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Abstract

It is known that the chromatic number of a graph G = (V,E) with V = {1, 2, . . . , n} exceeds k
iff the graph polynomial fG =

∏
ij∈E,i<j(xi−xj) lies in certain ideals. We describe a short proof

of this result, using Ore’s version of Hajós’ theorem. We also show that a certain weighted sum
over the proper k-colorings of a graph can be computed from its graph polynomial in a simple
manner.

1 Introduction

The graph polynomial of a graph G = (V,E) on a set V = {1, 2, . . . , n} of n vertices is fG =∏
ij∈E,i<j(xi − xj). By definition, if the graph is not k-colorable and S is any set of k reals, this

polynomial vanishes for all values of (x1, x2, . . . , xn) ∈ S × S × . . .× S, since for each such value of
the variables xi there is some edge ij ∈ E with xi − xj = 0. This shows that the graph polynomial
encodes some information about the chromatic number of the graph, and indeed it is shown in [4]
and [1] that a graph is not k-colorable if and only if its graph polynomial lies in certain ideals. In
the first half of this note we present a new, short proof of this result, stated in Theorem 1.1 and
the two corollaries following it. The proof is based on Ore’s version of the theorem of Hajós. It is
worth mentioning that Ore noted in [5] (see also [3]) that this stronger version is sometimes crucial
for applications, but gave no examples of such an application. Our proof here is such an example,
as it seems much harder to deduce the theorem from the original version of the theorem of Hajós.

Theorem 1.1 Let F be a field, and let I be an ideal of polynomials in F [x1, x2, . . . , xn] which
contains all the graph polynomials of complete graphs on any subset of cardinality k+1 of {1, 2, . . . , n}.
Then for any graph G = (V,E) on the n vertices {1, 2, . . . , n} whose chromatic number exceeds k,
the graph polynomial fG lies in I.
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Two simple corollaries of the above theorem are the following known results.

Corollary 1.2 (Kleitman and Lovász, [4].) A graph G is not k-colorable if and only if the graph
polynomial fG lies in the ideal generated by all graph polynomials of complete graphs on k+1 vertices.

Corollary 1.3 (Alon and Tarsi, [1].) A graph G on the n vertices {1, 2, . . . , n} is not k-colorable
if and only if the graph polynomial fG lies in the ideal generated by the polynomials xki −1, (1 ≤ i ≤ n)
(over the complex field, say).

Let G = (V,E) be a graph, V = {1, 2, . . . , n}, let fG =
∏
ij∈E,i<j(xi−xj) be its graph polynomial,

and let fG be the remainder of this polynomial modulo the ideal generated by the polynomials
xki − 1, 1 ≤ i ≤ n.
Put Znk = {0, 1, . . . , k − 1}n. For a polynomial

P = P (x1, . . . , xn) =
∑
v∈Zn

k

av

n∏
i=1

xvii .

Define ||P ||22 =
∑
v∈Zn

k
|av|2.

By the last corollary, χ(G) > k if and only if fG is the zero polynomial. A stronger result is
given in the following theorem, in which C is the set of all proper colorings c of G by the k colors
{0, . . . , k − 1}.

Theorem 1.4 In the above notation

||fG||22 =
4|E|

kn

∑
c∈C

∏
ij∈E,i<j

sin2[
π(c(i)− c(j))

k
]. (1)

Note that the above formula provides a lower bound for the number of proper k-colorings of a
graph as a function of ||fG||22. For the special case k = 3 this is an equality, showing that the precise
number |C| of proper 3-colorings satisfies

||fG||22 =
4|E|

3n
|C|(3/4)|E| = 3|E|−n|C|.

2 Ore, Hajós and ideals of polynomials

Theorem 1.1 will be deduced from Ore’s version [5] of Hajós’ Theorem [2]. A graph is called Ore-
(k+1)-constructible if it can be obtained from cliques of size k + 1 using repeatedly the following
operation. If G1, G2 are already obtained disjoint graphs with edges x1y1 and x2y2, respectively, and
if w1, w2, . . . , wt are distinct vertices of G1 − x1 and z1, z2, . . . , zt are distinct vertices of G2 − x2,
construct a new graph H by omitting the edges x1y1 and x2y2, identifying x1, x2, connecting y1, y2 by
an edge, identifying zi and wi for all i, and replacing multiple edges, if any, by single ones. Ore showed
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([5], see also [3]) that a graph is not k-colorable if and only if it contains an Ore (k+ 1)-constructible
subgraph.
Proof of Theorem 1.1. By the above mentioned theorem, it suffices to show that if H is obtained
from the graphs G1, G2 as described above, and the graph polynomials of G1 and G2 lie in I, so does
the graph polynomial of H. To see this, let fG1 and fG2 denote the graph polynomials of G1 and
G2, respectively, using the indices of the vertices after the identification. Let A denote the graph
polynomial corresponding to all the common edges of the graphs G1, G2 after the identification. Let
P denote the graph polynomial of the graph of all edges of G1 − x1y1 besides these common ones,
and let Q be the graph polynomial of the graph of all edges of G2−x2y2 besides these common ones.
Clearly,

fG1 = (x− y1)PA, fG2 = (x− y2)QA fH = (−1)ε(y1 − y2)PQA where (ε ∈ {0, 1}).

Therefore, fH = (−1)ε(PfG2 −QfG1) ∈ I, completing the proof. 2

Proof of Corollary 1.2. Let S be an arbitrary subset of size at most k of the field F . The graph
polynomial of any complete graph on k + 1 vertices obviously vanishes when each variable attains a
value from S, as two of the variables get the same value. Thus, if the graph polynomial fG lies in the
ideal generated by the polynomials of complete graphs on k + 1 vertices, then it vanishes whenever
each variable attains a value of S and hence G is not k-colorable. Conversely, by Theorem 1.1, if G
is not k-colorable then fG lies in the desired ideal, as needed. 2

Proof of Corollary 1.3. If fG lies in the ideal generated by the polynomials xki −1 then it vanishes
whenever each xi attains a value which is a kth root of unity. This means that in any coloring of the
vertices of G by the kth roots of unity, there is a pair of adjacent vertices that get the same color,
implying that G is not k-colorable.
Conversely, suppose G is not k-colorable. In order to deduce from Theorem 1.1 that fG lies in the
ideal J generated by the polynomials xki − 1, it suffices to prove that the graph polynomial of any
complete graph on k + 1 vertices lies in J . A typical graph polynomial of such a complete graph is
a Vandermonde determinant det{(xji ) : 0 ≤ i, j ≤ k}. The last row of this matrix is the sum of the
vector {(xkj − 1) : 0 ≤ j ≤ k} with the all 1 vector, and this shows that the above determinant is a
sum of two determinants one of which is 0, as it has two identical rows, and the other having the
vector {(xkj − 1) : 0 ≤ j ≤ k} as one of its rows. Expanding with respect to this row we conclude
that the determinant lies in J , completing the proof. 2

3 Counting proper colorings

Proof of Theorem 1.4. Suppose k ≥ 2, Let w = e2πi/k be a primitive k-th root of unity and let

P = P (x1, . . . , xn) =
∑
v∈Zn

k

av

n∏
j=1

x
vj
j
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be a polynomial. Recall that ||P ||22 =
∑
v∈Zn

k
|av|2. By Parseval’s Formula

||P ||22 · kn =
∑
v∈Zn

k

|P (wv1 , . . . , wvn)|2. (2)

Suppose, now, that G = (V,E) is a graph with V = {1, . . . , n}, let fG =
∏
ij∈E,i<j(xi − xj) be its

graph polynomial and let fG be the remainder of this polynomial modulo the ideal generated by the
polynomials xki − 1, 1 ≤ i ≤ n.

To derive (1) from (2) observe that for v ∈ Znk , if the coloring c(i) = vi is not a proper coloring
of G then

fG(wv1 , . . . , wvn) = fG(wv1 , . . . , wvn) = 0,

whereas if it is a proper coloring then

|fG(wv1 , . . . , wvn)|2 = |fG(wv1 , . . . , wvn)|2

=
∏

ij∈E,i<j
[2− 2 cos

2π(c(i)− c(j))
k

] = 4|E|
∏

ij∈E,i<j
sin2[

π(c(i)− c(j))
k

].

This completes the proof. 2
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