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Abstract

Consider the following seemingly rhetorical question: Is it crucial for a property-tester to know
the error parameter ε in advance? Previous papers dealing with various testing problems, suggest
that the answer may be no, as in these papers there was no loss of generality in assuming that ε is
given as part of the input, and is not known in advance. Our main result in this paper, however,
is that it is possible to separate a natural model of property testing in which ε is given as part
of the input from the model in which ε is known in advance (without making any computational
hardness assumptions). To this end, we construct a graph property P, which has the following
two properties:

(i) There is no tester for P accepting ε as part of the input, whose number of queries depends
only on ε.

(ii) For any fixed ε, there is a tester for P (that works only for that specific ε), which makes a
constant number of queries.

Interestingly, we manage to construct a separating property P, which is combinatorially natural
as it can be expressed in terms of forbidden subgraphs and also computationally natural as it can
be shown to belong to coNP .

The main tools in this paper are efficiently constructible graphs of high girth and high chro-
matic number, a result about testing monotone graph properties, as well as basic ideas from
the theory of recursive functions. Of independent interest is a precise characterization of the
monotone graph properties that can be tested with ε being part of the input, which we obtain as
one of the main steps of the paper.

1 Introduction

1.1 Definitions and Background

We start with definitions related to the area of property-testing. Let P be a property of graphs,
namely, a family of graphs closed under isomorphism. All graph properties discussed in this paper
are assumed to be decidable, that is, we disregard properties for which it is not possible to tell
whether a given graph satisfies them, even if one has complete knowledge of the graph. In this paper
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we focus on property-testing in the dense-graph model as defined in [12]. In this model a graph G
with n vertices is said to be ε-far from satisfying P if one must add or delete at least εn2 edges in
order to turn G into a graph satisfying P. A tester for P is a randomized algorithm which, given
the size of the input n, and the ability to query, whether a desired pair of vertices of the input are
adjacent or not, distinguishes with high probability (say, 2/3), between the case of G satisfying P
and the case of G being ε-far from satisfying P. The following notion of efficient testing is the main
focus of property-testing in the dense graph model:

Definition 1.1 (Testable) A graph property P is testable, if there is a tester for P whose query
complexity q(ε, n) can be bounded by a function Q(ε), which is independent of the size of the input.

We stress that the definition of a tester for a testable property allows the query complexity to
depend on n. It just requires that it will be possible to upper bound q(ε, n) by some function Q(ε).
Therefore, for example q(ε, n) = 1/ε + (−1)n is a legitimate query complexity as is can be bounded
by Q(ε) = 1/ε + 1. As we will see later, in some cases the distinction between query complexity
depending only on ε and query complexity bounded by a function of ε may have interesting and
non-trivial applications.

One of the most interesting phenomena in the area of property-testing in the dense graph model
is that many natural graph properties such as k-colorability and having a large cut are testable (see
[12]). A general tester may err in both directions and is thus said to have two-sided error. A tester
is said to have one-sided error if whenever G satisfies P, the algorithm declares that this is the case
with probability 1. The general notion of property testing was first formulated by Rubinfeld and
Sudan [22], who were motivated mainly by its connection to the study of program checking and by
Blum, Luby and Rubinfeld [7], who were mainly interested in testing properties of functions, such as
linearity. The study of the notion of testability for combinatorial structures, and mainly for labelled
graphs, was introduced in the seminal paper of Goldreich, Goldwasser and Ron [12], who showed that
several natural graph properties are testable. In the wake of [12], many other graph properties were
shown to be testable, while others were shown to be non-testable. See [3] for a recent combinatorial
characterization of the testable graph properties, and [10, 11, 21] for additional results and references
on graph property-testing as well as on testing properties of other combinatorial structures.

One of the fundamental problems of complexity theory is in understanding the relations between
various models of computation. In particular, one would like to know if two models are equivalent
or if there are problems, which can be solved in one model but not in the other. Regretfully, in
many cases, though it seems obvious that two models of computation are not equivalent, the current
techniques are far from enabling one to formally prove that. In this paper we introduce two natural
and realistic models of property-testing 1. Surprisingly, in our case, though it seems at first that
these models are equivalent, we manage to formally prove that they are in fact distinct. We also
show that in some cases a tester can make a non-trivial usage of both the error parameter ε and the
size of the input graph n, when making its decisions.

1.2 The Main Result: Uniform vs. Non-Uniform Property Testing

As we have mentioned in the previous subsection, in this paper we focus on the dense-graph model.
The main goal in the dense graph model is to design a tester, whose query complexity can be bounded

1These models are natural and realistic in the sense that they capture all the previous results on testing graph
properties. See Subsection 1.2.
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by a function, which is independent of the size of the input graph, and thus establish that a certain
property is testable. In defining a tester in the previous subsection we have allowed the tester to
use the size of the input in order to make its decisions. We now define a slightly weaker notion of a
tester, which is not allowed to use the size of the input graph in order to make its decisions.

Definition 1.2 (Oblivious Tester) A tester (one-sided or two-sided) is said to be oblivious if it
works as follows: given ε the tester computes an integer Q = Q(ε) and asks an oracle for a subgraph
induced by a set of vertices S of size Q, where the oracle chooses S randomly and uniformly from
the vertices of the input graph. If Q is larger than the size of the input graph then the oracle returns
the entire graph. The tester then accepts or rejects (possibly randomly) according to ε and the graph
induced by S.

The notion of an oblivious tester was defined in [5]. As was discussed in [5], there are no natural
graph properties for which even oblivious testers are weaker than standard testers that are given
access to n (= size of the input). The intuition is that as the query complexity is independent of n,
the algorithm does not need to know the value of n. Indeed, essentially all the testers that have been
designed in the literature were in fact oblivious, or could trivially be turned into oblivious testers. For
example, k-colorability (see [12]) can be tested by an oblivious tester that samples a set of vertices
S and accepts if and only if the graph spanned by S is k-colorable. In fact, any hereditary property
2 can be tested in a similar way, see [5, 17]. As another example, the property of having a cut of
size, say, at least 1

8n2 (see [12]), can be tested by an oblivious tester that samples a set of vertices S
and accepts if and only if the graph spanned by S has a cut of size at least (1

8 − ε
2)|S|2. Note, that

the property of having a large cut can be tested by an oblivious tester although the definition of the
property involves the size of the graph. The notion of an oblivious tester was used in [5] in order
to derive a characterization of the “natural” graph properties that are testable with one-sided error.
Of course, some properties cannot be tested by an oblivious tester. In particular, properties whose
definition involves the size of the input cannot be so tested. An example is the property P̃ of being
bipartite if the number of vertices is even, and being triangle-free if the number of vertices is odd.
However, these properties are not natural. Informally, the notion of an oblivious tester means that
the size of the input is not an important resource when studying property testing of “natural” graph
properties in the dense graph model, such as hereditary properties, whose definition is independent of
the input size. We stress that as opposed to the dense graph model, property-testing in the bounded
degree model [13] and the general density model [20, 15], usually requires query complexity, which
depends on the size of the input graph. Therefore, the notion of oblivious testing is not adequate for
those models.

The main resource that we seek to study in this paper, is the value of the error parameter ε.
In defining a tester in the previous subsection, we did not mention whether the error parameter ε
is given as part of the input, or whether the tester is designed to distinguish between graphs that
satisfy P from those that are ε-far from satisfying it, when ε is a known fixed constant. The current
literature about property testing is not clear about this issue as in some papers ε is assumed to be
a part of the input while in others it is not. We thus introduce the following two definitions:

Definition 1.3 (Uniformly testable) A graph property P is uniformly testable if it can be tested
by an oblivious tester as in Definition 1.2. Note that such a tester accepts ε as part of the input.

2A graph property is hereditary if it is closed under removal of vertices.

3



Definition 1.4 (Non-uniformly testable) A graph property P is non-uniformly testable if for
every ε there is a tester Tε and an integer Q = Q(ε) with the following properties: Tε is an algorithm
for distinguishing between graphs satisfying P from those that are ε-far from satisfying it, that operates
like an oblivious tester with the restriction that it asks the oracle for a subgraph induced on a set of
vertices of size at most Q.

Note, that in Definition 1.4 a tester Tε does not receive ε as part of the input. Note also that we
can think of a tester Tε as a uniform tester, where the tester “knows” the quantity Q(ε) in advance
and does not have to compute it. For this reason it is clear that if P is uniformly testable then it
is also non-uniformly testable: For every ε define Tε to perform like the uniform tester for P, while
setting Q = Q(ε). As in the definition of a tester in Subsection 1.1, we generally allow a property
to be uniformly (resp. non-uniformly) tested with two-sided error. If a property is uniformly (resp.
non-uniformly) testable in a way that graphs satisfying the property are always accepted then the
property is said to be uniformly (resp. non-uniformly) testable with one-sided error.

We believe that the distinction between uniform and non-uniform testing was not previously
introduced in the literature because all the testable graph (and non graph) properties that were
previously studied were in fact uniformly testable. As we have mentioned above, any property that
is uniformly testable is also non-uniformly testable. It may thus seem, at least at first glance, that
uniformly and non-uniformly property-testing are identical notions. However, the problem with
trying to simulate a non-uniform tester using a uniform one is that computing the query-complexity,
Q(ε), may be non-recursive. Our main result in this paper is that when considering oblivious testers
these two notions are in fact distinct. Moreover, these notions can be shown to be distinct while
confining ourselves to graph properties, which are natural with respect to both their combinatorial
structure and their computational difficulty.

Theorem 1 (The Main Result) There is a graph property P with the following properties:

1. P can be non-uniformly tested with one-sided error.

2. P cannot be uniformly tested, even with two-sided error.

Moreover, satisfying P belongs to coNP and can be expressed in terms of forbidden subgraphs.

For a family of graphs F we define the property of being F-free as the property of not containing
a copy of any graph F ∈ F as a (not necessarily induced) subgraph. The property P, which we
construct in order to prove Theorem 1, is simply the property of being F-free for some carefully
defined family of graphs F .

The reader should note that the difference between being uniformly testable and non-uniformly
testable, is not as sharp as, say, the difference between P and P/Poly. The reason is that in P/Poly
the non-uniformity is with respect to the inputs, while in our case the non-uniformity is over the error
parameter. In particular, a non-uniform tester Tε should be able to handle any input graph. We note
that it is possible to prove Theorem 1 by defining an undecidable graph property that can be non-
uniformly tested with one-sided error, but obviously cannot be uniformly tested (because by setting
ε = 1/n2 we precisely solve the undecidable problem). Theorem 1 however, gives a natural separation
of these two models of property-testing by defining a decidable and combinatorially natural graph
property, which satisfies the assertions of Theorem 1. We note that the main focus of property
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testing is in solving problems using the smallest possible amount of information about the input.
Hence, undecidable properties are particulary unnatural in the context of property testing as such
properties are not solvable/testable even if one has complete knowledge of the input.

1.3 Separations in Other Models of Property Testing

Is is natural to ask if it is possible to prove versions of Theorem 1 for other models of property
testing. In particular, one can ask if such a separation can be proved for the general model of
property testing, where the tester can use the size of the graph in order to determine its query
complexity (which should still be bounded by a function of ε). As it turns out such a separation is
not possible.

Proposition 1.5 The following holds in the general model of property-testing (as defined in Subsec-
tion 1.1), where the tester can use the size of the input: a property P is testable when ε is known in
advance, if and only if it is testable when ε is given as part of the input.

Theorem 1 asserts that in the oblivious model, there are properties that can be tested by a tester
if it knows ε in advance, which cannot be tested if ε is part of the input. In other words, it asserts that
there are non-trivial computations the tester may perform with the error parameter ε. Therefore,
Proposition 1.5 can be interpreted as asserting that knowing the size of the input can help a tester in
a non-trivial way. More precisely, it shows that in some cases it is possible for the tester to compute
the query complexity with the aid of the size of the input, while by Theorem 1 it is impossible to do
so without this information. The main point is that given the size of the input graph, a tester can
“search” for the optimal query-complexity for graphs of that size. See Subsection 5.2 for the proof.

We note that Proposition 1.5 has some additional interesting implications. Its proof gives a
non-trivial example, where the query complexity of a tester can be bounded by a function of ε only
(as Definition 1.1 requires), while at the same time the query complexity depends on the size of the
graph. It also gives a non-trivial example, where though the query complexity of a tester can be
bounded by a function of ε only, the running time of the tester depends (exponentially!) on the size
of the input. See Subsection 5.2 for the full details.

2 Overview of the Proof

We start with a short introduction of the main result of [4], which will be a key tool in this paper.
Throughout the paper we will make an extensive use of the notion of graph homomorphism, which
we turn to formally define.

Definition 2.1 (Homomorphism) A homomorphism from a graph F to a graph K, is a mapping
ϕ : V (F ) 7→ V (K) that maps edges to edges, namely (v, u) ∈ E(F ) implies (ϕ(v), ϕ(u)) ∈ E(K).

In the rest of the paper, F 7→ K will denote that there is a homomorphism from F to K, and
F 67→ K will denote that no such homomorphism exists. Just to practice the definition, note that if
F 7→ K then χ(F ) ≤ χ(K). In particular, this means that a graph G has a homomorphism into a
clique of size k if and only if G is k-colorable. A key ingredient in the main result of [4] as well as in
this paper, is a certain graph theoretic functional, defined below.
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Definition 2.2 (The function ΨF) For any (possibly infinite) family of graphs F , and any integer
k let Fk be the following set of graphs: A graph R belongs to Fk if it has at most k vertices and there
is at least one F ∈ F such that F 7→ R. For any such family F and integer k, for which Fk 6= ∅, let

ΨF (k) = max
R∈Fk

min
{F∈F :F 7→R}

|V (F )| . (1)

Furthermore, in case Fk = ∅, define ΨF (k) = 0.

Practicing definitions again, note that if F is the family of odd cycles, then Fk is precisely the
family of non-bipartite graphs of size at most k. Also, in this case ΨF (k) = k when k is odd, and
ΨF (k) = k− 1 when k is even. The “right” way to think of ΨF is the following: Let R be a graph of
size at most k and suppose we are guaranteed that there is a graph F ′ ∈ F such that F ′ 7→ R (thus
R ∈ Fk). Then by this information only and without having to know the structure of R itself, the
definition of ΨF implies that there is a graph F ∈ F of size at most ΨF (k), such that F 7→ R.

As it turns out, ΨF (k), which seems to have little, if anything, to do with property testing, is in
fact crucial to testing monotone graph properties 3. Call a function recursive if there is an algorithm
for computing it in finite time (see [19]). The first connection between ΨF (k) and testing monotone
graph properties is part of the main result of [4], which can be formulated as follows.

Theorem 2 ([4]) For every (possibly infinite) family of graphs F , the property of being F-free is
non-uniformly testable with one-sided error. Moreover, if ΨF is recursive then being F-free is also
uniformly testable with one-sided error.

Comment 2.3 We remind the reader that we consider only decidable graph properties. Hence, in
the above theorem we assume that being F-free is a decidable property.

Comment 2.4 The reader should note that Theorem 2 immediately applies also to any monotone
property P. The reason is that given P we can define F = FP to be the set of graphs, which are
minimal with respect to not satisfying the property P. For example, if P is the property of being
bipartite then FP is the (infinite) family of odd cycles. It is clear that satisfying P is equivalent to
being F-free. For convenience and ease of notation, in this paper we describe monotone properties
via their family of forbidden subgraphs.

The proof of Theorem 1 consists of two steps. In the first step we prove the somewhat surprising
fact, that ΨF (k) being recursive is not only sufficient for inferring that being F-free is uniformly
testable (this is guaranteed by Theorem 2), but this condition is also necessary. This is formulated
in the following Theorem.

Theorem 3 Suppose F is a family of graphs for which the function ΨF is not recursive. Then, the
property of being F-free cannot be uniformly tested with one-sided error.

Note, that in Definition 1.3 the tester is defined as one that may have arbitrarily large query
complexity, as long as it can be bounded by a (recursive) function of ε only. Hence, in the case that

3A graph property is monotone if it is closed under removal of both vertices and edges. Standard examples are
k-colorability and triangle-freeness
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ΨF is not recursive, Theorem 3 rules out the possibility of designing a uniform tester with arbitrarily
large query complexity that can be bounded by a function of ε only.

The main idea behind the proof of Theorem 3 is that by “inspecting” the behavior of a property
tester for the property of being F-free one can compute the function ΨF . The main combinatorial
tool in the proof of Theorem 3 is a Theorem of Erdős [9] in extremal graph theory, which can be
considered as a hypergraph version of the Zarankiewicz problem [16]. As an immediate corollary of
Theorems 2 and 3 we obtain the following result, which precisely characterizes the families of graphs
F , for which the property of being F-free can be tested uniformly (recall that by Theorem 2, for
any family F , being F-free is non-uniformly testable). By Comment 2.4, this also gives a precise
characterization of the monotone graph properties that are uniformly testable.

Corollary 2.5 For every family of graphs F , the property of being F-free is uniformly testable with
one-sided error if and only if the function ΨF is recursive.

An immediate consequence of Theorems 2 and 3 is that in order to separate uniform testing with
one-sided error from non-uniform testing with one-sided error, and thus (almost) prove Theorem 1,
it is enough to construct a family of graphs F with the following two properties: (i) There is an
algorithm for deciding whether a graph F belongs to F (recall that we confine ourselves to decidable
graph properties). (ii) The function ΨF is non-recursive. The main combinatorial ingredient in
the construction of F is the fundamental theorem of Erdős [8] in extremal graph theory, which
guarantees the existence of graphs with arbitrarily large girth and chromatic number. As we want to
prove Theorem 1 with a graph property, which is not only decidable, but even belongs to coNP , we
need explicit constructions of such graphs. To this end, we use explicit constructions of expanders,
which are given in [18]. For the construction we also apply some ideas from the theory of recursive
functions. Finally, in order to obtain that being F-free cannot be tested even with two-sided error,
we use a result of the first author ([14] Appendix D) about testing hereditary graph properties.

Organization: The proof of Theorem 3 appears in Section 3, and the proof of Theorem 1 appears in
Section 4. Section 5 contains concluding remarks. The proof of Proposition 1.5 appears in Subsection
5.2.

3 Computing ΨF via Testing F-freeness

In this section we describe the proof of Theorem 3. Recall that F 7→ K denotes the fact that there
is a homomorphism from F to K (see Definition 2.1). In what follows, an s-blowup of a graph K is
the graph obtained from K by replacing every vertex vi ∈ V (K) with an independent set Ii, of size
s, and replacing every edge (vi, vj) ∈ E(K) with a complete bipartite graph, whose partition classes
are Ii and Ij . It is easy to see that a blowup of K is far from being K-free (recall that K-free is the
property of not containing a copy of K). It is also easy to see that if F 7→ K, then a blowup of K is
far from being F -free (see Lemma 3.3 in [1]). However, in this case the distance of the blowup from
being F -free is a function of the size of F . As it turns out, for the proof of Theorem 3, we need a
stronger assertion where the distance is only a function of k = |V (K)|. This stronger assertion is
guaranteed by Lemma 3.1 below, whose proof relies on the following theorem of Erdős [9], which is
a hypergraph extension of Zarankiewicz’s problem [16].
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Theorem 4 ([9]) For every integer f there is an integer N = N(f) with the following property:
Every k-uniform hypergraph on n > N vertices that contains at least nk−f1−k

edges, contains a copy
of Kk

f , which is the complete k-partite k-uniform hypergraph, where each partition class is of size f .

Lemma 3.1 Let F be a graph on f vertices with at least one edge, let K be a graph on k vertices,
and suppose F 7→ K (thus, k ≥ 2). Then, for every sufficiently large n ≥ N(f), an n/k-blowup of
K, is 1

2k2 -far from being F -free.

Proof: Denote by B the n-vertex n/k-blowup of K. Our goal is to show that after removing any
set of n2/2k2 edges from B, the resulting graph still contains a copy of F . Name the vertices of K
by 1, . . . , k and the independent sets that replaced them by I1, . . . , Ik. Note, that for every choice
of v1 ∈ I1, . . . , vk ∈ Ik, these k vertices span a copy of K with vi ∈ Ii playing the role of vertex
i ∈ V (K). We thus get that there are precisely (n/k)k such copies of K in B. (B may very well
contain more copies of K but it is simpler to disregard them). Denote the set of these (n/k)k copies
of K by K, and note that each edge in B belongs to precisely (n/k)k−2 copies of K that belong to
K. We conclude that removing any set of n2/2k2 edges, destroys at most 1

2(n/k)k of the copies of K
that belong to K. Thus, after removing any set of n2/2k2 edges, the new graph, denoted B′, contains
at least 1

2(n/k)k copies of K that belong to K.
We now define a k-uniform k-partite hypergraph H, based on B′. We think of the k partition

classes of H as the k vertex sets of B denoted above by I1, . . . , Ik. For every k vertices v1 ∈
I1, . . . , vk ∈ Ik that span a copy of K that belongs to K in B′, we put an edge in H containing
v1, . . . , vk. As B′ contains at least 1

2(n/k)k copies of K from K, the hypergraph H contains at least
1
2(n/k)k edges. By Theorem 4 for large enough n (i.e. large enough so that n ≥ N(f) and so that
1
2(n/k)k ≥ nk−f1−k

), the k-uniform hypergraph H contains a copy of Kk
f . For 1 ≤ i ≤ k, let Si denote

the f vertices in Ii, which span this copy of Kk
f . By the definition of H, as well as the definition of

the copies of K that belong to K, we may conclude the following: In B′, for every 1 ≤ i < j ≤ k for
which (i, j) ∈ E(K), every vertex v ∈ Si is connected to every vertex u ∈ Sj . As F 7→ K it is now
obvious that the vertices

⋃k
i=1 Si span a copy of F in B′, which is what we wanted to show.

To prove Theorem 3 we also need the following simple observation.

Claim 3.2 Let F be a family of graphs and let T be a one-sided error uniform tester for the property
of being F-free, whose query complexity is Q(ε). Suppose that given an error parameter ε0, after T
samples a set of vertices S of size Q(ε0), the graph induced by S is F-free. Then T must accept the
input.

Proof: Suppose T does not accept the graph induced by S, and denote by G′ the graph induced
S. Suppose now that we were to execute T with the same error parameter ε0 where the input graph
is now G′. In that case the algorithm would just get back from the oracle the same graph G′ and
would reject the input G′. This however contradicts the assumption that T has one-sided error.

To simplify the proof of Theorem 3 we claim that we may assume that F contains no edgeless
graph. Indeed, if F contains such a graph on t vertices, then by definition ΨF (k) ≤ t for any k (this
is because an edgeless graph has a homomorphism to a single vertex). Thus, it is easy to see (e.g. by
applying the algorithm described in the proof below) that in this case ΨF (k) is recursive, and there
is thus nothing to prove.
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Proof of Theorem 3: We prove that if the property of being F-free is uniformly testable with
one-sided error and with arbitrary query complexity Q(ε), then ΨF (k) is recursive. Given a family
of graphs F with no edgeless graph, consider the following algorithm for (nearly) computing ΨF (k),
which simply implements its definition. The algorithm goes over all graphs R, of size at most k. For
each such graph R, it searches for the smallest (in terms of number of vertices) F ∈ F for which
F 7→ R, if one such F exists 4. The algorithm then takes the maximum over all graphs R for which
it found at least one F ∈ F such that F 7→ R. If for all graphs R of size at most k, there is no F ∈ F
for which F 7→ R, the algorithm returns 0.

The only problem with implementing the above algorithm is that given R, it is not clear when
should the algorithm stop looking for a graph F for which F 7→ R, if none exists. However, note
that in order to make sure that the algorithm always terminates with the correct value of ΨF (k), it
is enough for the algorithm to be able to compute an upper bound on the size of such a graph F . In
other words, it is enough to be able to compute an integer M such that if there is no F ∈ F of size
at most M for which F 7→ R, then no such F ∈ F exists.

We claim that for any k ≥ 2 we can take M = Q(1/2k2) as such an upper bound, where Q(ε) is the
upper bound for the query complexity of the uniform tester for the property of being F-free5. Note,
that M is thus computable, since we can simulate the alleged uniform tester with input ε = 1/2k2

and “see” what is the upper bound Q = Q(ε) that it is going to use. Here we use the fact that a
uniform tester operates by first computing an upper bound for its query complexity Q = Q(ε). Thus,
we can “run” the tester on, say, an edgeless graph.

We thus only have to show that it cannot be the case that for some R on k vertices, the smallest
F ∈ F for which F 7→ R is larger than Q(1/2k2). Assume that one such R exists, let FR denote
the smallest F ∈ F for which F 7→ R, and consider an n/k blowup of R, denoted by B. As by
assumption FR 7→ R, we get by Lemma 3.1, that for every sufficiently large n, this blowup is 1

2k2 -far
from being FR-free (here we also use the fact that FR contains at least one edge). As FR ∈ F ,
the graph B is also 1

2k2 -far from being F-free. On the other hand, note that for any graph F ′ that
is spanned by B (i.e. F ′ is a subgraph of B, which is not necessarily induced), there is a natural
homomorphism ϕ, from F ′ to R, which maps all the vertices of F ′ that belong to the independent
set that replaced vertex v, to v. Since by assumption FR is the smallest F ∈ F for which F 7→ R,
and FR has more than Q(1/2k2) vertices, we conclude that there is no F ′ ∈ F on at most Q(1/2k2)
vertices which is spanned by B. Now, by Claim 3.2, a one-sided error tester must find a member of
F in order to declare that B is not F-free. However, as the smallest member of F spanned by B has
more than Q(1/2k2) vertices, this cannot be done with query complexity Q(1/2k2).

Observe, that when computing the integer M in the above proof we do not know the size of the
smallest graph F such that F 7→ R. Hence, had we used a version of Lemma 3.1 where the distance
from being F free is also a function of the size of F , we could not have computed the integer M , and
thus could not have inferred that ΨF is recursive. Note also that the proof works no matter how
large the query complexity Q(ε) is (this only affects the running time of the algorithm for computing
ΨF (k)), as long as it is a function of ε only.

4As we assume that it is decidable to tell whether a graph belongs to F , we can go over the graphs in F in order
of increasing number of vertices, and for every graph try all possible homomorphisms from F to R

5ΨF (1) = 0 because F does not contain independent sets.
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4 Separating Uniform Testing from Non-Uniform Testing

In this section we prove Theorem 1 by constructing a family of graphs F for which it is possible
to test the property of being F-free non-uniformly, however it is impossible to test this property
uniformly. The key combinatorial part of the construction of F is Lemma 4.1 below. For the proof of
this lemma, we need an algorithm that can efficiently produce graphs with arbitrary large chromatic
number and girth, where the girth of a graph G denotes the size of the smallest cycle spanned by G.
We denote by χ(F ) and g(G) the chromatic number and girth of a graph G. One of the best-known
results of Erdős ([8], see also [6]), widely considered to be the most striking early application of the
Probabilistic Method, asserts that such graphs exist. For our purposes however, we need explicit
construction of such graphs. It is known that the efficiently constructible d-regular expanders of [18],
have this property. This is formulated in the following theorem.

Theorem 5 ([18]) There is an algorithm Alg(k, g) that given a pair of positive integers k and g,
Alg(k, g) deterministically constructs a graph Fk,g satisfying χ(Fk,g) > k and g(Fk,g) > g. Moreover,
the running time of Alg(k, g) is polynomial in |V (Fk,g)|.

The reader can find some additional details about the above theorem in Subsection 5.1. Applying
the above theorem we prove the following key lemma.

Lemma 4.1 There is an infinite family of graphs F1, F2, . . . with the following properties:

1. All the graphs F1, F2, . . . are connected and have no vertex of degree 1.

2. For any 1 ≤ i < j we have Fi 67→ Fj and Fj 67→ Fi.

3. There is an algorithm, which given i, constructs Fi.

Proof: We define the graphs F1, F2, . . . inductively as follows; F1 is defined to be K3 (i.e., a
triangle). For every i ≥ 2 we pick Fi to be the graph returned by calling the algorithm Alg(k, g) of
Theorem 5 with the parameters k = χ(Fi−1) and g = |V (Fi−1)|. To get item (1) of the lemma we
can now remove repeatedly from Fi any vertex of degree 1 because removing such a vertex does not
change either the girth or the chromatic number of a graph (observe that all Fi satisfy χ(Fi) ≥ 3).
Also, we can assume without loss of generality that each graph Fi is connected, because if it is not,
then we can take as Fi an appropriate connected component of Fi, which has girth and chromatic
number at least as large as those of Fi. We thus get item (1) of the lemma. As we can use Theorem
5 in order to generate these graphs one after the other, we also get item (3).

We turn to prove item (2). First, note that if ϕ : V (F ) 7→ V (K) is a homomorphism then any
legal c-coloring of the vertices of K induces a legal c-coloring of the vertices of F ; We simply color
v ∈ V (F ) with the color of ϕ(v). Therefore, if χ(F ) > χ(K) then we have F 67→ K. Consider any
pair Fi and Fj with i < j. As χ(Fj) > χ(Fi) we immediately have that Fj 67→ Fi. As g(Fj) > |V (Fi)|,
every subgraph of Fj of size at most |V (Fi)| does not span any cycle. In particular, any such subgraph
is 2-colorable. Hence, as χ(Fi) > 2, we also have Fi 67→ Fj , completing the proof.

In order to define the family of graphs F , which we need in order to prove Theorem 1, we
introduce the following definition.
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Definition 4.2 (The language LBH) Fix any binary encoding of Turing-Machines. Define LBH

(short for Bounded Halting) to be the set of all pairs i#j, such that the binary representation of i is
a legal encoding of a Turing-Machine, which halts on an empty string within at most j steps.

Clearly, LBH is a decidable language; we first check if the binary representation of i is a legal
encoding of a Turing-Machine. If it is not we reject. Otherwise, we simulate this machine for j steps
on an empty string and check if during these j steps the machine halts.

In what follows Pj denotes a path of length j, and F+Pj denotes the graph obtained by connecting
Pj to an arbitrary vertex of F . We are now ready to define F .

Definition 4.3 (The family F) Let F1, F2, . . . be the graphs from Lemma 4.1. Define

F =
⋃

i#j∈LBH

(Fi + Pj)

We now turn to prove that the family F has the required properties needed in order to satisfy the
two assertions of Theorem 1. As in this paper we confine ourselves to decidable properties, we first
show that being F-free is a decidable property. In fact, we also need this in order to apply Theorem
2 (recall Comment 2.3). As shown in the next lemma, we can even show that being F-free belongs
to coNP .

Lemma 4.4 Being F-free, where F is the family of graphs from Definition 4.3, is in coNP .

Proof: We prove the equivalent statement that the property of having a subgraph isomorphic to
one of the graphs of F is in NP . Given a graph G of size n, the non-deterministic algorithm guesses
a (not necessarily induced) subgraph of G, which we denote by T ′, a number 1 ≤ t ≤ n and an
injective mapping σ : [1, . . . , t] 7→ [1, . . . , n]. We next describe how the algorithm checks, using t and
σ, whether T ′ ∈ F .

The algorithm first verifies that T ′ has the structure of the graphs in F . To this end, it first
counts the number of vertices of degree 1 in T ′. If this number is not precisely 1, or if T ′ is not
connected the algorithm rejects the input (because by item (1) of Lemma 4.1 all the graphs in F
are connected and have precisely one vertex of degree 1). Otherwise, let j be the length of the walk
starting from the single vertex of degree 1, until the first vertex of degree at least 3 (including this
last vertex), and let T be the graph obtained from T ′ by removing the j vertices of this path. The
algorithm also rejects if T is not of size t. The algorithm now turns to check if T is isomorphic to
one of the graphs Fi of Lemma 4.1, and if this is the case, whether i#j ∈ LBH .

The algorithm uses Theorem 5 in order to produce the graphs F1, F2, . . . as they were defined in
the proof of Lemma 4.1. Note, that by our definition of these graphs each Fi must be strictly larger
than Fi−1. If Theorem 5 produces a graph of size larger than t without first producing one of size
t the algorithm rejects. Assume now that Theorem 5 produces a graph, say Fi, of size precisely t.
The algorithm now checks whether for every edge (i, j) ∈ E(Fi) the vertices (σ(i), σ(j)) also form
an edge in G (recall that σ is an injective mapping from [t] to n). If all these (at most

(t
2

) ≤ (n
2

)
)

tests succeed the algorithm moves to the last step, otherwise it rejects. Note, that at this step we
know that T is isomorphic to some graph Fi from Lemma 4.1. To complete the verification that
T ′ ∈ F the algorithm runs the algorithm (which is polynomial in i and j, which are bounded by n)
for checking if i#j belongs to LBH and accepts if and only if this algorithm accepts.
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The above algorithm clearly rejects any G that is F-free, and for any G that is not F-free there
is a choice of T ′, t, and σ, for which it accepts G. Finally, as for any i we have |V (Fi)| > |V (Fi−1)|,
we invoke Theorem 5 at most n times. As by Theorem 5 the time needed to produce each of the
graphs Fi is polynomial in |V (Fi)|, we almost infer that the total running time of this algorithm is
polynomial in n. The only annoying technicality is that it might be the case that we try to invoke
Theorem 5 on inputs k and g for which the size of the graph it produces is super-polynomial in
the size of the input graph G. To overcome this difficulty we can simply simulate the algorithm of
Theorem 5 and reject if it runs longer than the time needed to produce a graph of size at most n,
which is polynomial in n.

We turn to prove the main result of the section:

Lemma 4.5 The function ΨF , where F is the family of graphs from Definition 4.3, is non-recursive.

Proof: We show that if ΨF is recursive, then given a legal encoding of a Turing-Machine M , we
can compute an integer N with the following property: If M halts on the empty string, then it does
so after at most N steps. We will thus get that we can decide whether M halts on the empty string,
because we can simulate M on the empty string for N steps and accept if and only if M halts within
these N steps. This will obviously be a contradiction, as deciding if a Turing-Machine halts on an
empty string is well-known to be undecidable (see [19]).

Given an integer i, which (correctly) encodes some Turing-Machine M , the algorithm first com-
putes the graph Fi. To this end we rely on item (3) of Lemma 4.1. Let k denote the number of
vertices of Fi. We claim that we can set N = ΨF (k). First, observe that N is thus computable
as ΨF is by assumption recursive. If M does not halt on the empty string, then we do not care
about the value of N as no matter for how many steps we simulate M , it will never halt, and we
will return the correct answer. Assume thus that M halts after T steps. We only have to show that
T ≤ N = ΨF (k).

First, observe that for any graph F and integer j we trivially have F 7→ F +Pj and F +Pj 7→ F .
By item (2) of Lemma 4.1, we know that for any i < i′ we have Fi 67→ Fi′ and Fi′ 67→ Fi. Therefore,
for any i < i′ and for any j, j′ we also have Fi + Pj 67→ Fi′ + Pj′ and Fi′ + Pj′ 67→ Fi + Pj . It thus
follows that the only F ∈ F such that F 7→ Fi, are the graphs of the form Fi +Pj for some integer j.
However, as we only put in F the graphs Fi +Pj for which i#j ∈ LBH we infer that the only F ∈ F
such that F 7→ Fi, are the graphs of type Fi + Pj for j ≥ T . In particular, the smallest F ∈ F such
that F 7→ Fi has size at least T . As ΨF (k) takes the maximum over all the graphs of size at most
k, and Fi is one of these graphs, we get that N = ΨF (k) ≥ T . Hence, N is indeed an upper bound
on the running time of M in the case that it halts on an empty string.

Call a graph property hereditary if it is closed under removal of vertices. The last tool we need is
the following result of the first author ([14], Appendix D). In [14], the notion of uniformly testing a
property was not used, but the statement as it appears below is equivalent to what is proved in [14].

Theorem 6 (c.f. [14]) A hereditary graph property is uniformly testable with two-sided error if and
only if it is uniformly testable with one-sided error.
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Proof of Theorem 1: We claim that in order to prove the theorem we can set P to be the
property of being F-free with F being the family given in Definition 4.3. First, being F-free is by
definition expressed in terms of forbidden subgraphs and by Lemma 4.4 this property is in coNP .
In particular, this property is decidable, therefore by Theorem 2 it can be tested non-uniformly with
one-sided error. Now, by Lemma 4.5 the corresponding function ΨF is not recursive. Hence, by
Theorem 3 this property cannot be tested uniformly with one-sided error. Finally, as this property
is hereditary, Theorem 6 implies that this property cannot be tested uniformly, even with two-sided
error.

5 Concluding Remarks and Open Problems

5.1 Some remarks on LPS Expanders

The result of Lubotzky, Philips and Sarnak [18] can be stated as follows (see [6] for background on
expander graphs)

Theorem 7 ([18]) Suppose p and q are primes congruent to 1 modulo 4, where p is a quadratic
residue modulo q, and put d = p + 1 and n = q(q2 − 1)/2. Then, there is a d-regular expander on n
vertices, denoted Gn,d, with second eigenvalue λ ≤ 2

√
d− 1. Moreover,

• The chromatic number of Gn,d is at least
√

d/2.

• The girth of Gn,d is at least 2
3 log n/ log d.

• Gn,d can be constructed in time polynomial in |V (Gn,d)|.

Therefore, given integers k and g we can use the known results about the distribution of primes
in arithmetic progressions, as well as the above theorem with n and d satisfying

√
d/2 > k and

2
3 log n/ log d > g, in order to efficiently construct the graphs Fk,g as in Theorem 5.

5.2 Proof of Proposition 1.5

Clearly, if a graph property can be tested when ε is given as part of the input, then for every fixed
ε there is a tester for distinguishing between graphs satisfying P from those that are ε-far from
satisfying it. To show the other direction, we need a theorem of [14] (extending a result of [2])
stating that for every ε and n if a graph property is testable with query complexity q(n, ε), then it
can also be tested by a so called ”canonical tester”, which operates by randomly selecting a set of
2q(n, ε) vertices S, and then accepting or rejecting according to the graph spanned by S, the value
of ε and the size of the input n.

Suppose then that for any ε > 0 there is a tester Tε that given the size of an input can distinguish
between graphs satisfying P from those that are ε-far from satisfying it, such that the query com-
plexity of Tε is at most Q(ε). Note, that we do not assume that the query complexity is a function
of ε only, but just that it is bounded by a function of ε as in Definition 1.1. We turn to show that
in this case there is a tester for P that receives ε as part of the input. The tester works as follows:
Given n and ε the algorithm constructs the following families of n-vertex graphs: A, which consists
of all the n-vertex graphs satisfying P, and B, which consists of all the n-vertex graph, which are
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ε-far from satisfying P. Starting from q = 1 the algorithm now goes over all the possible canonical-
testers with query complexity q, and for each such tester, checks if it will accept the graphs of A
with probability 2/3, and reject the graphs of B with probability 2/3. Recall that a canonical tester
works by sampling a set of vertices and then accepting/rejecting according to the graph spanned by
the sample. Therefore, when we say that the algorithm goes over all testers with query complexity q

we mean that it tries all the possible 22(
q
2) ways of partitioning the set of q-vertex graphs into those

that will make the canonical tester accept and those that will make it reject. Also, when we say
that the algorithm checks, whether a given canonical tester accepts a graph from A with probability
2/3, we mean that the algorithm checks if 2/3 of the subsets of q vertices of the graph span a graph,
which makes the canonical tester accept. Now, the main point is that as we assume that P can be
tested using a number of queries that is bounded by a function Q(ε), the algorithm will eventually
find that for some q ≤ Q(ε) there is a canonical tester T ′ for ε-testing P on n-vertex graphs. Once
q and T ′ are found the algorithm executes T ′ on the input graph. By definition, this algorithm is a
tester for P, whose query-complexity is at most Q(ε).

The tester used in the above proof has two interesting features, which we have alluded to at the
end of Subsection 1.3. First, although the query complexity of the tester, which we construct in
the above proof, is bounded by a function of ε only, it’s running time is exponential in n, due to
the need to go over all graphs of size n. Second, note that although the query complexity of the
tester is bounded by a function of ε only, it is in fact a function of ε and n. The reason is that
what the algorithm does, is look for the smallest query complexity q, which is sufficient for testing
P on n-vertex graphs. As P is assumed to be testable with a constant number of queries, we are
guaranteed that for every n this quantity is bounded by some function of ε, which is independent of
n. However, it may be the case that for fixed ε the optimal query complexity is different for different
values of n. Therefore, for fixed ε the query complexity may be different for different values of n.

5.3 Possible extensions

The main result of the paper, Theorem 1, establishes that if we confine ourselves to slightly weakened
testers then there are non-trivial tasks (computing the query complexity), which cannot be done if
ε is an unknown that is given as part of the input. Moreover, this phenomenon holds for properties
that are natural in terms of their combinatorial structure (as they are monotone) and also in terms
of their computational difficulty (as they are in coNP ). This means that we can formally prove that
in some cases knowing the error parameter ε in advance can help the tester in a non-trivial way.
An interesting problem is whether one can find a separating property satisfying the assertions of
Theorem 1, which belongs to P or perhaps even to a lower complexity class.
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