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Abstract

Let Tr(n,m, k) denote the largest number of distinct projections onto k coordinates guaran-
teed in any family of m binary vectors of length n. The classical Sauer-Perles-Shelah Lemma
implies that Tr(n, nr, k) = 2k for k ≤ r. While determining Tr(n,m, k) precisely for general k
and m seems hopeless, estimating it remains a widely open problem with connections to im-
portant questions in computer science and combinatorics. For example, an influential result of
Kahn-Kalai-Linial gives non-trivial bounds on Tr(n,m, k) for k = Θ(n) and m = Θ(2n). Here
we prove that, for r, α−1 ≤ no(1), it holds that Tr(n, nr, αn) = nµ(1+o(1)) with

µ =
r + 1− log(1 + α)

2− log(1 + α)
.

Thus, we (essentially) determine Tr(n,m, k) for k = Θ(n) and all m up to 2n
o(1)

.
For the proof we establish a “sparse” version of another classical result, the Kruskal-Katona

Theorem, which gives a stronger guarantee when the hypergraph does not induce dense sub-
hypergraphs. Furthermore, we prove that the parameters in our sparse Kruskal-Katona theorem
are essentially best possible. Finally, we mention two simple applications which may be of
independent interest.

1 Introduction

For a hypergraph (or a set system) F , the trace of F on a vertex subset I is defined as the set
of projections of the edges of F onto I, namely, FI = {e ∩ I : e ∈ F}. The shatter function,
or trace function, of F is Tr(F , k) = maxI

∣∣FI ∣∣ with I a set k vertices. The focus of this paper
is the following important extremal function; for integers n ≥ k and 0 ≤ m ≤ 2n, let Tr(n,m, k)
denote the largest number of distinct projections onto k vertices guaranteed in any n-vertex m-edge
hypergraph:

Tr(n,m, k) = min
F⊆2[n]

|F|=m

Tr(F , k) = min
F⊆2[n]

|F|=m

max
I⊆[n]
|I|=k

∣∣FI ∣∣.
There is a considerable number of results, in various areas of discrete mathematics, determining

or estimating this function for certain values of the parameters. The most famous result is arguably
the Sauer-Perles-Shelah Lemma ([16], [17], see also Vapnik and Chervonenkis [18] for a slightly
weaker estimate).
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Theorem 1.1 (Sauer-Perles-Shelah). Tr(n,m, k) = 2k for m >
∑k−1

i=0

(
n
i

)
.

The VC-dimension of a hypergraph F is the largest k so that Tr(F , k) = 2k, i.e., it is the largest
number k so that F has a full projection on some k vertices. The VC-dimension is a basic com-
binatorial measure of the complexity of a hypergraph; understanding the shatter function beyond
the case of full projections is a very natural direction. Shatter functions and the VC-dimension are
extensively studied in combinatorial and computational geometry, as well as in machine learning
(see the survey of Matoušek [15] for several geometric and algorithmic applications of shatter func-
tions, and the survey of Angulin [3] for the role VC-dimension is playing in computational learning
theory).

In [6], Bondy proved that Tr(n, n, n− 1) = n, and a remark in [1] and in [9] is that

Tr(n,m, 3) = 7 for m = 1 + n+ [n2/4] + 1,

and the same argument implies that determining the smallest m for which Tr(n,m, 4) = 15 is
equivalent to determining the maximum possible number of edges of a 3-uniform hypergraph on n
vertices with no complete hypergraph on 4 vertices—a well-known open problem of Turán. Addi-
tional results that can all be formulated in terms of the function Tr(n,m, k) appear in [5], [12], [4],
[8] and more.

Recently, Bukh and Goaoc were able to estimate Tr(n, nO(1), k) for constant values of k that
are not too small (and also improved an earlier lower bound of [8]). In the other extreme regime,
a classical paper of Kahn et al. [12] proves that for every 0 < α, β < 1,

Tr(n, β2n, αn) ≥ (1− n−c)2αn,

where c = c(α, β) > 0 depends only on α, β. Benny Chor conjectured in the 80s that one can in
fact make the error term exponentially rather than polynomially small in n. This conjecture was
recently disproved by Bourgain et al. [4]. In fact, Bourgain et al. prove several additional results,
in particular strengthening those of [12].

In [5], Bollobás and Radcliffe considered the case where m is polynomial and k is linear. For
the lower bound they were able to prove the following.

Theorem 1.2 (Bollobás and Radcliffe [5, Theorem 7]). For constants r ≥ 2 and 0 < α ≤ 1 it holds
that Tr(n, nr, αn) = Ω(nλr) with1

λ =

{
log(1 + α) α ∈ [

√
2− 1, 1]

log(1 + α)/H(log(1 + α)) α ∈ (0,
√

2− 1)

As for the upper bound, it would seem that among hypergraphs on n vertices with a given
number of edges m, a hypergraph F with Tr(F , k) = Tr(n,m, k) should be very symmetric, when
k is not too small or too large. A natural candidate for such an extremal hypergraph is thus the
hypergraph containing all edges up to the appropriate size. Bollobás and Radcliffe were able to
show that this is in fact not the case.

Theorem 1.3 (Bollobás-Radcliffe [5, Theorem 11]). For every constant integer r ≥ 2,

Tr

(
n,

r∑
i=0

(
n

i

)
, n/2

)
= o(nr).

1Here H(x) = −x log(x)− (1− x) log(1− x) is the binary entropy function, and the logarithms are in base 2.
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1.1 Our results

Our main result in this paper determines the value of Tr(n, nr, αn), for constant r and α, up to
logarithmic factors, thus closing the gap between the lower and upper bounds in Theorems 1.2
and 1.3. We henceforth use the following standard notation: for two functions f(n) and g(n), by
f = Õ(g) we mean f = O(g logc(g)) for some absolute constant c > 0; f = Ω̃(g) and f = Θ̃(g) are
defined analogously. The main result of this paper is as follows.

Theorem 1.4 (Main result). Let r ≥ 1, α ∈ (0, 1]. If r, α−1 ≤ no(1) then Tr(n, nr, αn) = nµ(1−o(1))

where

µ = µ(r, α) =
r + 1− log(1 + α)

2− log(1 + α)
. (1)

Moreover, if r = O(1), α−1 ≤ (log n)O(1) then Tr(n, nr, αn) = Θ̃(nµ).

It is perhaps instructive to consider one representative special case: r = 2, α = 1/2. In this
case, the proofs in [5] bound Tr(n, n2, n/2) as follows;

Ω(n1.169925..) = Ω(n2 log2 3/2) ≤ Tr(n, n2, n/2) ≤ n2(log log n)O(1)

log n
= o(n2),

whereas Theorem 1.4 in particular implies that

Tr(n, n2, n/2) = Θ̃(n1+1/(3−log2 3)) = Θ̃(n1.706695..).

A new Kruskal-Katona-type theorem. As it turns out, our main result can be readily deduced
from a new version of the well-known Kruskal-Katona Theorem. Recall that the Kruskal-Katona
Theorem gives a lower bound on the number of i-sets contained within the edges of a uniform
hypergraph. Formally, for a hypergraph F and i ∈ N we denote

F (i) =
{
S
∣∣ |S| = i and ∃e ∈ F : S ⊆ e

}
.

The following classical version of the Kruskal-Katona Theorem [11, 13] was given by Lovász [14].
Henceforth, for real y > 0 we use the standard notation(

y

i

)
=
y(y − 1) · · · (y − i+ 1)

i!
.

We use the abbreviation that F is a k-graph to mean that F is a k-uniform hypergraph.

Theorem 1.5 (Kruskal-Katona Theorem, Lovász [14]). Let F be a k-graph. If |F| =
(
y
k

)
with real

y > 0 then for every 0 ≤ i ≤ k we have |F (i)| ≥
(
y
i

)
.

Our new version of the Kruskal-Katona Theorem gives a stronger lower bound depending on
the sparsity of the hypergraph F . As is standard, we denote the sub-hypergraph of a hypergraph F
induced on a vertex subset I by F [I] = ( I, {e | e ∈ F and e ⊆ I} ). We denote the largest number
of edges in an induced sub-hypergraph on i vertices by

span(F , i) := max
I⊆[n]
|I|=i

∣∣F [I]
∣∣.

We next state our new version of the Kruskal-Katona Theorem. (See Theorem 2.7 for a slightly
stronger form.) For the parameters relevant to our applications here, it provides a significantly
stronger estimate than the classical theorem, using an appropriate sparseness assumption.
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Theorem 1.6 (“Sparse Kruskal-Katona Theorem”). Let r ≥ 1, α ∈ (0, 1]. Let F be a k-graph with
n vertices and |F| = nr edges. If

span(F , αn) ≤ min

{(
x

k − dre

)
n,

1

2
|F|
}

with real x ≥ 2k then for every r + 1 ≤ i ≤ k we have

|F (i)| ≥ 1

C
·
(
x
i

)(
x
k

) |F|,
with C = (8k/α)d5re log n.

It is of course natural to ask whether the bound in Theorem 1.6 is essentially best possible. Our
third result in this paper proves that this is indeed the case.

Theorem 1.7 (Upper bound for Sparse Kruskal-Katona). Let n, k, x ∈ N+, r ≥ 1 and 0 < α ≤ 1
with 3r ≤ k ≤ x ≤ n1/6 and n ≤ αknr ≤

(
x
k

)
n. There exists a k-graph F with n vertices, |F| = nr

edges, and span(F , αn) ≤ O(
(
x
k

)
n) such that for every 0 ≤ i ≤ k we have

∣∣F (i)
∣∣ ≤ (xi)

(xk)
|F|.

Applications. We end the paper with two simple applications of our main result, in geometry
and in graph theory. We first describe the geometric application in the special case of halfspaces2.
Let H be a family of halfspaces in Rd, and let P be a set of points in Rd. We say that P separates
H if for every pair of distinct halfspaces H1 6= H2 ∈ H there is a point in P that lies in one and
outside the other.

Corollary 1.8. Let P ⊂ Rd be a set of n points and let H be a family of nr halfspaces in Rd, for a
fixed d, such that P separates H. Then for any δ > 0 there exists a subset P ′ ⊆ P of at most n1−δ

points and a subset H′ ⊆ H of at least n
r+1

2
(1−O(δ)) halfspaces such that P ′ separates H′.

The graph-theoretic application shows that in any graph with not too many independent sets,
one can always find an induced subgraph on a vanishingly small number of vertices that nevertheless
retains significantly more than square root of the total number of independent sets.

Corollary 1.9. Let G = (V,E) be an n-vertex graph, and assume that the number of independent

sets in G is nr = 2n
o(1)

. Then there exists a subset V ′ ⊆ V of at most n1−o(1) vertices such that

the number of independent sets in the induced subgraph G[V ′] is at least n
r+1

2
(1−o(1)).

Organization. In Section 2 we prove Theorem 1.6 using an appropriate hypergraph decom-
position method. We use it in Subsection 2.2 to deduce the lower bound in Theorem 1.4. In
Subsection 3.1 we prove that the parameters of Theorem 1.6 are essentially best possible, and in
Subsection 3.2 we prove a matching upper bound for Theorem 1.4, using a probabilistic construc-
tion. The proofs of our applications, Corollary 1.8 and Corollary 1.9, are given in Section 4.

2A halfspace consist of all points above a hyperplane.
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Proofs overview. For the proof of the sparse Kruskal-Katona Theorem (Theorem 1.6, see also
Theorem 2.7 below) we proceed as follows. In the first part of the proof we apply a new approximate
hypergraph decomposition method, relying on the sparseness of the input hypergraph, into links.
The decomposition is performed iteratively, in each step finding many vertices of high degree within
the current link and restricting the next links to them. The final step of these iterations consists
of “cleaning” each link by iteratively removing vertices of low degree. We then prove, using the
sparseness of the hypergraph, that in fact most of the parts in our decomposition have few edges. In
the second part of the proof we find, by applying the classical Kruskal-Katona Theorem, i-subsets
within the edges of each (sub)link separately. We then argue that, since the links approximately
decompose the hypergraph, we may essentially collect the i-subsets from all links without much
overcounting. The proof of our lower bound for traces (in Theorem 1.4) follows quite easily from
the sparse Kruskal-Katona Theorem by applying it on the most “popular layer” of the hypergraph
(i.e., the uniform hypergraph with the most edges contained in our hypergraph, which we may
assume is down-closed) and projecting onto a random subset of αn vertices.

For the proof that the parameters in the sparse Kruskal-Katona Theorem are essentially best
possible (Theorem 3.1 below) we give a randomized construction of a uniform hypergraph whose
edges contain few i-subsets. The construction is fairly simple: the union of a carefully chosen
number of cliques on random subsets, such that it simultaneously holds that there are many cliques
and yet they are nearly edge disjoint. We show in particular that the expected number of edges
induced on subsets of αn vertices is sufficiently small so as to allow taking a union bound over all
cliques. The proof of the upper bound for traces (in Theorem 1.4) follows by taking the down-closed
hypergraph generated by the uniform hypergraph above, and then upper bounding the expected
trace on a random subset of αn vertices.

Throughout the paper we assume, whenever needed, that n is sufficiently large. All logarithms are
in base 2 unless otherwise specified. To simplify the presentation we omit all floor and ceiling signs
whenever these are not crucial.

2 Sparse Kruskal-Katona and Traces Lower Bound

In this section we prove Theorem 1.6. Henceforth, for a hypergraph F on V and for a vertex subset
I ⊆ V we denote by F(I) the link of I in F , that is,

F(I) = (V \ I, {e \ I | I ⊆ e ∈ F} ).

Note that if F is a k-graph then F(I) is a (k − |I|)-graph. For a tuple U of vertices in V we
denote by |U | the number of distinct vertices in U , and by F(U) the link F(I) where I is the set
of (distinct) vertices in U (and so F(U) is a (k − |U |)-graph).

For the proof we will need several lemmas which we state and prove below. We begin with the
following simple “hypergraph regularization” lemma.

Lemma 2.1. Every hypergraph F = (V,E) has an induced sub-hypergraph F ′ = (V ′, E′) satisfying:

1. |E′|/|V ′| ≥ |E|/|V |.

2. The degree of each vertex v ∈ V ′ in F ′ is at least |E′|
2|V ′| log |V | .

3. |E′| > |E|/2.
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Proof. Put n = |V |, V0 = V and E0 = E. Starting with i = 0, as long as the hypergraph
Fi = (Vi, Ei) in which |Vi| = n − i does not satisfy (2), let Vi+1 be the set obtained from Vi by
removing a vertex of minimum degree in Fi, and let Fi+1 be the induced subhypergraph on this
set. It is easy to see that |Ei+1|/|Vi+1| > |Ei|/|Vi| and hence this process must terminate with a
nonempty hypergraph Fj = (Vj , Ej). Define V ′ = Vj , E

′ = Ej . Then (1) holds as the quantity
|Ei|/|Vi| keeps increasing during the process, (2) holds by the definition of j, and (3) holds since

|E′| = |Ej | ≥ |E0|
j−1∏
i=0

(
1− 1

2(n− i) log n

)
≥ |E0|

(
1−

j−1∑
i=0

1

2(n− i) log n

)
≥ |E|

(
1− lnn

2 log n

)
>
|E|
2
.

Lemma 2.2. Let F be a hypergraph on n vertices with span(F , i) ≤ |F|2 , for some integer 0 < i < n.

Then F has at least i vertices of degree at least |F|2n .

Proof. Let I ⊆ V (F) denote the set of vertices of F of degree at least |F|2n . Then |F [I]| >
|F| − n · |F|2n = |F|

2 . By the assumption on span(F , i) we thus have |I| > i.

By an iterative application of Lemma 2.2 we obtain the following.

Lemma 2.3. Let s ∈ N+ and let F be a hypergraph on V with span(F , i) ≤ |F|
2s|V |s−1 . Then there

are at least is s-tuples U ∈ V s with |F(U)| ≥ |F|
(2|V |)s .

Proof. Put n = |V |. For a tuple U of vertices in V we denote by FU the sub-hypergraph of F on
V with edge set {e ∈ F : U ⊆ e}. Note that |FU | = |F(U)|. We proceed by induction on s, noting
that the induction basis s = 1 is Lemma 2.2. For the induction step, let F be as in the statement,
and note that by the induction hypothesis there are at least is−1 (s − 1)-tuples U ∈ V s−1 with

|FU | = |F(U)| ≥ |F|
(2n)s−1 . Fix one such U = (v1, . . . , vs−1) and apply Lemma 2.2 on the hypergraph

FU , noting that, as required,

span(FU , i) ≤ span(F , i) ≤ |F|
2sns−1

≤ |F
U |

2
,

where the first inequality uses the fact that FU is a sub-hypergraph of F on V . Thus, FU has

at least i vertices v of degree at least |F
U |

2n ≥
|F|

(2n)s . This means that for each such v, the s-tuple

U ′ = (v1, . . . , vs−1, v) satisfies |F(U ′)| = |FU ′ | ≥ |F|
(2n)s . Going over all is−1 (s − 1)-tuples U in a

similar fashion, we deduce that the total number of s-tuples U ′ as above is at least is−1 · i. This
completes the induction step and the proof.

The following lemma gives a unified lower bound for the summation
∑k

i=0

(
x
i

)
γi that is inde-

pendent of the ratio between k and x. See Section A in the Appendix for a proof of this lemma.

Lemma 2.4. For every k ∈ N+ and real 0 ≤ γ ≤ 1, x ≥ k we have

k∑
i=0

(
x

i

)
γi ≥ 1

4

( k∑
i=0

(
x

i

))log(1+γ)

.
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Finally, we have the following well-known bounds.

Claim 2.5. We have e−2x ≤ 1 − x ≤ e−x, where the upper bound holds for every real x and the
lower bound holds for every 0 ≤ x ≤ 1/2.

Proof. The upper bound is well known, and the lower bound follows from it since we have 1−x =(
1 + x

1−x
)−1 ≥ e−

x
1−x ≥ e−2x, where the last inequality uses 0 ≤ x ≤ 1/2.

2.1 Sparse Kruskal-Katona Theorem

In this subsection we prove Theorem 2.7, which is a more precise version of Theorem 1.6. First, we
will need a lemma which extends the classical Kruskal-Katona Theorem 1.5 by collecting i-subsets
from the hypergraph’s links.

Lemma 2.6. Let F be a k-graph on V , and let t ∈ N. For every t ≤ i ≤ k we have

|F (i)| ≥ i−t
∑
U∈V t

(
xU

i− |U |

)
where xU is given by |F (U)| =

( xU
k−|U |

)
.

Proof. Put I = V t, and let t ≤ i ≤ k. Apply the Kruskal-Katona Theorem (Theorem 1.5) on
each link F(U) with U ∈ I. Since F(U) is a (k − |U |)-graph and 0 ≤ i − |U | ≤ k − |U | (using
|U | ≤ t ≤ i for the lower bound), Theorem 1.5 implies that |F(U)(i−|U |)| ≥

( xU
i−|U |

)
. Now, for every

U ∈ I denote
F(U)(i)∗ =

{
f ∪ U

∣∣ f ∈ F(U)(i−|U |)}.
We have that

F(U)(i)∗ ⊆ F (i) and |F(U)(i)∗| = |F(U)(i−|U |)| ≥
(

xU
i− |U |

)
.

We therefore deduce that

|F (i)| ≥
∣∣∣ ⋃
U∈I
F(U)(i)∗

∣∣∣ ≥ i−t∑
U∈I
|F(U)(i)∗| ≥ i−t

∑
U∈I

(
xU

i− |U |

)
,

where, crucially, the penultimate inequality uses the fact that if an i-set g appears in F(U)(i)∗ then
U ∈ gt, implying that g appears in at most it families F(U)(i)∗. This completes the proof.

Note that Lemma 2.6 recovers Theorem 1.5 by taking t = 0.
We prove the following stronger form of Theorem 1.6, our sparse Kruskal-Katona Theorem.

Theorem 2.7. Let F be a k-graph with n vertices and |F| = nr edges, r ≥ 1. Let s ∈ N be the

smallest satisfying |F|
(2n)s < c · span(F , αn) with c = (8k)d2re/αdre ,3 and put t = s+ 1. If

span(F , αn) ≤ min

{(
x

k − t

)
n,

1

2
|F|
}

with real x > 0 then for every t ≤ i ≤ k we have

|F (i)| ≥ 1

C
·
(
x
i−t
)(

x
k−t
) |F|,

with C = (8k/α)d4re log n.
3One may think of |F|/(2n)s as an approximation (from below) to the average degree of a vertex s-tuple in F .

Alternatively, s can be defined as s =
⌈

log
( |F|
σ

)
/ log(2n)

⌉
with σ = c · span(F , αn).
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Remark 2.8. The parameters in Theorem 2.7 satisfy the following relations:

t ≤ dre ≤ k. (2)

For the first inequality, note that otherwise s = dre and so, by the definition of s, c · span(F , αn) ≤
|F|/(2n)s−1 ≤ n, implying that span(F , αn) < αn and thus, by averaging, |F| < n, contradicting
the statement’s assumption r ≥ 1. For the second inequality, notice nr = |F| ≤

(
n
k

)
≤ nk.

Note that the error term C increases with the quotient k/α and with r. This precludes us from
taking hypergraphs of large uniformity, with many edges, or from inducing on too few vertices.
More formally, we have the following corollary.

Remark 2.9. Under the assumptions of Theorem 2.7:

1. If (k/α)r ≤ (log n)O(1) then |F|/C ≥ Ω̃(|F|).

2. If k/α ≤ no(1) then |F|/C ≥ |F|1−o(1).

We now show how to deduce the sparse Kruskal-Katona Theorem from Theorem 2.7.

Proof of Theorem 1.6. We have that
(

x
k−dre

)
≤
(
x
k−t
)

using (2) and since, by assumption, x ≥ 2k.
Thus, the condition here implies the condition in Theorem 2.7. As for the guarantee in Theorem 2.7,
note that(

x
i−t
)(

x
k−t
) =

(k − t)!
(i− t)!

( k−1∏
j=i

(x− j + t)

)−1

=
(k − t)!
(i− t)!

( k−1∏
j=i

(x− j)
(

1 +
t

x− j

))−1

≥ k−tk!

i!

((
1 +

t

x− (k − 1)

)k−i
·
k−1∏
j=i

(x− j)
)−1

≥ k−tk!

i!

((
1 +

t

k

)k
·
k−1∏
j=i

(x− j)
)−1

≥ (ek)−t
k!

i!

( k−1∏
j=i

(x− j)
)−1

= (ek)−t
(
x
i

)(
x
k

) ,
where the second inequality uses the statement’s assumption x ≥ 2k, and the third inequality uses
the upper bound in Claim 2.5. Thus, multiplying C from Theorem 2.7 by (8k)dre ≥ (ek)t (recall (2))
completes the proof.

Proof of Theorem 2.7. We will prove the implication that if the stronger condition

span(F , αn) ≤ min

{
1

c

(
x

k − t

)
αn,

1

2
|F|
}

(3)

(where c is as in the statement of the theorem) holds then for every t ≤ i ≤ k we in fact have

|F (i)| ≥ 1

c log n
|F|
(
x
i−t
)(

x
k−t
) . (4)

To see why this would complete the proof, let x̃ satisfy(
x̃

k − t

)
=
c

α

(
x

k − t

)
, (5)
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so that if F satisfies the statement’s original assumption that span(F , αn) ≤ min
{(

x
k−t
)
n, 1

2 |F|
}

then it satisfies (3) with x̃ replacing x. Thus, from (4),

|F (i)| ≥ 1

c log n
|F|
(
x̃
i−t
)(

x̃
k−t
) ≥ α

c2 log n
|F|
(
x
i−t
)(

x
k−t
) ≥ 1

C
|F|
(
x
i−t
)(

x
k−t
) ,

where the second inequality uses (5) for both the denominator and the numerator, as (5) implies
x̃ ≥ x since c/α ≥ 1.

We henceforth assume (3), and our goal is to prove (4). By the definition of s we have

|F|
(2n)s

< c · span(F , αn) ≤ |F|
(2n)s−1

. (6)

The upper bound in (6) implies in particular that span(F , αn) ≤ |F|
2sns−1 . Thus, by Lemma 2.3,

there is a family U ⊆ V (F )s of s-tuples U of vertices of F satisfying

|F(U)| ≥ |F|
(2n)s

=: b, (7)

such that |U| ≥ αsns. For each U ∈ U apply Lemma 2.1 on the (k − |U |)-graph F(U) to obtain a
subgraph F(U)reg with

|F(U)reg| >
1

2
|F(U)| ≥ 1

2
b, (8)

such that F(U)reg has nU vertices and minimum degree at least

1

4 log n
· b
nU

=:

(
xU

k − (|U |+ 1)

)
(9)

with xU > 0. Let t ≤ i ≤ k. Applying Lemma 2.6 with our t to the links of the vertices of each
F(U)reg, we deduce that

|F (i)| ≥ 1

it

∑
U∈U

nU

(
xU

i− (|U |+ 1)

)
≥ 1

4(2k)t log n

1

ns

∑
U∈U

( xU
i−(|U |+1)

)( xU
k−(|U |+1)

) |F|, (10)

where the second inequality uses (9) together with (7) and the fact that i ≤ k. Let

U ′ =
{
U ∈ U :

(
xU

k − (|U |+ 1)

)
≤
(

x

k − t

)}
.

For every U ∈ U ′ we have
( xU
i−(|U|+1))

( xU
k−(|U|+1))

≥ k−t ( x
i−t)

( x
k−t)

, which follows from Claim A.1.4 We will show that

|U ′| ≥ 1

2
αsns. (11)

By (10), this would imply that

|F (i)| ≥ αs

8(2k)2t log n

(
x
i−t
)(

x
k−t
) |F| ≥ 1

c log n

(
x
i−t
)(

x
k−t
) |F|,

4Indeed, take x, y, k, i, ∆ there to be, respectively, x, xU , k − (|U | + 1), i − (|U | + 1), t − (|U | + 1), and bound
(i− (|U |+ 1))−(t−(|U|+1)) from below by k−t.

9



where the last inequality uses 8(2k)2t/αs ≤ (8k)d2re/αdre = c (recall (2)). Thus, proving (11) would
imply (4) and complete the proof.

Put S =
(
x
k−t
)
αn. It remains to prove (11). Assume for contradiction that |U \ U ′| ≥ 1

2(αn)s.
Note that by definition of U ′ together with (9) we deduce that for every U ∈ U \ U ′ we have

nU ≤
1

4 log n
· b(

x
k−t
) ≤ 1

2
· b(

x
k−t
) =

b

S
· 1

2
αn =: n0.

Note that from the lower bound in (6) together with (3) we deduce that b ≤ S. Since n0 ≥ nU ≥ 1,
we have that n0 satisfies

1 ≤ n0 ≤
1

2
αn. (12)

Put

` =
1

2
·

{
αn
n0+s if s ≥ 1

1 if s = 0
(13)

Note that (12) implies

1 ≤ αn

n0 + s
≤ αn, (14)

where the lower bound further uses the fact that s ≤ r and the fact that we may assume r ≤ αn/2
as otherwise there is nothing to prove5. Let U∗ ⊆ U \ U ′ be an arbitrary subset with |U∗| = d`e,
which is well defined as ` ≤ 1

2(αn)s ≤ |U \ U ′|; here, the first inequality is immediate for s = 0
by (13), and for s ≥ 1 follows from the upper bound in (14) together with the bound αn ≤ (αn)s.
For each U ∈ U denote IU = V

(
F(U)reg

)
∪ U , and note that

F [IU ] ⊇
{
e ∪ U | e ∈ F(U)reg

}
=: FIU . (15)

Let I =
⋃
U∈U∗ IU denote the union of these sets of vertices. Then I satisfies that

|I| ≤
∑
U∈U∗

(nU + s) ≤ d`e (n0 + s) ≤ 2`(n0 + s) ≤ αn,

where the penultimate inequality uses the lower bound ` ≥ 1
2 from (14). Moreover, I satisfies that

|F [I]| ≥
∣∣∣ ⋃
U∈U∗

FIU
∣∣∣ ≥ k−s ∑

U∈U∗

∣∣FIU ∣∣ = k−s
∑
U∈U∗

∣∣F(U)reg

∣∣ > k−s · 1

2
b d`e ,

where the second inequality uses the fact that e ∈ FIU for at most ks s-tuples U (recalling (15),
e ∈ FIU implies U ⊆ e), and the third inequality uses (8). Now, if s = 0 then d`e = 1 and b = |F|,
hence we get |F [I]| > |F|/2 ≥ span(F , αn) using (3), a contradiction. Otherwise, we get

|F [I]| > 1

8ks+1
· bαn
n0

=
1

4ks+1
S ≥ 1

c
S ≥ span(F , αn),

where the first inequality uses (13) and bounds n0 +s ≤ 2n0k (as n0 ≥ 1 by (12) and s ≤ k by (10)),
the equality uses (12), and the last inequality uses (3). We thus again obtain a contradiction. This
completes the proof.

5Otherwise C ≥ |F|, and so the statement’s lower bound on |F (i)| is trivially true since
( x
i−t)

( x
k−t)

≤ (k−t
i−t)

(k−t
k−t)

≤
(
k
i

)
,

where the first inequality uses the decreasing monotonicity of the function z 7→
(
z
a

)
/
(
z
b

)
with a ≤ b ≤ z.
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We have the following important corollary of Theorem 2.7.

Corollary 2.10. Let F be a k-uniform hypergraph with n vertices and |F| = nr edges, r ≥ 1. If

span(F , αn) ≤ min
{
Bn,

1

2
|F|
}

with real B > 0, then for every 0 ≤ γ ≤ 1 the expected trace of F on a uniformly random subset of
γn vertices is at least

1

C ′
· |F|
B1−log(1+γ)

,

with C ′ = (8k/αγ)d5re log n, provided k ≤ √γn.

Proof. Put q = γn. We will need the bound(
n−i
q−i
)(

n
q

) =
(n− i)!
n!

q!

(q − i)!
=

i−1∏
j=0

q − j
n− j

≥
( q
n

)i i−1∏
j=0

(1− j/q) ≥ γi
i−1∏
j=0

e−2j/q ≥ γie−i2/q ≥ γie−1,

where the second and last inequalities use the lower bound in Claim 2.5 and the statement’s
assumption k ≤ √q.

Now, write B =
(
x
k−t
)

with x > 0 with t ∈ N as in Theorem 2.7, so that span(F , αn) ≤
min

{(
x
k−t
)
n, 1

2 |F|
}

. The expected trace of F on a uniformly random set of q vertices is, by
Theorem 2.7,

k∑
i=0

|F (i)|
(
n−i
q−i
)(

n
q

) ≥ k∑
i=0

|F (i)|γie−1 ≥ |F|
eC
(
x
k−t
) k∑
i=t

(
x

i− t

)
γi

=
|F|

eC
(
x
k−t
)γt k−t∑

j=0

(
x

j

)
γj ≥ γt|F|

4eC
(
x
k−t
)( x

k − t

)log(1+γ)

=
( γt

4eC

) |F|
B1−log(1+γ)

with C = (8k/α)d4re log n as in Theorem 2.7, where the last inequality uses Lemma 2.4. Using (2)
to bound t, the proof follows.

Note that the statement in Corollary 2.10 does not depend on k, the uniformity of the hyper-
graph, except in the error term C ′. In fact, in order for this statement to be meaningful, C ′ should
be negligible, so k should be relatively small, e.g., poly-logarithmic in n.

Remark 2.11. If the bound in Corollary 2.10 is tight, then, in the proof of Theorem 2.7, all the
inequalities become (essentially) equalities. In the proof of Theorem 2.7, we showed that the number
of s-tuples in U ′ is at least 1

2(αn)s. It is then easy to verify that for half of these s-tuples U , we
have tU ≈ t0, xU ≈ x and then x ≈ 2k. (Quantifying this statement precisely requires more details,
which we omit here.) Note that this remark applies to Corollary 2.10 but not to Theorem 2.7 itself,
as evident from the matching upper bound in Subsection 3.1.

2.2 Tight lower bound for traces

We now prove the lower bound in our main result Theorem 1.4.

Theorem 2.12. Let r ≥ 1, α ∈ (0, 1], and put µ = r+1−log(1+α)
2−log(1+α) . If r, α−1 ≤ nδ then Tr(n, nr, αn) =

nµ(1−O(δ)). Moreover, if r = O(1), α−1 ≤ (log n)O(1) then Tr(n, nr, αn) = Ω̃(nµ).
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Proof. Let H be a down-closed hypergraph6 on n vertices with |H| = nr. We will prove lower
bounds on Tr(H, αn), which would complete the proof since we may assume the given hypergraph
is down-closed (this is standard, see, e.g., [1]). Put Hi =

{
e ∈ H

∣∣ |e| = i
}

, and let F = Hk where

k maximizes |Hk|. Observe that since H is down-closed we have |H| ≥ 2k
′
, where k′ = maxe∈H |e|,

which implies that k′ ≤ log |H|, and therefore |F| ≥ |H|/(k′ + 1) ≥ |H|/(log |H| + 1). We assume
Tr(F , αn) ≤ 1

2 |F|, as otherwise we are done since

Tr(H, αn) ≥ Tr(F , αn) ≥ 1

2
|H|/(log |H|+ 1) = Ω̃(nr).

Now, write Tr(F , αn) = Bn with B > 0. Since span(F , αn) ≤ Tr(F , αn) and since k ≤
√
αn

(i.e., k2/α ≤ n) for all large enough n, we apply Corollary 2.10 with γ = α to obtain that

Bn = Tr(F , αn) ≥ 1

C ′
|F|

B1−log(1+α)
,

with C ′ = (8k/α2)d5re log n, where the inequality uses the fact that the maximal trace on αn
vertices is at least as large as the expected trace on a random subset of αn vertices. This gives a
lower bound on B; we therefore deduce

Tr(H, αn) ≥ Tr(F , αn) = Bn ≥
( 1

C ′
|F| · 1

n

) 1
2−log(1+α) · n

=
( 1

C ′
|F|n1−log(1+α)

) 1
2−log(1+α) ≥

( 1

C ′′
|H|n1−log(1+α)

) 1
2−log(1+α) ≥ 1

C ′′
· nµ,

with C ′′ = (log |H|+1)·C ′ ≤ 2 log |H|·(8 log |H|/α2)d5re log n ≤ (8r log n/α2)d7re (recall k ≤ log |H|).
Now, if r, α−1 ≤ nδ then C ′′ ≤ nO(δr), which implies that Tr(H, αn) ≥ nµ(1−O(δ)). Moreover, if
r ≤ O(1), α−1 ≤ (log n)O(1) then C ′′ ≤ (log n)O(1), which implies that Tr(H, αn) ≥ Ω̃(nµ). This
completes the proof.

Remark. In the proof of Theorem 2.12 it seems tempting to write Tr(F , α0n) = B0n with α0 � α,
so that B0 � B. Then, Corollary 2.10 would mean that the expected trace on αn random vertices
would be roughly |F|

B
1−log(1+α)
0

� |F|
B1−log(1+α) , which seemingly contradicts the fact that our lower bound

is tight! The reason this cannot happen is that, for any α0 that is not too small, though the average
trace on α0n vertices is substantially smaller than that on αn vertices, the maximal traces can
actually be asymptotically the same. Indeed, in our upper bound construction with parameter α,
one can show that Tr(F , α0n) ≈ Tr(F , αn) for any α0 ≤ α that is not too small.

3 Upper Bounds

3.1 Upper Bound for the Sparse Kruskal-Katona Theorem

In this subsection we show that the parameters in Theorem 2.7 are best possible up to the error
term. Formally, we prove the following.

Theorem 3.1 (Upper bound for sparse Kruskal-Katona). Let n, k, x ∈ N+, r ≥ 1 and 0 < α ≤ 1
with 3r ≤ k ≤ x ≤ n1/6 and n ≤ αknr ≤ 1

2

(
x
k

)
n. There exists a k-graph F with n vertices, |F| = nr

edges, and span(F , αn) ≤ 6
(
x
k

)
n such that for every 0 ≤ i ≤ k we have |F (i)| ≤ (xi)

(xk)
|F|.

6Also called monotone. A hypergraph H is down-closed if for every edge H, all its subsets are also edges of H.
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We will need the following lemma relating hypergeometric and binomial random variables.

Lemma 3.2. Let H be a hypergeometric random variable with parameters (n, x, y),7 and let B be
a binomial random variable with parameters (x, y/n). If x ≤

√
n then for every 0 ≤ h ≤ x we have

Pr[H = h] ≤ 2 Pr[B = h].

Proof. We have

Pr[H = h] =

(
y
h

)(
n−y
x−h
)(

n
x

) =

(
x
h

)(
n−x
y−h
)(

n
y

) =

(
x

h

)
(n− x)!

n!
· y!

(y − h)!
· (n− y)!

(n− y − (x− h))!

=

(
x

h

)∏h−1
t=0 y − t∏h−1
t=0 n− t

·
∏x−h−1
t=0 n− y − t∏x−h−1
t=0 n− h− t

≤
(
x

h

)(
y

n

)h(n− y
n− h

)x−h
≤
(
x

h

)(
y

n

)h(n− y
n

)x−h
e(2h/n)·(x−h) ≤ 2

(
x

h

)(
y

n

)h(n− y
n

)x−h
.

where the first inequality uses that h ≤ y (as otherwise Pr[H = h] = 0 and there is nothing to
prove), the second inequality uses the lower bound in Claim 2.5 as h ≤ x ≤

√
n ≤ n/2 (the last

inequality assumes
√
n ≥ 2, for otherwise x ≤ 1 in which case H = B so there is nothing to prove),

and the third inequality uses the fact that h(x− h) ≤ x2/4 ≤ n/4 as x ≤
√
n. Recalling that B is

a binomial random variable with parameters (x, α) with α = y/n, we deduce

Pr[H = h] ≤ 2

(
x

h

)
αh(1− α)x−h = 2 Pr[B = h],

as desired.

We will make use of the following version of Chernoff’s bound (c.f., e.g., [2], Appendix A).

Claim 3.3. Let X1, . . . , Xn be mutually independent random variables with Xi ∈ [0, 1], and put
X =

∑n
i=1Xi, µ = E[X]. Then Pr(X ≥ 6x) ≤ exp(−x) for every x ≥ µ/3.

Proof. Put y = 3x ≥ µ. Then Pr(X ≥ 6x) = Pr(X ≥ 2y) ≤ Pr(X − µ ≥ y) ≤ exp(−y/3) =
exp(−x), where the second inequality is Chernoff’s large-deviation bound (again using y ≥ µ).

Proof of Theorem 3.1. Let ` ∈ N satisfy

nr(
x
k

) ≤ ` ≤ n

αk
, (16)

which is well defined by the statement’s upper bound on αknr. Let S1, . . . , S` be ` independent
uniformly random size-x subsets of [n]. We let F be the k-graph on [n] consisting of a complete
k-graph on each Sj , that is, F =

(
[n],

⋃`
j=1

(Sj
k

))
.

We next analyze the random k-graph F constructed above. Let E1 be the event that every two
sets Sj , Sj′ (1 ≤ j 6= j′ ≤ `) intersect in fewer than t := 3r elements, and let E2 be the event that
span(F , αn) ≤ 6

(
x
k

)
n. We first show that the proof would follow by proving that

Pr(E1 and E2) > 0. (17)

7I.e., H = |X ∩ Y | where X ⊆ [n] is a uniformly random subset of size x and Y ⊆ [n] is a fixed subset of size y.
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To see this first note that, by construction, |F (i)| ≤
∑`

j=1

(|Sj |
i

)
= `
(
x
i

)
for every 0 ≤ i ≤ k. Fur-

thermore, note that the event E1 implies that the cliques
(Sj
k

)
are (edge-)disjoint by the statement’s

assumption k ≥ t, and so

E1 implies |F| = `

(
x

k

)
. (18)

Therefore, (17) implies the existence of an n-vertex k-graph F satisfying:

• |F| = `
(
x
k

)
≥ nr, using (18) and the lower bound in (16),

• span(F , αn) ≤ 6
(
x
k

)
n, and

• |F (i)| ≤ `
(
x
i

)
=

(xi)
(xk)
|F|, using (18),

from which the proof immediately follows by taking an arbitrary subgraph of F with nr edges.
To prove (17) we first claim that

Pr(E1) ≥ 1

2
. (19)

Denote by B the binomial random variable with parameters (x, p) where p = x/n. For every j 6= j′

we have

Pr
(
|Sj ∩ Sj′ | ≥ t

)
≤ 2 Pr

(
B ≥ t

)
≤ 2

(
x

t

)
pt

≤ (xp)t = x2t/nt = x6r/n3r ≤ n−2r ≤ `−2,

where the first inequality uses Lemma 3.2 using the statement’s upper bound on x, the penultimate
inequality again uses the statement’s upper bound on x, and the last inequality uses the upper
bound in (16) together with the statement’s lower bound on αknr. This implies, by taking the
union bound over all

(
`
2

)
unordered pairs 1 ≤ j 6= j′ ≤ `, that with probability at least 1

2 all set
pairs Sj , Sj′ with j 6= j′ intersect in fewer than 3r elements. This proves (19).

We now show that Pr(E2) > 1/2 (that is, that span(F , αn) ≤ 6
(
x
k

)
n except with probability

smaller than 1/2), which would prove (17). Fix I ⊆ [n] of size q = αn. Note that F [I] =⋃`
j=1

(Sj∩I
k

)
. For each 1 ≤ j ≤ ` consider the random variable Xj =

(|Sj∩I|
k

)
, let X =

∑`
j=1Xj , and

note that |F [I]| ≤ X. We have

E(Xj) =

x∑
h=k

(
h

k

)
Pr[|Sj ∩ I| = h] ≤ 2

x∑
h=k

(
x

h

)(
h

k

)
αh(1− α)x−h

= 2
x∑

h=k

(
x

k

)(
x− k
h− k

)
αh(1− α)x−h = 2αk

(
x

k

) x−k∑
j=0

(
x− k
j

)
αj(1− α)(x−k)−j = 2αk

(
x

k

)
,

where the first inequality follows from Lemma 3.2 using the statement’s upper bound on x. Thus,
by linearity of expectation,

E(X) ≤ ` · 2αk
(
x

k

)
≤ 2

(
x

k

)
n, (20)

where the second inequality uses the upper bound in (16). Since Xj ≤
(
x
k

)
for every 1 ≤ j ≤ `, we

have that X/
(
x
k

)
is a sum of mutually independent random variables each in [0, 1]. We thus apply

Claim 3.3 on X/
(
x
k

)
, using the fact that n ≥ 1

3E(X/
(
x
k

)
) by (20), to deduce that

Pr
[
X ≥ 6

(
x

k

)
n
]

= Pr
[
X/

(
x

k

)
≥ 6n

]
≤ exp(−n) < 2−n.
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Using the union bound over all
(
n
αn

)
≤ 1

22n choices of I ⊆ [n] with |I| = αn we deduce that, except
with probability smaller than 1/2, for every I ⊆ [n] with |I| = αn it holds that |F [I]| ≤ 6

(
x
k

)
n. As

mentioned before, together with (19) this proves (17) and so we are done.

3.2 Traces upper bound

In this subsection we complete the proof of Theorem 1.4 by proving the upper bound Tr(n, nr, αn) ≤
O(nµ), with µ as in (1), for every r ≤ n1/6/ log n and 0 < α ≤ 1. A proof can be obtained from the
proof of Theorem 3.1 with some effort. For completeness, we give here a self-contained proof.

Put x = (µ− 1) log n. Let S1, . . . , S` be ` independent uniformly random subsets of [n], each of
size x, where

1

2
` :=

nr

2x
=

nµ

(1 + α)x
. (21)

Let the family F ⊆ 2[n] consist of the union over j of all subsets of the set Sj ; that is, F =
⋃`
j=1 2Sj .

Let E1 be the event that |F| ≥ nr, and let E2 be the event that Tr(F , αn) ≤ 8nµ. Note that the
proof would follow by showing that

Pr(E1 and E2) > 0. (22)

First, we claim that

Pr(E1) ≥ 1

2
. (23)

Put t = 3r. Denote by B the binomial random variable with parameters (x, p) where p = x/n. For
every j 6= j′ we have

Pr(|Sj ∩ Sj′ | ≥ t) ≤ 2 Pr(B ≥ t) ≤ 2

(
x

t

)
pt

≤ (xp)t = x6r/n3r ≤ n−2r ≤ `−2,

where the first inequality uses Lemma 3.2 and the last inequality uses (21), also using the fact that

x ≤ r log n ≤ n1/6 ≤
√
n (24)

by the assumed upper bound on r.
Conditioned on the above we have, by taking the union bound over all

(
`
2

)
pairs of sets, that

|F| ≥ `
(

2x −
(
x

≤ t

))
≥ ` · 1

2
2x = nr,

where the second inequality uses t = 3r ≤ x/2 (for all n large enough), and the equality uses (21).
This proves (23).

We now show that Pr(E2) > 1/2 (that is, Tr(F , αn) ≤ 8nµ except with probability smaller
than 1/2), thus proving (22). Fix I ⊆ [n] of size q = αn. Note that

FI =
⋃̀
j=1

{S ∩ I |S ⊆ Sj} =
⋃̀
j=1

2Sj∩I .
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For each 1 ≤ j ≤ ` consider the random variable Xj = |2Sj∩I |, let X =
∑`

j=1Xj and note that
|FI | ≤ X. We have

E(Xj) =
x∑
h=0

2h Pr[|Sj ∩ I| = h] ≤ 2
x∑
h=0

2h
(
x

h

)
αh(1− α)x−h

= 2(1− α)x
x∑
h=0

(
x

h

)( 2α

1− α

)h
= 2(1− α)x

(
1 +

2α

1− α

)x
= 2(1 + α)x,

where the first inequality uses Lemma 3.2 together with (24). Thus, by linearity of expectation
and by (21),

E(X) ≤ ` · 2(1 + α)x = 4nµ. (25)

Note that, by our choice of x at the beginning of the proof,

nµ/2x = nµ/2(µ−1) logn = n. (26)

Since Xj ≤ 2x for every 1 ≤ j ≤ `, we have that X/2x is a sum of mutually independent random
variables each in [0, 1]. We thus apply Claim 3.3 on X/2x, using the fact that E(X/2x) ≤ 4n by (25)
and (26), to deduce that

Pr
[
X ≥ 8nµ

]
= Pr

[
X/2x ≥ 8n

]
≤ exp

(
− (4/3)n

)
< 2−n.

Using the union bound over all
(
n
αn

)
≤ 1

22n choices of I ⊆ [n] with |I| = αn we deduce that, except
with probability smaller than 1/2, for every I ⊆ [n] with |I| = αn it holds that |FI | ≤ 8nµ. As
mentioned before, together with (19) this proves (17) and so we are done.

4 Applications

In this section we give two easy applications of our results on traces, in geometry and in graph
theory.

4.1 Separating sets using few points

We recall the necessary definitions and state the application for general sets. Let H be a family
of sets in Rd, and let P be a set of points in Rd. We say that P separates H if for every pair of
distinct sets H1 6= H2 ∈ H there is a point in P that lies in one and outside the other. Given P
and H such that P separates H, it is interesting to ask how few points in P can we choose while
still separating many of the sets in H.

Corollary 4.1. Let P ⊂ Rd be a set of n points and let H be a family of nr sets in Rd, with
1 ≤ r ≤ nδ, such that P separates H. Then there exists a subset P ′ ⊆ P of at most n1−δ points

and a subset H′ ⊆ H of at least n
r+1

2
(1−O(δ)) sets such that P ′ separates H′.

Proof. Let F be the hypergraph on P with edge set {H∩P |H ∈ H}. By assumption, for any pair
of distinct sets H1 6= H2 ∈ H there is a point p ∈ P such that p ∈ H1 and p 6∈ H2, or p ∈ H2 and
p /∈ H1. In particular, H1∩P 6= H2∩P , and therefore |F| = |H| = nr. Applying Theorem 2.12 with

r, α−1 = nδ, there exists a subset P ′ ⊆ P of size n1−δ such that |FP ′ | ≥ nµ(1−O(δ)) ≥ n
r+1

2
(1−O(δ)).

Note that FP ′ = {H ∩ P ′ |H ∈ H}. Let H′ ⊆ H be obtained by assigning to each member Q of
FP ′ an arbitrary set H ′ ∈ H′ with H ′ ∩P ′ = Q. By construction, |H′| = |FP ′ |, hence it remains to
show that P ′ separates H′. Again by construction, for every pair of distinct sets H1 6= H2 ∈ H′ we
have H1 ∩P ′ 6= H2 ∩P ′. This means that there exists a point p′ ∈ P ′ such that either p′ ∈ H1 and
p′ /∈ H2, or p′ ∈ H2 and p′ /∈ H1, thus completing the proof.
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We leave it as an open problem whether better bounds hold in Corollary 4.1 when H is a set of
“favorable” geometric objects such as convex bodies, or even halfspaces (as in Corollary 1.8).

Proof of Corollary 1.8. If H in Corollary 4.1 is a family of halfspaces, then |H| is necessarily
polynomial if the dimension d is constant; in fact, an exact formula is known [10], which in par-
ticular implies that the number of halfspaces in Rd separated by n points is at most O(nd). Thus,
Corollary 1.8 follows as a special case of Corollary 4.1.

4.2 Retaining independent sets in induced subgraphs

An independent set in a graph is a vertex subset that spans no edges. Given a graph G, one can
ask how many independent sets are retained in small subgraphs of G. Using our result for traces,
we easily obtain that if G has 2n

o(1)
independent sets then it must have a subset of at most n1−δ

vertices, with δ a sufficiently small constant, retaining asymptotically more than square root of the
number of independent sets.

Corollary 4.2. Let G = (V,E) be an n-vertex graph, and assume that the number of independent
sets in G is nr with 1 ≤ r ≤ nδ. Then there exists a subset V ′ ⊆ V of at most n1−δ vertices such

that the number of independent sets in the induced subgraph G[V ′] is at least n
r+1

2
(1−O(δ)).

Proof. Let F be the hypergraph on V whose edges are the independent sets in G. Apply Theo-
rem 2.12 with r, α−1 = nδ to deduce that there is a subset S of V (F) = V with n1−δ vertices such

that |FS |, the number of projections of the edges of F onto S, is at least nµ(1−O(δ)) ≥ n
r+1

2
(1−O(δ)).

The proof follows by observing that, by definition and construction,

FS = {I ∩ S : I ∈ F}
= {I ∩ S : I is an independent set of G} = {I : I is an independent set of G[S]}.

We note that, since Theorem 2.12 is such an abstract statement, we could have replaced the
notion of independent sets in a graph by any other monotone family (i.e., a family closed under
taking subsets) of vertex subsets. Thus, for example, a statement analogous to Corollary 4.2 holds
for independent sets in hypergraphs, for subsets inducing a subgraph not containing some fixed
graph H, and more.
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A Proof of Auxiliary Lemmas

For the proof of Theorem 2.7 we use the following bound.

Claim A.1. Let x, y > 0 and k, i,∆ ∈ N with ∆ ≤ i ≤ k. If
(
y
k

)
≤
(

x
k−∆

)
then

(yi)
(yk)
≥ i−∆ ( x

i−∆)
( x
k−∆)

.

Proof. First, note that (
z
a

)(
z
b

) =
b∏

j=a+1

j

z − j + 1
≤ bb−a (27)

for all a ≤ b ≤ z with a, b ∈ N. Second, observe that j
z−j+1 is:

1. monotone decreasing in x,

2. monotone increasing in j.
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Now, if y ≤ x then
(yi)
(yk)
≥ ( y

i−∆)
( y
k−∆)

≥ ( x
i−∆)

( x
k−∆)

using (27) together with items 1 and 2, respectively,

whereas if y ≥ x then (
y
i

)(
y
k

) ≥ (
x
i

)(
x

k−∆

) =

(
x
i

)(
x

i−∆

) · ( x
i−∆

)(
x

k−∆

) ≥ 1

i∆
·
(
x

i−∆

)(
x

k−∆

) ,
where the first inequality uses the statement’s assumption, and the last inequality uses (27).

For the proof of Lemma 2.4 we use the following claim, which follows easily from Newton’s
generalized binomial theorem.

Claim A.2. For every real x > 0 we have 2x−1 <
∑bxc

i=0

(
x
i

)
≤ 2x.

Proof. We bound the summation in the statement from above and from below as follows;

2x−1 < 2bxc =

bxc∑
i=0

(
bxc
i

)
≤
bxc∑
i=0

(
x

i

)
≤
∞∑
i=0

(
x

i

)
= (1 + 1)x,

where the rightmost equality follows from Newton’s generalized binomial formula, and the rightmost
inequality follows from

∞∑
i=0

(
x

i

)
−
bxc∑
i=0

(
x

i

)
=
∑
j

((
x

j

)
+

(
x

j + 1

))
=
∑
j

(
x+ 1

j + 1

)

=
∑
j

(
(x+ 1)x · · · (x− bxc)

(j + 1)!

j−1∏
k=bxc+1

(x− k)

)
≥ 0

with j running over the values bxc+ 1, bxc+ 3, . . .. This completes the proof.

Proof of Lemma 2.4. For real z ≥ 0 we henceforth abbreviate
(
x
≤z
)

=
∑bzc

i=0

(
x
i

)
. If k ≥ dx2 e we

are done since

2

k∑
i=0

(
x

i

)
γi ≥ 2

bx2 c∑
i=0

(
bxc
i

)
γi =

bx2 c∑
i=0

((
bxc
i

)
+

(
bxc
bxc − i

))
γi ≥

bx2 c∑
i=0

((
bxc
i

)
γi +

(
bxc
bxc − i

)
γbxc−i

)

≥
bxc∑
i=0

(
bxc
i

)
γi = (1 + γ)bxc ≥ 1

2
(1 + γ)x ≥ 1

2

(
x

≤ x

)log(1+γ)

≥ 1

2

(
x

≤ k

)log(1+γ)

,

where the penultimate inequality follows from Claim A.2, and dividing over by 2 gives the desired
result.

We thus assume k ≤
⌈
x
2

⌉
− 1 for the remainder of the proof. Put

y = log

(
x

≤ k

)
and K = byc+ 1.

We have 0 ≤ y ≤ x − 1, which follows using the fact that for i ≤
⌊
x
2

⌋
we have

(
x
i

)
≤
(

x
bxc−i

)
as

follows;

1 ≤ 2

(
x

≤ k

)
≤ 2

(
x

≤
⌈
x
2

⌉
− 1

)
≤
dx2 e−1∑
i=0

((
x

i

)
+

(
x

bxc − i

))
≤
(
x

≤ x

)
≤ 2x,
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where the first inequality follows since 1 ≤ x, the second inequality uses our assumption k ≤
⌈
x
2

⌉
−1,

and the last inequality uses Claim A.2. Furthermore, we have K ≥ k, since otherwise k ≥ K + 1
and thus (

x

≤ k

)
≥
(

x

≤ K + 1

)
≥
(

y + 1

≤ K + 1

)
=

(
y + 1

≤ byc+ 2

)
≥
(

y + 1

≤ byc+ 1

)
> 2y,

a contradiction, where the second and third inequalities used the fact that for a positive number t,(
t

btc+1

)
is non-negative (and K = byc+ 1), and the last inequality uses Claim A.2.

Let a0, . . . , ak and b0, . . . , bK be given by

ai =

(
x

i

)
for 0 ≤ i ≤ k, bi =

(
y

i

)
for 0 ≤ i ≤ K − 1, and bK =

k∑
i=0

ai −
K−1∑
i=0

bi.

We have that bK ≥ 0 since

K−1∑
i=0

bi =

(
y

≤ y

)
≤ 2y =

(
x

≤ k

)
=

k∑
i=0

ai,

where the inequality follows from Claim A.2. Summarizing the properties of the sequences (ai)
k
i=0

and (bi)
K
i=0, we have

∑k
i=0 ai =

∑K
i=0 bi, and for every 0 ≤ i ≤ k − 1 we have ai ≥ bi (recall

x > y ≥ 0). Denote ∆i = ai − bi (≥ 0) for every 0 ≤ i ≤ k − 1. We have

byc∑
i=0

(
y

i

)
γi ≤

K∑
i=0

biγ
i =

k−1∑
i=0

(ai −∆i)γ
i +

K∑
i=k

biγ
i

≤
k−1∑
i=0

(ai −∆i)γ
i +
( K∑
i=k

bi

)
γk =

k−1∑
i=0

(ai −∆i)γ
i +
( k−1∑
i=0

∆i + ak

)
γk

≤
k−1∑
i=0

aiγ
i −

k−1∑
i=0

∆iγ
k +

( k−1∑
i=0

∆i + ak

)
γk =

k∑
i=0

aiγ
i =

k∑
i=0

(
x

i

)
γi.

We thus showed that

k∑
i=0

(
x

i

)
γi ≥

byc∑
i=0

(
y

i

)
γi ≥

byc∑
i=0

(
byc
i

)
γi = (1 + γ)byc ≥ 1

2
(1 + γ)y =

1

2

(
x

≤ k

)log(1+γ)

,

which completes the proof.
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