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Abstract

Let H be a finite family of graphs. A graph G is H-universal if it contains a copy of each H ∈ H
as a subgraph. Let H(k, n) denote the family of graphs on n vertices with maximum degree at most
k. For all admissible k and n, we construct an H(k, n)-universal graph G with at most ckn2− 2

k

edges, where ck is a constant depending only on k. This is optimal, up to the constant factor ck,
as it is known that c′kn

2−2/k is a lower bound for the number of edges in any such graph. The
construction of G is explicit, and there is an efficient deterministic algorithm for finding a copy of
any given H ∈ H(k, n) in G.

1 Introduction

For a familyH of graphs, a graph G isH-universal if, for each H ∈ H, the graph G contains a subgraph
isomorphic to H. The construction of sparse universal graphs for various families arises in the study of
VLSI circuit design. See, for example, [9] and [16], for applications motivating the study of universal
graphs with a small number of edges for various families of graphs. There is an extensive literature
on universal graphs. In particular, universal graphs for forests have been studied in [8], [12], [13], [14],
[15], [17], and universal graphs for planar graphs and other related families have been investigated in
[1], [7], [8], [10], [11], [20].

Universal graphs for general bounded-degree graphs have also been considered in various papers.
For positive integers k and n, letH(k, n) denote the family of all graphs on n vertices with maximum de-
gree at most k. The authors of [3] constructedH(k, n)-universal graphs with at most O(n2−1/k log1/k n)
edges, as well as H(k, n)-universal graphs on n vertices with O(n2−c/(k log k)) edges. In addition, it
is shown in [3], by a simple counting argument, that any H(k, n)-universal graph must have at least
Ω(n2−2/k) edges. A better construction is given in [4], where the authors present such graphs with at
most O(n2−2/k log1+8/k n) edges.
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In [2] we gave an explicit construction of H(k, n)-universal graphs with at most O(n2−2/k log4/k n)
edges, thus nearly closing the gap between the upper and lower bounds for the minimum possible
number of edges. In the present paper we close this gap, proving the following.

Theorem 1.1 For every k ≥ 3 there exist positive constants c1 = c1(k) and c2 = c2(k) so that for
every n there is an (explicitly constructable) H(k, n)-universal graph G with at most c1n vertices and
at most c2n2−2/k edges.

Besides getting rid of the logarithmic factor, the result improves the one in [2] (and in the previous
papers) in the sense that it provides an efficient, deterministic algorithm for finding a copy of any
given H ∈ H(k, n) in the constructed graph G. Curiously, the previous proofs gave only randomized
algorithms for finding such an embedding.

Our construction is similar to the one in [2], but the proof requires some new techniques based on
several intriguing properties of high girth expanders.

The rest of the paper is organized as follows. In Section 2 we describe the construction, and in
Section 3 we describe the basic ideas in the proof that it is universal, leaving a crucial argument to
the next section. The detailed proof of this argument, which is based on properties of high girth
expanders, is given in Section 4. The final Section 5 contains some concluding remarks and open
problems. Throughout the paper we make no attempts to optimize the constants and omit all floor
and ceiling signs whenever these are not crucial. We further assume that n is sufficiently large whenever
this is needed. All graphs considered here have no self loops and no parallel edges, and all logarithms
are in base 2, unless otherwise specified.

2 The construction

Note, first, that (as mentioned in [2]) the case k = 2 is trivial; the square of a cycle of length n is
H(2, n)-universal, and has a linear number of edges. We thus assume k > 2.

Let k > 2 be an integer and put m = 20n1/k. Let F be a constant degree high girth expander on
m vertices. (The construction works equally well if the number of vertices of F is any integer between
m and, say, 10m, but to simplify the presentation we assume the number is exactly m.) Specifically,
we assume that F is an (m, d, λ)-graph, where d is an absolute constant to be chosen later. This
means that F is d-regular and all its eigenvalues but the largest have absolute value at most λ. It
is convenient to assume that F is Ramanujan, that is, λ ≤ 2

√
d− 1. We also assume that the girth

of F is at least 2
3 logm/ log (d− 1). Explicit constructions of such high girth expanders, for every

d = p+ 1, where p is a prime congruent to 1 modulo 4, have been given in [18], [19]. Let G = Gk,n be
the graph whose vertex set is V (G) = (V (F ))k, where two vertices (x1, x2, . . . , xk) and (y1, y2, . . . , yk)
are adjacent iff there exist at least two indices i such that xi and yi are within distance 4 in F . Note
that G has mk = O(n) vertices and O(nmk−2) = O(n2−2/k) edges.

Our main result is that the graph Gk,n is H(k, n)-universal. This is proved in the following two
sections.
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3 Embedding in the universal graph

A homomorphism from a graph Z to a graph T is a mapping of the vertices of Z to those of T
such that adjacent vertices in Z are mapped to adjacent ones in T . Note that there is an injective
homomorphism from Z to T iff Z is a subgraph of T .

The k-th power T k of a graph T = (V (T ), E(T )) is the graph whose vertices are the vertices of T ,
and two are adjacent iff the distance between them in T is at most k. Let P = Pn denote the path
on n vertices, that is, the graph whose set of vertices is [n] = {1, 2, . . . , n}, where i, j are connected iff
|i− j| = 1.

An augmentation of a graph T = (V,E) is any graph obtained from T by choosing an arbitrary
(possibly empty) subset U ⊂ V , adding a new set U ′ of |U | vertices, and adding a matching between
U and U ′. Thus, an augmentation of T is obtained from it by connecting new vertices of degree 1 to
some of its vertices.

Call a graph thin if its maximum degree is at most 3 and each connected component of it is either
an augmentation of a path or of a cycle, or a graph with at most two vertices of degree 3. It is easy to
check that every thin graph H on n vertices is a (spanning) subgraph of the forth power of the path
Pn, that is, there is a bijective homomorphism from each such H to P 4

n .
We need the following result, proved in [2].

Theorem 3.1 ([2]) Let k ≥ 2 be an integer, and let H be an arbitrary graph of maximum degree at
most k. Then there are k spanning subgraphs H1, H2, . . . ,Hk of H such that each Hi is thin, and every
edge of H lies in precisely two graphs Hi.

The assertion of the theorem for even values of k is an immediate consequence of Petersen’s Theorem.
The proof for odd values of k, given in [2], requires some work based on techniques from Matching
Theory. The proof is algorithmic and supplies an efficient algorithm to find the graphs Hi for a given
input graph H.

To prove Theorem 1.1 we have to show that every graph H ∈ H(k, n) is a subgraph of G = Gk,n.
Given such an H = (V,E), let H1, H2, . . . ,Hk be as in Theorem 3.1, and note that as all of them
are spanning subgraphs of H, the set of vertices of each of them is V . As each Hi is thin, there
are injective homomorphisms gi : V 7→ [n] from Hi to P 4

n . The main part of the proof is to show
that there are homomorphisms fi : [n] 7→ V (F ) from the path Pn to the expander F , such that the
mapping f : V (H) 7→ V (G) given by f(v) = (f1(g1(v)), f2(g2(v), . . . , fk(gk(v)) forms an injective
homomorphism from H to G, thus implying that H is a subgraph of G. To do so, we define each fi

as a homomorphism from the path Pn to F , given by a non-backtracking walk. Since the girth of F
exceeds 4, this ensures that each composition fi(gi(·)) is a homomorphism from Hi to the forth power
F 4 of F . By the definition of G, this implies that f is indeed a homomorphism from H to G. Indeed,
for any pair u, v of adjacent vertices of H there are two indices i such that u, v are adjacent in Hi, as
each edge of H is covered by two of the graphs Hi. For each such index i, gi(u) and gi(v) are distinct
and within distance 4 in P , implying that fi(gi(u)) and fi(gi(v)) are distinct and within distance 4 in
F , that is, they are adjacent in F 4. Hence f(u) and f(v) are adjacent in G, and f is a homomorphism,
as needed.
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The only remaining piece, which is the crucial part of the proof, is to show that the homomorphisms
fi can be defined so that f is injective. To do so, we define the non-backtracking mappings fi one by
one in order, ensuring, while defining fi, that the following condition holds.

For every i (not necessarily distinct) vertices v1, v2, . . . , vi ∈ V (F ),

|{v ∈ V (H) : f1(g1(v)) = v1, f2(g2(v)) = v2, . . . , fi(gi(v)) = vi}| ≤ n(k−i)/k (1)

This holds trivially for i = 0, and in the next section we show how to define the mappings fi so
that it holds for all i. The case i = k asserts that f is injective, as needed. Moreover, the proof
provides an efficient way to find the mappings with the required properties. To complete the proof it
thus remains to prove that the mappings fi can defined so that they satisfy (1). This is done in the
next section.

4 The crucial argument

The proof is based on several properties of high girth Ramanujan graphs. These are stated and proved
in the following subsection.

4.1 Properties of high girth expanders

Throughout this subsection, F = (V,E) is an (m, d, λ)-graph, that is, a d-regular graph on m vertices
in which all nontrivial eigenvalues have absolute value at most λ. We start with the following well
known fact.

Lemma 4.1 ([5], Lemma 9.2.4) For every set B of |B| = bm vertices of F ,∑
v∈V

(|NB(v)| − bd)2 ≤ λ2b(1− b)m,

where |NB(v)| is the number of neighbors of v in B.

This easily implies the following (see also [6] for a similar claim).

Lemma 4.2 Let B,C be two sets of vertices of F , and suppose that each vertex of C has at least 3d/4
neighbors in B. Then

|B| ≥ min{m/2, |C| d
2

16λ2
}.

In particular, if λ ≤ 2
√
d− 1 then

|B| ≥ min{m/2, d
64
|C|}.

Proof: Put b = |B|/m. If b ≥ 1/2 there is nothing to prove, hence assume b < 1/2. By Lemma 4.1,

|C|d
2

16
≤

∑
v∈C

(|NB(v)| − bd)2 ≤
∑
v∈V

(|NB(v)| − bd)2 ≤ λ2b(1− b)m ≤ λ2|B|,

implying the desired result.
Another simple corollary of Lemma 4.1 is the following.
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Lemma 4.3 If B is a set of at least 9m/10 vertices of F , then the number of vertices that have less
than 8d/10 neighbors in B is at most 9λ2m/d2. In particular, if λ ≤ 2

√
d− 1 and d > 720, then this

number is smaller than m/20.

Proof: Put C = {v ∈ V : |NB(v)| < 8d/10}. By Lemma 4.1 we get, as before,

|C| d
2

100
≤

∑
v∈V

(|NB(v)| − bd)2 ≤ λ2b(1− b)m ≤ λ2 9m
100

,

as needed.
Let q be a positive integer. A (simple) walk of length q in F is a sequence W = (w0, w1, . . . , wq)

of distinct vertices of F , where wiwi+1 is an edge for all i < q. Let S1, S2, . . . , Sq be subsets of the
set of vertices V of F . We say that a walk W as above slips by the sets Si if for all 1 ≤ i ≤ q,
wi 6∈ Si. Call a vertex w ∈ V nice with respect to the sets Si if there are at least m/2 vertices z
so that there is a walk w = w0, w1, . . . , wq = z of length q that starts at w, slips by the sets Si and
ends at z. Call a vertex w ∈ V very nice with respect to the sets Si if for every set Q of vertices that
contains at most d/20 − log d neighbors of each vertex, the vertex w is nice with respect to the sets
S1 ∪Q,S2 ∪Q, . . . , Sq ∪Q.

Lemma 4.4 Let F be as before, assume λ ≤ 2
√
d− 1, and suppose that the girth g of F exceeds

1
2 logm/ log d and that d > 720. Put q = dlogm/ log 10e. Then, for every collection of sets S1, S2, . . . , Sq

of vertices of F satisfying |Si| ≤ m/20 for all i, the number of vertices w that are very nice with respect
to the sets Si is at least 9m/10.

Proof: Define sets of vertices Tq, Tq−1, . . . , T1, T0 of V as follows. Put Tq = V −Sq. Let Zq−1 denote
the set of all vertices that have less than 0.8d neighbors in Tq and define Tq−1 = V − (Zq−1 ∪ Sq−1).
Assuming we have already defined Tq, Tq−1, . . . , Tq−i+1, let Zq−i denote the set of all vertices that have
less than 0.8d neighbors in Tq−i+1 and define Tq−i = V − (Zq−i ∪Sq−i). By Lemma 4.3 and induction,
|Zq−i| ≤ m/20 for all i, and hence |Tq−i| ≥ m−m/20−m/20 = 0.9m for all i. To complete the proof
we show that every w ∈ T0 is very nice with respect to the sets Si. To do so, fix w ∈ T0 and let Q
be a set of vertices of F that contains at most d/20− log d neighbors of each vertex of F . Define sets
of vertices Y0, Y1, Y2, . . . , Yq as follows. Put Y0 = {w} and let Y1 be the set of all neighbors of w in
T1−Q. Assuming Y1, Y2, . . . , Yj have already been defined, we define Yj+1 as follows. For each y ∈ Yj

fix a walk W of length j from w to y that slips by the sets S1 ∪Q,S2 ∪Q, . . . , Sj ∪Q. Now consider
all neighbors of y that lie in Tj+1 − (Q ∪W ). Yj+1 consists of the union of all these sets of neighbors.
Note that by construction, for every yj+1 ∈ Yj+1 there is a walk of length j + 1 that slips by the sets
S1 ∪Q,S2 ∪Q, . . . , Sj+1 ∪Q, starts at w and ends at yj+1. (We have omitted the vertices of W from
the set of neighbors of y to ensure this walk consists of distinct vertices.) By construction, each vertex
of Yi has at least 0.8d neighbors in Ti+1. In addition, the assumption on the girth implies that the
walk W cannot contain more than q

g−2 + 1 < log d neighbors of any single vertex, and hence, by the
assumption on Q, each member of Yi has at least 0.8d − (d/20 − log d) − log d = 3d/4 neighbors in
Yi+1. Therefore, by Lemma 4.2, |Yi+1| ≥ min{m/2, |Yi| d

64}. By the definition of q (and as d > 720)
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this implies that |Yq| ≥ m/2 (with room to spare), and as any vertex of Yq can be reached from w by
a walk of length q that slips by the sets Si ∪Q, it follows that w is indeed very nice, as needed.

We need another lemma, which is a simple consequence of the definitions of the notions nice and
very nice.

Lemma 4.5 Let F be as in Lemma 4.4, let q = dlogm/ log 10e and let S1, S2, . . . , Sq be sets of vertices
of F . If a vertex w is very nice with respect to the sets Si, and Q is the set of vertices of a walk of
length q + 1 in F , then w is nice with respect to the sets Si ∪Q.

Proof: By the assumption on the girth g, Q contains at most (q + 1)/(g − 2) + 1 neighbors of any
given vertex, and the assumptions on the girth g and the degree d ensure that this is smaller than
d/20− log d. The result thus follows from the definitions.

4.2 Completing the proof

Proof of Theorem 1.1: By the discussion in Section 3, it suffices to prove the existence of mappings
fi satisfying (1). This is done by induction on i. The assertion trivially holds for i = 0. Assuming it
holds for i− 1, we prove it for i, where i ≥ 1. To this end, we define fi : [n] 7→ V (F ) by defining the
values of fi(1), fi(2), . . . in order, making sure that throughout the process, the condition (1) will be
kept. Starting with t = 0, assume we have already defined fi(1), fi(2), . . . , fi(t). It is convenient to
think about t as denoting time, hence we say that at time t we have already defined the values of fi

up to fi(t). For every j > t, define a set Sj,t, consisting, intuitively, of all vertices vi ∈ V (F ) so that
we cannot define fi(j) = vi based on the information we have at time t. Formally, Sj,t is defined as
follows. Put v = g−1

i (j), that is, v is the unique vertex in V (H) = V (Hi) mapped by gi to j. A vertex
vi ∈ V (F ) is dangerous for place j at time t if there are at least n(k−i)/k vertices u ∈ V (H) such that
gi(u) = ` ≤ t, and

f1(g1(u)) = f1(g1(v)), f2(g2(u)) = f2(g2(v)), . . . , fi−1(gi−1(u)) = fi−1(gi−1(v)) and fi(gi(u)) = vi.

Thus, if vi is dangerous for place j at time t, we cannot define fi(j) = vi, as this will violate the
condition (1). The set Sj,t consists of all vertices vi which are dangerous for place j in time t. Note
that, crucially, |Sj,t| ≤ m/20 for all j and t. Indeed, by the induction hypothesis, the number of
vertices u satisfying

f1(g1(u)) = f1(g1(v)), f2(g2(u)) = f2(g2(v)), . . . , fi−1(gi−1(u)) = fi−1(gi−1(v))

is at most n(k−i+1)/k, and therefore there cannot be more than n1/k = m/20 vertices vi so that at least
n(k−i)/k of these vertices u satisfy fi(gi(u)) = vi as well.

It is obvious that our objective is to define the mapping fi so that fi(j) 6∈ Sj,t for any t smaller
than j, that is, the walk given by the values of fi(j), fi(j + 1), . . . has to slip by the sets Sj,t. The
difficulty in deducing the existence of such a walk from Lemma 4.4 is that the sets Sj,t keep changing
as the time t increases. The notions ”nice” and ”very nice” have been introduced in order to overcome
this difficulty, enabling us to define the values of fi(t) in steps, where in each step we pick the values
for q = dlogm/ log 10e additional consecutive values of t. Here are the details.
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Starting with t = 0, consider the sets S1,0, S2,0, . . . , Sq,0. (Note that in fact these sets are all empty,
as the time is t = 0, but we do not use this fact here as it will not hold in the general case). By Lemma
4.4 there is a set M0 of at least 0.9m vertices that are very nice with respect to these sets. Similarly,
by Lemma 4.4 there is a set Mq of at least 0.9m vertices that are very nice with respect to the sets
Sq+1,0, Sq+2,0, . . . , S2q,0. By definition, for each w0 ∈ M0 there are at least m/2 vertices wq so that
for each of them there is a walk of length q that slips by the sets S1,0, S2,0, . . . , Sq,0, starts at w0 and
ends at wq. Therefore, there is at least one (in fact, at least 0.4m) such possible wq that lies in Mq

as well. We can now define fi(1), . . . , fi(q) according to this walk, ending at fi(q) = wq. The crucial
point is that as the vertex wq has been very nice with respect to the sets Sq+1,0, Sq+2,0, . . . , S2q,0, it is
nice with respect to these sets even after adding to them all the vertices of the walk fi(1), . . . , fi(q).
This enables us to continue by induction, in a similar way.

Suppose we have already defined the values of fi(1), fi(2), . . . , fi(t) for some multiple t of q, and
assume, by induction, that fi(t) = wt is nice with respect to the sets

St+1,t ∪ {fi(t− 1)}, St+2,t ∪ {fi(t− 1)}, . . . , St+q,t ∪ {fi(t− 1)}.

(The addition of the point fi(t − 1) is a technical point, required in order to make sure the walk
defined by fi is non backtracking even near the multiples of q. Note that the proof of the induction
step maintains this property, as we may add all vertices of the walk from fi(t− q + 1) to fi(t) to the
sets Sj,t−q while replacing the notion of very nice by nice.)

By Lemma 4.4 there are at least 0.9m vertices wt+q which are very nice with respect to the sets
St+q+1,t, St+q+2,t, . . . , St+2q,t. As before, since wt = fi(t) is nice with respect to the sets

St+1,t ∪ {fi(t− 1)}, St+2,t ∪ {fi(t− 1)}, . . . , St+q,t ∪ {fi(t− 1)}

there is a walk from wt to some wt+q, which slips by these sets, where wt+q is very nice with respect
to the sets St+q+1,t, St+q+2,t, . . . , St+2q,t. Defining the values of fi(t+ 1), . . . , fi(t+ q) according to this
walk, and adding all vertices of this walk to the sets St+q+1,t, . . . , St+2q,t we conclude, by Lemma 4.5,
that wt+q = fi(t+ q) is nice with respect to the sets

St+q+1,t+q ∪ {fi(t+ q − 1)}, St+q+2,t+q ∪ {fi(t+ q − 1)}, . . . , St+2q,t+q ∪ {fi(t+ q − 1)}.

The process clearly ensures that the condition (1) will not be violated, completing the proof of the
induction step. The assertion of Theorem 1.1 follows.

5 Concluding remarks and open problems

• Theorem 1.1 provides an explicit construction of an H(k, n)-universal graph with at most
ckn

2−2/k edges. All steps in the proof of universality are algorithmic, and it thus provides a
polynomial time deterministic algorithm to embed any given H ∈ H(k, n) in G.

• As mentioned in the introduction, we have made no effort to optimize the constants in our
construction, and indeed these constants are large, and grow exponentially with k. This can be
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improved by taking smaller expanders in the first k−1 coordinates of G, leaving only the final one
as large as it is here. The embedding can be done by defining f1, f2, . . . , fk−1 by random walks,
as done in [2], leaving only the last step (that of defining fk) deterministic using the methods
of the present paper. In addition, one can avoid taking the forth powers of the expander F ,
replacing it by a final blow-up of the whole construction. In this case, however, the application
of the random walks will not provide a deterministic embedding algorithm. The (somewhat
tediuos) details are omitted.

• The H(k, n)-universal graph Gk,n constructed here has an optimal number of edges up to a
constant factor, but its number of vertices is (much) bigger than n. By combining it with an
appropriate expander, as done in [4], we can reduce the number of vertices to (1 + ε)n, for any
fixed ε > 0, increasing the number of edges only by a constant factor (depending on ε). It remains
open to decide if there are H(k, n)-universal graphs with n vertices and Ok(n2−2/k) edges. Note
that the construction in [2] provides H(k, n)-universal graphs with n vertices, but their number
of edges exceeds that of the graphs constructed here by a logarithmic factor.
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