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Abstract

Let H be a family of graphs. A graph T is H-universal if it contains a copy of each H ∈ H as a
subgraph. Let H(k, n) denote the family of graphs on n vertices with maximum degree at most k.
For all positive integers k and n, we construct an H(k, n)-universal graph T with Ok(n2− 2

k log
4
k n)

edges and exactly n vertices. The number of edges is almost as small as possible, as Ω(n2−2/k) is a
lower bound for the number of edges in any such graph. The construction of T is explicit, whereas
the proof of universality is probabilistic, and is based on a novel graph decomposition result and
on the properties of random walks on expanders.

1 Introduction

For a family H of graphs, a graph T is H-universal if, for each H ∈ H, the graph T contains a subgraph
isomorphic to H. Thus, for example, the complete graph Kn is Hn-universal, where Hn is the family
of all graphs on at most n vertices. The construction of sparse universal graphs for various families
arises in the study of VLSI circuit design, and has received a considerable amount of attention.

Universal graphs are of interest to chip manufacturers, as explained, for example, in [7], page
308. It is very expensive to design computer chips, but relatively inexpensive to make many copies
of a computer chip with the same design. This encourages manufacturers to make their chip designs
configurable, in the sense that the entire chip is prefabricated except for the last layer, and a final layer
of metal is then added corresponding to the circuitry of a customer’s particular specification. Hence,
most of the design costs can be spread over many customers. One may view the circuitry of a computer
chip as a graph, and model the problem of designing chips with few wires that are configurable for
a particular family of applications as designing smaller universal graphs for a particular family of
graphs. Similarly, as discussed in [14], the problem of designing an efficient single circuit that can
be specialized for a variety of other circuits can be viewed as constructing a small universal graph.
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These applications motivate the study of universal graphs with a small number of vertices and edges
for various families of graphs, and indeed there is an extensive literature on this subject. In particular,
universal graphs for forests have been studied in [6], [10], [11], [12], [13], [16], and universal graphs for
planar and other sparse graphs have been investigated in [2], [5], [6], [8], [9], [21].

Universal graphs for general bounded-degree graphs have also been considered in various papers.
For positive integers k and n, letH(k, n) denote the family of all graphs on n vertices with maximum de-
gree at most k. The authors of [3] constructedH(k, n)-universal graphs with at most O(n2−1/k log1/k n)
edges, as well as H(k, n)-universal graphs on n vertices with O(n2−c/(k log k)) edges. In addition, it
is shown in [3], by a simple counting argument, that any H(k, n)-universal graph must have at least
Ω(n2−2/k) edges. A better construction (for universal graphs with more than n vertices) is given in
[4], where the authors present such graphs with at most O(n2−2/k log1+8/k n) edges. Universal graphs
for H(3, n) that have only n vertices and less than O(n1.87) edges are constructed in [2].

Our main result here is an explicit construction of H(k, n)-universal graphs with n vertices and at
most O(n2−2/k log4/k n) edges, as stated in the following theorem.

Theorem 1.1 For every k ≥ 3 there exists an (explicitly constructable) H(k, n)-universal graph T

with n vertices and at most c(k)n2−2/k log4/k n edges, for some constant c(k).

This improves the above mentioned results as the number of vertices in our graphs is n, the same as
that of the graphs to be embedded, and yet the number of edges is nearly the minimum possible (and
is in fact better by a logarithmic factor than the number of edges in the construction of [4], which
uses more vertices). Our basic approach borrows some ideas from the one in [4], but contains several
new techniques. In particular, we prove a new decomposition result for graphs with maximum degree
k, and apply the properties of random walks on expanders in the analysis of the construction.

In the course of some of the proofs it is helpful to consider graphs with loops. However, all graphs
considered here are simple, unless otherwise specified explicitly.

The rest of the paper is organized as follows. In Section 2 we describe the basic construction and
outline the main ideas in the proof that it is universal. Since it is easier to handle the case of even k,
we restrict our attention here to this case, and further construct in this section only universal graphs
with 2n vertices. In order to deal with odd values of k we need a decomposition result, which is stated
and proved in Section 3. In Section 4 we combine it with the approach described in the outline, which
is based on the basic properties of random walks on expanders, to construct an auxiliary graph which
plays a crucial role in constructing our final universal graph. This is done in Section 5, where we also
show how to reduce the number of vertices to its optimal value n. The final, short Section 6 contains
a few concluding remarks.

2 The basic construction and an outline of the proof

Note, first, that the case k = 2 is trivial; the square of a cycle of length n is H(2, n)-universal, and has
a linear number of edges. We thus assume k > 2.
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Let k > 2 be an even integer. Put m = ( n
c log2 n

)2/k, where c is an absolute constant, and assume,
for simplicity, that m is an integer. Let Z be a bounded-degree, C-regular expander on a set V (Z) of
m vertices, with a loop at each vertex, in which the absolute value of every eigenvalue of the adjacency
matrix, besides the first, is at most C/2. Let G be the graph whose vertex set is V (G) = (V (Z))k/2,
where two vertices (x1, x2, . . . , xk/2) and (y1, y2, . . . , yk/2) are adjacent iff there exists an i such that
xiyi ∈ E(Z). Thus, in particular, G has a loop at each vertex. Let T be the graph obtained from
G by replacing each vertex v of G by a clique Vv of size 2c log2 n, where for each edge uv of G, T

contains a complete bipartite graph with vertex classes Vu and Vv. Note that T has 2n vertices and
O(nm(k/2)−1 log2 n) = O(n2−2/k log4/k n) edges.

It remains to prove that T is H(k, n)-universal. To this end we need the notion of graph homo-
morphism. An (H,P )-homomorphism from a graph H to a graph P is a mapping of the vertices of
H to those of P such that adjacent vertices in H are mapped to adjacent ones in P . Let H ∈ H(k, n)
be a graph on n vertices with maximum degree at most k. Note that in order to prove that H is a
subgraph of T , it suffices to show that there is a homomorphism from H to G which maps at most
2c log2 n vertices on each vertex v of G.

This is done as follows. By Petersen’s Theorem (c.f., e.g., [22]), the edges of H can be decomposed
into k/2 subgraphs H1,H2, . . . ,Hk/2, so that each edge of H lies in exactly one Hi, and each Hi has
maximum degree at most 2. Thus, there are homomorphisms fi, where fi maps Hi into a path Pn of
length n with a loop at every vertex, so that the inverse image f−1

i (v) of each vertex of Pn is of size
at most 2.

For each i, 1 ≤ i ≤ k/2, let gi be a random walk on the expander Z, that is, a mapping from
V (Pn) to V (Z) obtained by choosing the image of the first vertex of Pn uniformly at random in
V (Z), and by choosing the image of each vertex, in order along Pn, to be a random neighbor (in Z)
of the image of its predecessor in Pn. Finally define a mapping f from V (H) to V (G) by putting
f(v) = (g1(f1(v)), g2(f2(v), . . . , gk/2(fk/2(v))).

It is easy to see that f is an (H,G)-homomorphism. Moreover, the expected number of vertices of
H mapped to any fixed vertex of G is precisely |V (H)|/|V (G)| = c log2 n. The crucial fact, proved in
details in Section 4, is that since the random walk on Z is rapidly mixing, with high probability, for
every vertex v of G, the size of f−1(v) is close to c log2 n, and in particular, it is smaller than 2c log2 n.
This provides an embedding of H in T , and shows that T is H(k, n)-universal.

Besides the proof of this crucial fact we describe, in Section 5, how to reduce the number of vertices
of T to the minimum possible number n, by combining T with another bounded-degree expander in a
suitable manner. A more difficult task is to extend the construction for odd values of k, where there is
no analog to Petersen’s Theorem. We overcome this difficulty by proving, in Section 3, a decomposition
result for graphs of maximum degree k. We show that each such graph can be covered by k subgraphs,
so that every edge is covered twice, and each subgraph can be mapped homomorphically to a path,
mapping at most 4 vertices to each vertex of the path. As the decomposition here covers every edge
twice, we have to modify the definition of G a bit, making its vertex set the k-th power of the vertex
set of an appropriate expander, where two vertices are adjacent iff they are adjacent in at least two
coordinates of the expander. The details are given in Sections 4.
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3 A graph-decomposition result

An augmentation of a graph H = (V,E) is any graph obtained from H by choosing an arbitrary
(possibly empty) subset U ⊂ V , adding a new set U ′ of |U | vertices, and adding a matching between
U and U ′. Thus, an augmentation of H is obtained from it by connecting new vertices of degree 1 to
some of its vertices.

Call a graph thin if its maximum degree is at most 3 and each connected component of it is either
an augmentation of a path or a cycle, or a graph with at most two vertices of degree 3.

It is easy to see that any thin graph H on n vertices has an (H,P )-homomorphism to a path P

on n vertices with a loop at each vertex, such that the inverse image of any vertex of P consists of at
most 4 vertices.

The main result in this section is the following theorem.

Theorem 3.1 Let k ≥ 2 be an integer, and let H be an arbitrary graph of maximum degree at most
k. Then there are k spanning subgraphs H1,H2, . . . ,Hk of H such that each Hi is thin, and every edge
of H lies in precisely two graphs Hi.

The assertion of the theorem for even values of k is very simple. To prove it for odd k as well, we need
several lemmas.

Lemma 3.2 Let k ≥ 3 be an odd integer, and let H be an arbitrary k-regular graph. Then H contains
a spanning subgraph W in which every vertex has degree 2 or 3, and there is a maximum matching M

in W saturating only vertices whose degree in W is 3. In fact, every maximum matching M in H is
contained in some W with the above properties.

Proof: Let M be a maximum matching in H. By Hall’s Theorem there is a matching M2 in H−M that
saturates all vertices of H which are not covered by M . The graph H−(M ∪M2) has maximum degree
k − 1, and hence, by Petersen’s Theorem (c.f., e.g., [22]), its edges can be decomposed into (k − 1)/2
pairwise edge-disjoint subgraphs F1, F2, . . . , F(k−1)/2, each having maximum degree 2. Consider the
graph T = F1∪M . Every vertex of H has degree at least 2 in T (as all other edges of H incident with
this vertex are covered by M2 and the other graphs Fi). In addition, every vertex of T has degree
at most 3, and if it is not covered by M , then its degree is at most (and hence exactly) 2. Consider,
now, the set of all vertices v of T which are covered by M and have degree 2 in T (if there are no
such vertices, we are done). For each such v, as all other k − 2 edges incident with it lie in the other
graphs Fi and in M2, v must be saturated by M2. Let uv be the unique edge of M2 saturating v. By
construction, u is not covered by M and hence its degree in T is 2. We can therefore add the edge uv

to T , increasing the degrees of u and v to 3. Adding these edges for all the vertices v as above, we get
a subgraph W of G which has the required properties. Indeed, all degrees of vertices of W are 2 or 3,
the matching M in it saturates only vertices of degree 3, and it is a maximum matching in W , as it
is a maximum matching even in H, that contains W .

Lemma 3.3 Let k ≥ 3 be an odd integer, and let H be an arbitrary k-regular graph. Then H contains
a spanning subgraph H ′ in which every vertex has degree 2 or 3, and every connected component has
at most 2 vertices of degree 3.
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Proof: Let W be a subgraph of H, and M a maximum matching in W , so that the conclusion of
Lemma 3.2 holds. We next show that W contains a subgraph of the desired type. Clearly, we may
assume that W is connected.

By the Gallai-Edmonds Theorem, (c.f., e.g., [18] pp. 94-99), there is a set A of vertices of W such
that the set of connected components of W − A is S ∪ T , where S is the set of all odd connected
components of W − A and T is the set of all even connected components, and the following holds.
The matching M contains a perfect matching in each component in T , a near-perfect matching (that
is, a matching covering all vertices but one) in each component in S, and a matching saturating all
vertices of A, connecting them to distinct components in S. Moreover, each component C in S is
factor-critical, namely, C − v contains a perfect matching for each vertex v of C.

Note that as M covers only vertices whose degree in W is 3, it follows that all vertices of A and all
vertices in the components T are of degree 3, and each component in S contains at most one vertex
of degree 2. Let S1 denote the set of components in S in which all vertices have degree 3, and let
S2 = S − S1 denote the set of the components that contain a vertex of degree 2. Thus M contains no
edge connecting a member of A to a vertex in a component in S2 (as M covers no vertex of degree 2).

Let I1 be the set of all edges of M incident with vertices of A. By the above paragraph, these
edges cover all vertices of A and connect them to vertices in distinct components in S1.

Let S ′
1 denote the set of all components C in S1, so that there is more than one edge (and hence

at least 3 edges) connecting C to A. By Hall’s Theorem, there is a matching I2 connecting one vertex
from each component in S ′

1 to a member of A. It is not difficult to see that the union of I1 and I2

contains a matching I that saturates all vertices of A, and covers a single vertex from each component
of S ′

1. Indeed, each connected component of I1 ∪ I2 is either an alternating cycle (including the case
of a single edge) or an alternating path. If it is an alternating cycle, we let I include all the edges
of, say, I1 in it. If it is an alternating path of odd length, then it starts and ends with edges of the
same Ij for some j ∈ {1, 2}, and we let I include all edges of that Ij in the component. If it is a path
of even length, then it cannot start and end at a vertex of A (as I1 saturates A), hence it starts and
ends in vertices that lie in S1, and in this case we let I include all edges of I2 of the component. This
gives the required matching I. Adding to it a perfect matching in each member of T , a near perfect
matching in every component C in S1 covering all vertices of the component besides the one vertex
covered by I (in case there is such a vertex), and a near perfect matching covering all vertices besides
the one of degree 2 in each member of S2, we get a matching M ′ in W so that the only vertices not
covered by M ′ are the vertices whose degree in W is 2, and at most one vertex in each component C

in S1, but only when there is a unique edge from C to A.
The desired subgraph is H ′ = W −M ′. Indeed, each vertex in this subgraph is of degree 2 or 3,

and the only vertices of degree 3 lie in components in S1 with at most one edge from this component
to A, where each such component can contain at most one such vertex. It is easy to see that at most 2
such vertices can lie in a component of W −M ′. Indeed, consider a component that contains at least
one vertex of degree 3. Omit all its edges that lie inside members of S1. This leaves a path, which can
contain only two vertices in members of S1, as each of them must be an end-vertex. This completes
the proof of the lemma.
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Lemma 3.4 Let H = (V,E) be a 3-regular graph and let M be a (not necessarily perfect) matching
in H. Then H − M is the edge disjoint union of two subgraphs F1 and F2 so that each connected
component of F1 ∪M and each connected component of F2 ∪M is an augmentation of a path or of a
cycle.

Proof: The graph obtained from H by contracting all edges of M has maximum degree 4 and thus, by
Petersen’s Theorem, it is the edge disjoint union of two subgraphs F ′

1 and F ′
2, each having maximum

degree 2. Let F1 consist of all edges of H that belong, after the contraction, to F ′
1, and let F2 be

defined analogously. Consider an edge uv of the matching M . Let u1u, u2u and v1v, v2v be the other
edges incident with u and v (the four vertices ui, vi are not necessarily distinct). After the contraction,
the new contracted vertex, denoted by x, is adjacent by edges to u1, u2, v1, v2. Two of these edges
belong to F ′

1 and two to F ′
2. If, for example, xu1, xv1 lie in F ′

1, then they lie in either a path or a cycle
of this graph, and after the addition of the edge uv to F1 this path or cycle simply becomes longer. If
xu1, xu2 lie in F ′

1, then after adding the edge uv to F1 the vertex v becomes a degree 1-vertex adjacent
to u. All other cases are symmetric, giving the desired result.

Proof of Theorem 3.1: Since every graph with maximum degree at most k is a subgraph of a k-regular
graph (possibly with more vertices), we may assume that H is k-regular. For even k, the assertion is a
trivial consequence of Petersen’s Theorem; in this case H is the edge-disjoint union of k/2 two-regular
subgraphs, and we simply take each of them twice. For odd k, we apply induction. Starting with
k = 3, consider a 3-regular graph H. By Lemma 3.3 it contains a spanning thin subgraph H ′ in which
all degrees are either 2 or 3. Let M be the set of all edges of H besides those of H ′. Then M is a
matching and hence, by Lemma 3.4, H −M is the edge disjoint union of two subgraphs F1, F2 so that
F1 ∪M , F2 ∪M are thin. We can therefore take H1 = F1 ∪M,H2 = F2 ∪M and H3 = H ′ = F1 ∪ F2,
obtaining the desired decomposition.

Assuming the result holds for k− 2, we prove it for k where k ≥ 5 is odd. Given a k-regular graph
H, we apply Lemma 3.3 to conclude it contains a spanning thin subgraph H ′ in which all degrees are
either 2 or 3. Taking H ′ twice and applying the induction hypothesis to H −H ′ (which has maximum
degree k − 2 and is thus a subgraph of a (k − 2)-regular graph) the desired result follows.

4 An auxiliary construction

From now on we assume, whenever this is needed, that n is sufficiently large. We further omit all floor
and ceiling signs whenever these are not crucial. Let k ≥ 3 be an integer, let n be a large integer,
and define m = ( n

c log2 n
)1/k, where c = c(k) is a constant to be chosen later. Let C be an absolute

constant, such that there is an (m,C, C/2)-graph Z, that is, a C-regular graph on m vertices, with
a loop at each vertex, so that the absolute value of each of its eigenvalues but the first is at most
C/2. Without trying to optimize the value of C, here is one way to construct such a Z explicitly.
Start with any expander, for example, a 6-regular Ramanujan graph on (1+ o(1))m vertices using the
construction of [19] or [20]. Omit from it a set of o(m)-vertices in such a way that the resulting graph
is still an expander on precisely m vertices (to do so, it suffices to omit vertices so that the distance
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between any two of them is at least, say, 20). Add to the resulting graph edges and a loop at every
vertex to make it 7-regular. By the main result of [1], the absolute value of each of the eigenvalues of
the resulting graph besides the first is bounded away from 7, and we can now simply take a power of
it (that is, raise its adjacency matrix to some fixed power) to get an (m,C, C/2)-graph Z, as needed.

Using the graph Z, construct a graph G = (V (G), E(G)) on mk vertices as follows. The set of
vertices of G is V (G) = {1, 2, . . . ,m}k. Two vertices (x1, x2, . . . , xk) and (y1, y2, . . . , yk) of G are
adjacent if and only if there are at least two indices 1 ≤ i < j ≤ k, such that xiyi and xjyj are edges
of Z. Note that G has mk = n

c log2 n
vertices and O(m2k−2) = O( n2−2/k

log4−4/k n
) edges. The following result

asserts that any member of H(k, n) can be mapped homomorphically into G, in a rather uniform way.

Theorem 4.1 For every k ≥ 3, there exists a constant c0 = c0(k) such that if the constant c in the
construction of G exceeds c0, then the following holds. Let H be an arbitrary graph with n vertices
and maximum degree at most k. Then there is an (H,G)-homomorphism f : V (H) 7→ V (G) so that
for every vertex v ∈ V (G),

0.9c log2 n ≤ |f−1(v)| ≤ 1.1c log2 n. (1)

Proof: As outlined in Section 2, the proof is probabilistic, and is based on the basic properties of
random walks in expanders. Given H = (V (H), E(H)) as above, apply Theorem 3.1 to conclude that
there are k thin spanning subgraphs H1,H2, . . . ,Hk of H so that every edge of H appears in precisely
two of them. By the paragraph preceding the statement of Theorem 3.1, for each i, 1 ≤ i ≤ k, there
is an (Hi, Pn)-homomorphism fi : V (Hi) = V (H) 7→ V (Pn), where Pn is a path on n vertices with a
loop at each vertex, so that at most 4 vertices of H are mapped to any vertex of Pn. For each i, let
gi : V (Pn) 7→ V (Z) be a random walk in the expander Z, that is, a random mapping of the vertices
{1, 2, . . . , n} of Pn to V (Z) obtained by choosing gi(1) ∈ V (Z) randomly and uniformly, and then by
choosing, for each j > 1 in order, gi(j) to be a random, uniformly chosen neighbor of gi(j − 1) in Z.
The desired (H,G)-homomorphism f is defined as follows. For each vertex v ∈ V (H),

f(v) = (g1(f1(v)), g2(f2(v)), . . . , gk(fk(v))).

Observe, first, that this is an (H,G)-homomorphism as claimed. Indeed, if u, v are two adjacent vertices
of H, then the edge uv lies in at least two of the subgraphs Ht, say, in Hi and in Hj . Therefore, fi

maps u and v to adjacent vertices of Pn, and gi maps these to adjacent vertices of Z. The same holds
for fj and gj , implying that the two images f(u) and f(v) have two indices i and j with corresponding
coordinates that are adjacent in Z. Thus, by the definition of G, f(u) and f(v) are adjacent in G,
showing that f is indeed an (H,G)-homomorphism.

It remains to show that with positive probability (1) holds for every v ∈ V (G). Fix a vertex
v = (x1, x2, . . . , xk) ∈ V (G). Consider a set of vertices U ⊂ V (H) so that

for every two distinct u, u′ ∈ U and for every 1 ≤ i ≤ k,

the distance between fi(u), fi(u′) in Pn is at least 4 log n. (2)
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Claim: The number of vertices of U mapped by f to v is stochastically dominated by a binomial
random variable B(|U |, (1/mk + 1/n3)), and stochastically dominates a binomial random variable
B(|U |, (1/mk − 1/n3)).

Proof of claim: For each j ∈ {0, 1, . . . , k}, let Uj denote the set of all vertices u ∈ U such that
the first j coordinates of f(u) agree with those of v. Thus U0 = U , and our objective is to bound
|Uk| as in the claim. We prove, by induction on j, that |Uj | is stochastically dominated by a binomial
random variable B(|U |, pj

+), where p+ = 1/m + 1/n4, and stochastically dominates B(|U |, pj
−), where

p− = 1/m−1/n4. The case j = 0 is obvious, as |U0| = |U |. Assuming the result holds for all j < i, we
prove it for i. Clearly, Ui ⊂ Ui−1. Put |Ui−1| = r and let Ui−1 = {u1, u2, . . . , ur} be an enumeration
of the vertices of Ui−1 according to the order of the vertices fi(up) on the path Pn. Then, since Z

is an (m,C, C/2)-graph, for any given values of gi(fi(up)), for all p < s, and for any vertex z of Z

(and in particular for z = xi), the conditional probability that gi(fi(us)) = z deviates from 1/m by
at most 1/n4. Indeed, the eigenvalues condition implies that the random walk in Z is rapidly mixing,
and 4 log n steps starting from gi(fi(us−1)) suffice to ensure it reaches a nearly uniform distribution
with the error term above. This implies that |Ui| is stochastically dominated by B(|Ui−1|, p+) and
stochastically dominates B(|Ui−1|, p−), completing the proof of the induction step. The assertion of
the claim follows from the case j = k, as pk

+ < 1/mk + 1/n3 and p− > 1/mk − 1/n3 (with room to
spare).

Returning to the proof of the theorem, note that by the claim and by the standard known estimates
for binomial distributions it follows that if |U | is at least c′mk log n for a sufficiently large universal
constant c′, then with probability at least 1− 1/n2, the number of vertices of U mapped by f to every
single vertex among the mk vertices of G will not differ from |U |/mk by more than 0.1|U |/mk. Thus,
to finish the proof of the theorem, it suffices to show that we can partition V (H) into sets U , each
satisfying the assumption (2) and each having at least c′mk log n vertices. This is done in the next
paragraph.

By a theorem of Hajnal and Szemerédi [17] (whose application here is not essential, but makes the
computation a bit simpler), one can partition V (H) into 32k log n sets U of equal size, each satisfying
the assumption (2). Indeed, the Hajnal-Szemerédi Theorem asserts that the vertices of any graph with
maximum degree smaller than ∆ can be partitioned into ∆ independent sets of equal size. We apply
it to the graph whose set of vertices is V (H), in which two vertices u, u′ are adjacent iff there exists an
i such that the distance between fi(u) and fi(u′) in Pn is smaller than 4 log n. The maximum degree
in this graph is smaller than 32k log n, as for each vertex v on a path there are less than 2 · 4 log n

vertices of the path of distance smaller than 4 log n from v, and for each i, fi maps at most 4 vertices
of H to each vertex of the path. Thus we obtain a partition of V (H) into sets U that satisfy (2) and
each of them is of size n

32k log n = cmk log n
32k (which is at least c′mk log n for a sufficiently large c = c(k)).

This is the required partition of V (H), completing the proof of Theorem 4.1.
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5 A sparse universal graph

In this section we prove the main result of the paper.

Proof of Theorem 1.1: Let G = (V (G), E(G)) be the graph constructed in the previous section, and
let F = (V (F ), E(F )) be a bounded-degree expander on the set of vertices V (F ) = V (G), with a loop
at each vertex, such that any set X of at most half the vertices of F has at least |X|/9 neighbors
outside X. Let T be the graph constructed from F and G as follows. Its set of vertices, V (T ), is the
disjoint union of mk sets Vv, v ∈ V (G) = V (F ), each of size c log2 n. Its set of edges is defined as
follows. If x ∈ Vv and y ∈ Vv′ , then x and y are neighbors in T iff there are two vertices z, z′ in V (G)
that are adjacent in G, where z is adjacent to v in F , and z′ adjacent to v′ in F . (Note that as F has
a loop at each vertex, this includes the cases z = v and/or z′ = v′.)

Clearly, T has mkc log2 n = n vertices, and |E(G)| ·O(log4 n) = O(n2−2/k log4/k n) edges.

Claim 5.1 The graph T is H(k, n)-universal.

Proof: Let H be a graph with n vertices and maximum degree at most k. By Theorem 4.1 there
is an (H,G)-homomorphism f so that 0.9c log2 n ≤ |f−1(v)| ≤ 1.1c log2 n for every v ∈ V (G). We
now show how to modify f in order to obtain an (H,T )-homomorphism f ′ which is a bijection, thus
proving Claim 5.1. Let D be the following bipartite graph. One side of D is V (H), and the other is
V (T ). A vertex x ∈ V (H) is adjacent to a vertex y ∈ V (T ) iff x and y satisfy the following: Let v be
the vertex in V (G) = V (F ) such that v = f(x), and let v′ be the vertex in V (G) such that y ∈ Vv′

in the construction of T . Then x and y are adjacent in D iff v and v′ are adjacent in the expander
F (including, again, the case v = v′ as well). We claim that D satisfies the Hall condition, and thus
contains a perfect matching M . To prove this claim, note, first that if x and x′ are two vertices in
V (H) such that f(x) = f(x′), then ND({x}) = ND({x′}). Therefore, it suffices to check that subsets
of V (H) consisting of unions of complete sets f−1(v) satisfy the Hall condition. Let S = ∪v∈Xf−1(v)
be such a subset, where X ⊂ V (G). If X has no more than |V (G)|/2 vertices, then the number of
neighbors |ND(S)| of S in D satisfies

|ND(S)| = |NF (X)|c log2 n ≥ 10
9
|X|c log2 n > 1.1|X|c log2 n ≥ |S|,

the last inequality following from the upper bound of 1.1c log2 n on each |f−1(v)|. If, on the other
hand, X has more than |V (F )|/2 = |V (G)|/2 vertices, define Y = V (F ) − NF (X) and observe that
|Y | < |V (F )|/2. Therefore, |NF (Y )| ≥ 10

9 |Y | and it follows that

| ∪v∈NF (Y ) f−1(v)| ≥ 10
9
|Y |0.9c log2 n = |Y |c log2 n.

Since all members of ∪v∈NF (Y )f
−1(v) do not lie in S, it follows that

|S| ≤ n− |Y |c log2 n = (|V (F )| − |Y |)c log2 n = |NF (X)|c log2 n = |ND(S)|.

This shows that D satisfies Hall’s condition, and hence there is indeed a perfect matching M in D, as
claimed.
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Finally, for each vertex u ∈ V (H), let f ′(u) be the vertex in T matched to u by M . This is clearly
a bijection from V (H) to V (T ), and by the construction of T , it is also an (H,T )-homomorphism
because f is an (H,G)-homomorphism. This completes the proof of Claim 5.1.

Theorem 1.1 follows from Claim 5.1, and from the calculation of the number of vertices and edges of
T .

6 Concluding remarks and open problems

• Theorem 1.1 provides an explicit construction of an H(k, n)-universal graph T on n vertices,
with a nearly optimal number of edges. Interestingly, the construction is explicit, whereas the
proof of universality is probabilistic. Given a graph H ∈ H(k, n), the proof provides an efficient
randomized algorithm to embed it in T .

• It will be interesting to decide if it is possible to omit the log4/k n-term in our construction and
obtain an H(k, n)-universal graph with O(n2−2/k) edges, which will be optimal, up to a constant
factor.
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