()) < Dv(co(itr))- O

It is natural to ask if W(C') is exactly the set of protrusive orderings of C'. The next theorem
states that this is the case when d = 1, but we will see later that it can fail to hold when d = 2.

Theorem 7.2. If C = {c1,...,cp} C R, then U(C) is the set of protrusive orderings of C. The
number of such orderings is 2"

Proof. We may assume without loss of generality that ¢; < --- < ¢,. It is straightforward to check
that a tuple (Ca(l)7 .43 Cq(n)) 18 protrusive if and only if there do not exist indices i; < iz < i3 such
that o(ig) is strictly between o(i1) and o(iz). (In other words, this tuple is protrusive if and only
if o avoids the patterns 132 and 312.) It is well known (and straightforward to prove) that the
number of such permutations is 2"~ !.

Proposition 7.1 tells us that every tuple in W(C) is protrusive. To prove the reverse containment,
we proceed by induction on n. This is trivial when n = 1, so we may assume n > 2. Suppose
(Ca(1)s -+ -+ Co(n)) 18 Protrusive; we will show that this tuple is in W(C). The entry o(n) is either 1
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FiGURE 3. The set C' from Proposition 7.3. The points ¢y, co, c3 are in blue, while
i, ch, ch are in green. Note that the green points lie slightly outside of the triangle
whose vertices are the blue points.

or n. Let us assume o(n) = n; a virtually identical argument handles the case where o(n) = 1.
Let C' = C\ {cp}. Then (co(1);--;Co(n—1)) is protrusive, so we can use induction to see that

there exists a multiset V' of points in R such that Eg: = (Co(1)s -+ +1Co(n—1))- This means that
Dy (co(1)) < -+ < Dyr(co(n-1))- Let K be a large positive integer. Let V' be the multiset obtained
by adding K copies of the point ¢; and K copies of the point ¢, 1 to V. For 1 <i < n— 1, we have

Dy (¢;) = Dy(ci) + K(ci —e1) + K(cn-1 — ¢i) = Dyi(e;) + K(cn1 — c1).
Thus, Dy (cy1)) < -+ < Dy(cyn-1)). We also have
Dy (cn) = Dyi(cn) + K(en — 1) + K(en — en—1) = Dyi(cn) + K(cn—1 — c1) + 2K (¢n — cn-1),
80 Dv (Co(n—1)) < Dv(cn) = Dy (cg(ny) if K is sufficiently large. This shows that
(00(1)7--~7Ca(n)) = Eg €Y (0). 0

We now turn our attention to the Euclidean plane. We begin by showing that the analogue
of Theorem 7.2 is false when d = 2. In particular, we construct an explicit set C C R? of size 6
such that U(C) does not contain all of the protrusive orderings of C. The set C' will consist of the
vertices of an equilateral triangle together with three points placed near the midpoints of its edges
but just outside of the triangle; see Figure 3. In particular, this C' will be in convex position, so all
orderings will be protrusive, but we will show that ¥(C') does not contain all orderings of C.

Proposition 7.3. Let C C R? consist of the siz points
c1 = 2e(m/2), co = 2e(Tr/6), c3 = 2e(117/6),
dy = —1.1le(n/2), ¢y = —1.1e(77/6), ¢y = —1.1e(117/6),
where we have written e(f) := (cosf,sinf). Then for any v € R, we have
lv = cill + [lo = call + lv = esll = flv = il + lv = &l + [lv = 5]l
In particular, the ordering (ci1,c2, c3, ¢}, ¢y, &) is protrusive but is not in U(C).

Proof. The proof proceeds in two steps: We first show by a symmetry/variance argument that the
proposition holds if v is far from the origin, and then we check numerically that the proposition
holds if v is close to the origin. Both parts of the proof are (relatively unenlightening) computations.

: Va?t+x—a _ 1
To begin, we first observe that for all a,z > 0, we have Y4—%=% = 2\/7—+y for some 0 < y < x

(by the mean value theorem). Therefore, we conclude that for all @ > 0 and = > 0, we have

a+L<\/a2+x§a+2ﬁ.
a

a2+~
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Now, for some v with ||v|| > 2, let L be the line through v and the origin, and let 7,: R? — L
denote the orthogonal projection onto L. Then, for any ¢ with ||c|| < 2, we have

o= ell = y/llo = ()12 + lle = () 1%

this quantity can be bounded between

le = mr ()]

2||v = ¢l

lle = mi(c)|?

o = m(e)] + Lo m L,

and |jv—mp(c)| +

It follows that

> (kv =cill = llv =il

1€[3]

>3 (”’” (el — o — mp (el + J Tl = mcmr?)

iep) 2||v = el 2[o = i)l

Sielle = mole)?  Xiggllel — mo(c)l?

2(Jlvll +2) 2(Jlofl = 1.1)

> > (v =mwlenll = llv = mr(hl) +

1€[3]

We now analyze these three terms separately. First of all, since ¢; +c2 +c¢3 =0 = ¢} + ¢ + ¢4 and
lv]] > 2, we get

D Ml =mr(e)l =

1€[3]

> (w—mr(e))

1€[3]

> (w—mp(c)

1€[3]

=D _llv =7l

i€[3]

so the first term is zero. Moreover, letting u be a unit vector perpendicular to L, we claim that
Zz’e[s](ci -u)c; = 6u. This is easy to verify for u = ¢; for some j, and thus follows for general u from

linearity. Therefore,
6= (ci-u)(ci-u)=)_llei —mr(es)|.
i€(3] i€l3]
Similarly, ;e sll¢; — 7o (c))|]* = 3.1.12. Therefore,

3 22 1.1
v—ogl|l = |lv=_l) > = - ;

i€[3]

this quantity will be positive whenever
vl + 2 22
< )
o = 1.1 ~ 1.12

which occurs whenever ||v|| > 2.5.

We now need to show that the inequality is true whenever ||v|| < 2.5, which can be done by
brute force. Specifically, letting f(v) = 3;¢i3([lv — cill = [lv — ¢i]]), we use a computer program with
interval arithmetic to verify that on the 251 x 251 grid v € {—2.5,—2.48,...,2.48,2.5}2, we always
have f(v) > 0.35. Since f is 6-Lipschitz and no v with |Jv|| < 2.5 lies farther than 0.02/+/2 from a
point on the grid, we conclude that

02
F)>035—6- 22 096

V2
for all v with |lv]] < 2.5. O
It is still worth studying the sets C' with the property that W(C') is precisely the set of protrusive
orderings of C. The following theorems provide two families of sets C' with this property.
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Theorem 7.4. If C C R is a set of size n < 4, then W(C) is the set of protrusive orderings of C.

Proof. If the affine span of C is (n — 1)-dimensional, it is a simple exercise to show that every
ordering of C'is in Wy (C'). Indeed, in this case, for each point ¢ € C, there is a sphere S such that ¢
lies outside of S and all of the other points of C' lie on 5; adding many copies of the center of S as
vantage points does not change the relative order of Dy on C'\ {c}, but it increases the relative
value of Dy (c). Henceforth we will assume the affine span of C' has dimension at most n — 2. We
may also assume that the points in C' are not collinear since, otherwise, the desired result follows
from Theorem 7.2. So we are left to consider the case where n = 4 and the affine span of C is
2-dimensional. Let (c1, ¢, c3,¢4) be a protrusive ordering of C; we will show that this ordering is in
U (C). It suffices to prove this when d = 2.

Let C" = {c1, 2, c3}. We already know that the desired result holds for sets of 3 candidate points,
so there exists a multiset V'’ of vantage points in R? such that Zgi = (e1, ¢2,¢3). We are going to
find two points p; and ps such that

ller = pull + [ler = pall = llez = pull + llez = p2ll = lles = pull + [les — p2ll < llea — pall + [[ea — p2.
If we can find such points, then we can form a new multiset V by adding some K copies of
each of p; and po to V'. If K is sufficiently large, then our choice of p; and py will ensure that
Eg = (c1,c2,¢3,¢4).

If the points in C” are collinear, then we can simply choose p; and py to be two points such
that the line segment with endpoints p; and py contains C’. Now suppose the points in C” are not
collinear. We can find a point z in the interior of the convex hull of C' such that C" U {z} is in
convex position. Since ¢y, co, c3, z form the vertices of a convex quadrilateral, a well-known result
[Mun08] implies that there is an ellipse E passing through ¢y, ¢, ¢3, 2. The point ¢4 cannot lie in
or on F since that would imply that z, which is in the interior of the convex hull of C, is in the
interior of E. Now, we can take p; and py to be the foci of E. O

In light of Proposition 7.3 and Theorem 7.4, we are led to the following natural question.

Question 7.5. Does there exist a set C of 5 points such that some protrusive ordering of C is not
in U(C)?

We now formulate a sufficient condition on C for ¥(C') to consist of all |C|! orderings of C. If
C=A{ct,...,cn} C R, then its distance matriz is defined to be the n x n matrix M whose ij-entry
is ||c; — ¢;||. It is well known [Sch37] (see also [Bal92]) that M is invertible for every choice of C.
Let 1 denote the all-1’s vector of length n.

Lemma 7.6. Let C ={c1,...,cn} C Re. If the vector v == Mall has all entries strictly positive,
then W(C) is the set of all n! orderings of C, and every ordering is witnessed by a multiset of vantage
points such that every vantage point is in C.

Proof. Assume without loss of generality that the diameter of the set C' is at most 1/(10n). Let
Co(1)s - - +» Co(n) e an ordering of €', and define the vector p € R™ coordinate-wise by p; == o L(i).
Then there is some constant K > 0 such that the vector p := Kv + Mal 1 has all entries strictly
positive. Notice that Mcp = K1 + p. Obtain p’ from p by rounding each coordinate down to
the nearest integer. The key observation is that since each entry of M¢ is at most 1/(10n), each
coordinate of M p' differs by at most 1/10 from the corresponding coordinate of M¢p. In particular,
the coordinates of M¢p’, when ordered from smallest to largest, have the ordering c, 1y, - .. s Ca(n)-
Hence, if V' is the multiset consisting of p] copies of each ¢;, then Zg = (cg(l), ces ,co(n)). Il

It is straightforward to check that the hypothesis of Lemma 7.6 holds for many particular sets C.
One family of examples comes from taking C' to be the set of vertices of a vertex-transitive polytope;
in this case, the vector v = Mall is in fact constant.
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Theorem 7.7. If C is the set of vertices of a vertez-transitive polytope P C R®, then W(C) is the
set of all |C|! orderings of C.

Proof. Let C = {c1,...,c,}. The vertex-transitivity of I” ensures that the quantity > 7 [lc; — ¢

equals some constant + independent of 7. In particular, Mc1 = ~1, so 1\/[511 = v~ 1 has all
coordinates strictly positive. The theorem now follows from Lemma 7.6. U
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