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Abstract

It is shown that the minimum possible number of edges in an n- superconcentrator of depth

3 is Θ(n log log n), whereas the minimum possible number of edges in an n-superconcentrator of

depth 2 is Ω(n(log n)3/2) (and is O(n(log n)2)).

1 Introduction

An n-superconcentrator is a directed acyclic graph S with the following properties.

(i) There are two disjoint subsets of vertices of S, U (called the set of inputs) and V (called the set

of outputs), each of cardinality n, where the indegree of each vertex in U is 0 and the outdegree of

each vertex in V is 0.

(ii) For every two subsets X ⊂ U and Y ⊂ V , where 1 ≤ |X| = |Y | ≤ n there are |X|-vertex

disjoint paths of S from X to Y .

The depth of a superconcentrator is the maximum length of a directed path in it, and its size

is the number of its edges. It is sometimes convenient to assume that the vertices of a depth-d

superconcentrator are partitioned into d+1 levels, where the inputs form the first level, the outputs
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form the last one, and all the edges are directed from level i to level i+1. For fixed d this assumption

does not change the minimum possible size by more than a constant factor.

Superconcentrators have been the subject of intensive study, as they are relevant to lower bounds

as well as to the construction of certain networks with high connectivity properties. Pippenger [6]

showed that there are n-superconcentrators of depth 2 and size O(n log2 n), and showed that they

must have size at least Ω(n log n). The minimum possible size of n-superconcentrators of any depth

d ≥ 4 has been determined up to a constant factor in [4] (for all even values of d ≥ 4) and in [7]

(for all odd values of d ≥ 5.) In particular, it follows from these results that for every even d ≥ 4,

the minimum possible size of an n-superconcentrator of depth d is equal, up to a constant factor,

to that of an n-superconcentrator of depth d + 1. In other words, in all these cases the extra odd

level does not help in reducing the size.

In the present paper we determine the minimum possible size of an n-superconcentrator of

depth 3 up to a constant factor. This size is Θ(n log log n) showing that for d = 2 the extra odd

level does yield a saving in the size. In addition, we improve the lower bound of Pippenger for the

minimum size of depth 2 n-superconcentrators and show that it is Ω(n(log n)3/2).

2 The lower bound for depth 2

We need two lemmas. The first one is the following known bound concerning Zarankiewicz problem

(cf., [3], Theorem VI.2.5).

Lemma 2.1 Let kr(n) denote the minimum integer k such that every bipartite graph with n vertices

in each vertex class and with at least k edges contains a complete bipartite subgraph with r vertices

in each vertex class. Then

kr(n) ≤ (r − 1)1/rn2−1/r +
1
2

(r − 1)n.

The second lemma is the following somewhat technical result proved in [7].

Lemma 2.2 There exists an absolute positive constant δ > 0 such that the following holds. For

every sequence of s reals c1 ≥ c2 ≥ . . . ≥ cs ≥ 0 and for every 1 ≤ p ≤ m ≤ s, if the inequality

s∑
i=r

c2
i ≥ 1/r
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holds for all r, p ≤ r ≤ m, then
s∑
i=1

ci ≥ δ(logm− log p).

Theorem 2.3 Depth 2 n-superconcentrators have size Ω(n(log n)3/2).

Proof We assume, whenever it is needed, that n is sufficiently large. Let v1, v2, . . . , vs be the

vertices in the middle level of a given n-superconcentrator S, and let di be the degree of vi, where

d1 ≥ d2 ≥ . . . ≥ ds. We may assume that all edges are incident with vertices in the middle level.

Let r be any integer which does not exceed s. Let Gr be the bipartite graph whose classes of

vertices are the set of n inputs of S and the set of n outputs of S in which there is an edge between

an input x and an output y iff x is connected with y in S through a vertex vi with i ≥ r.

Obviously, for every set X of inputs and every set Y of outputs with |X| = |Y | = r there is at

least one edge in Gr between X and Y , since otherwise there are no r vertex disjoint paths in S

between X and Y . It thus follows from Lemma 2.1 that the number of non edges in Gr is smaller

than

kr(n) ≤ (r − 1)1/rn2−1/r +
1
2

(r − 1)n = n2e−(ln n−ln (r−1))/r +
1
2

(r − 1)n.

We restrict our attention only to integers r between, say, n1/3 and n1/2. In this range, the right

hand side of the last inequality is at most

n2(1− (ln n− ln (r − 1))/2r) +
1
2

(r − 1)n.

It follows that Gr contains at least

n2(ln n− ln(r − 1))/2r − 1
2

(r − 1)n ≥ 1
16
n2ln n/r

edges, where in the last inequality we used the fact that n is large and that n1/3 ≤ r ≤ n1/2.

Observe, next, that the number of edges of Gr is at most

s∑
i=r

xi(di − xi) ≤
1
4

s∑
i=r

d2
i ,

where xi is the number of inputs adjacent to vi (and hence di−xi is the number of outputs adjacent

to vi). Therefore, for every integer r, n1/3 ≤ r ≤ n1/2

s∑
i=r

d2
i ≥

1
4
n2ln n/r.
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Define ci = 2di
n
√
ln n

. Then for every r as above

s∑
i=r

c2
i ≥ 1/r.

Therefore, by Lemma 2.2,
∑s
i=1 ci ≥ Ω(log n), and hence the number of edges of S, which is

∑s
i=1 di,

is at least Ω(n(log n)3/2), completing the proof. 2

3 The lower bound for depth 3

Theorem 3.1 Depth 3 n-superconcentrators have size Ω(n log log n).

Proof Let C be a depth 3 n-superconcentrator. The levels of C will be denoted V0 (the inputs),

V1, V2 and V3 (the outputs). Let H be the set of edges of the superconcentrator. All the edges

are directed from the i-th level to the i+ 1-st. Let Di be the set of vertices of V1 with indegree m

satisfying

n2−i > m ≥ n2−i−1
,

and the vertices of V2 whose outdegree m satisfies the same inequality. Let t = log2 log2 n −

log2 log2 log2 log2 n− 2. Thus, for i ≤ t,

n2−i−2 ≥ log2 log2 n.

Assume that the number of all edges of the superconcentrator is less than 1
16n log2 log2 n. We shall

show that for every i = 0, 1, . . . , t− 2,

|{(u, v) ∈ H; (u ∈ V0 and v ∈ Di ∪Di+1 ∪Di+2)

Since the sets Di are disjoint this will prove the bound. Suppose the condition fails for i. Let U i0 be

the set of inputs connected with some vertex in Di ∪Di+1 ∪Di+2 and let U i3 be the set of outputs

connected with some vertex in Di ∪Di+1 ∪Di+2. By the assumption |U i0|, |U i3| < 1
4n. Define

k = dn1−2−i−1e.

Clearly

n1−2−i−1 ≤ k ≤ 2n1−2−i−1
.
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Let X be a random subset of cardinality k of the inputs, and let Y be a random subset of cardinality

k of the outputs. Let z be the random variable ”the number of vertex disjoint paths connecting

X \ U i0 with Y \ U i3”. Since the number of vertex disjoint paths connecting X with Y is at least k,

we have

z(X,Y ) ≥ k −max(|U i0 ∩X|, |U i3 ∩ Y |).

Therefore, the expected value E(z) of z satisfies

E(z) ≥ k − E(|U i0 ∩X|)− E(|U i3 ∩ Y |)

≥ k − |U i0|k/n− |U i3|k/n ≥ k − 2
1
4
n
k

n
≥ k/2.

Suppose that

|D0 ∪ . . . ∪Di−1| ≥ k/4.

Since each vertex in this union has indegree or outdegree at least n2−i , we would have, in this case,

at least
k

4
n2−i ≥ 1

4
n1−2−i−1

n2−i ≥ 1
4
n1+2−i−1 ≥ 1

4
n log2 log2 n

edges. Hence we may assume that |D0∪. . .∪Di−1| ≥ k/4. Let z′ be the random variable ”the number

of vertex disjoint paths connecting X with Y which do not contain vertices from D0 ∪ . . . ∪Di+2.”

Then z′ ≥ z − k/4, and hence E(z′) ≥ k/4. Let (u, v) ∈ H be an edge, where u ∈ V1, v ∈ V2, u, v

not in D0 ∪ . . .∪Di+2. Since the indegree of u and the outdegree of v are less than n2−i−3
, we have

Prob( there is a path from X to Y through (u, v) )

= Prob( there is p ∈ X (p, u) ∈ H) · Prob( there is q ∈ Y (v, q) ∈ H)

< (n2−i−3
k/n)2 ≤ 4n2·2−i−3+2·(−2−i−1) = 4n2−i−2−2−i .

Hence

E(z′) ≤ |H|4n2−i−2−2−i .

Comparing it with k/4, the lower bound for E(z′), we get

|H| ≥ 1
16
k · n−2−i−2+2−i ≥ 1

16
n1−2−i−1−2−i−2+2−i =

1
16
n1+2−i−2

,

which is, by the assumption about i, at least 1
16 log2 log2 n. This contradicts our assumption and

hence completes the proof. 2
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4 The upper bound for depth 3

The upper bound is proved by a (probabilistic) construction. We need the following two lemmas,

proved by applying simple probabilistic arguments. The first lemma deals with graphs known as

expanders and the second one with graphs usually called concentrators.

Lemma 4.1 For every two integers m ≥ a ≥ 1 there is a bipartite graph H with classes of vertices

L,M , where |L| = |M | = m, and with at most 3mdma log em
a e edges, so that for any X ⊂ L and

Y ⊂M with |X| = |Y | = a there is an edge of H joining a member of X with a member of Y .

Proof Let L and M be two disjoint sets of vertices, each of cardinality m. For each vertex v ∈ L

choose, randomly and independently, d = 3dma log em
a e (not necassarily distinct) neighbors in M .

To complete the proof it suffices to show that the expected number of pairs of sets X ⊂ L and

Y ⊂M , with |X| = |Y | = a and with no edge between X and Y , is smaller than 1. This is indeed

the case, since the above expectation is(
m

a

)2

(1− a/m)ad < (em/a)2ae−3a log(em/a) < 1,

as needed. 2

Lemma 4.2 For every three integers n,m, p, where n ≥ m ≥ 2p, there is a bipartite graph F with

classes of vertices C and D, where |C| = n, |D| = m, and with at most

16nd log(en/p)
log(em/p)

e

edges, so that every set X of i ≤ p vertices in C has at least i+ 1 neighbors in D.

Proof Define d = 16d log(en/p)
log(em/p)e and let C and D be two disjoint sets of vertices, where |C| = n,

|D| = m. For each vertex v ∈ C choose, randomly and independently, d (not necessarily distinct)

neighbors in D. Let F be the random bipartite graph obtained in this manner. The probability

that a fixed subset X ⊂ C of cardinality i has at most i neighbors in D is at most(
m

i

)
(i/m)id,

since there are at most
(m
i

)
ways of choosing a set Z of cardinality i containing all the neighbors

of the members of X, and the probability that indeed all these neighbors lie in Z is at most
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(|Z|/m)|X|d. It follows that the expected number E of subsets X ⊂ C of cardinality at most p that

have at most |X| neighbors in D is at most

E ≤
p∑
i=1

(
n

i

)(
m

i

)
(i/m)id ≤

p∑
i=1

(en/i)i(em/i)i(i/m)id

≤
p∑
i=1

ei(log(en/i)+log(em/i)−d log(m/i)).

Since the function g(i) = log(en/i)
log(em/i) is an increasing function of i for 1 ≤ i ≤ p and since m/i ≥ 2

implies that log(m/i) ≥ 1
4 log(em/i) we conclude that

d log(m/i) ≥ 16
log(en/i)
log(em/i)

1
4

log(em/i) = 4 log(en/i).

Therefore,

E ≤
p∑
i=1

ei(2 log(en/i)−4 log(en/i)) ≤
p∑
i=1

ei(−2 log(2e) < 1.

This completes the proof. 2

Corollary 4.3 Let n be an integer and let r ≥ 100 be a real, n ≥ r. Then there is a depth-3

directed acyclic graph G = Gr with classes of vertices V0, V1, V2, V3, in which all edges are directed

from Vi to Vi+1, (0 ≤ i ≤ 3), with the following properties.

(i) |V0| = |V3| = n.

(ii) |V1| = |V2| = bn/r2/3c.

(iii) The number of edges of G is O(n).

(iv) For every A ⊂ V0 and B ⊂ V3 with |A| = |B| ≤ n/r there are A′ ⊂ A and B′ ⊂ B such

that |A \ A′| = |B \ B′| ≤ n/r7/6 and such that there are |A′|-vertex disjoint (directed) paths in G

between A′ and B′. Moreover, in case n/r2/3 ≤
√
n such paths exist for A′ = A, B′ = B.

Proof Construct G as follows. The subgraph of G induced on V0 ∪ V1 is obtained from the graph

in Lemma 4.2 with n,m = bn/r2/3c and p = bn/rc(≤ m/2) by taking V0 = C, V1 = D and by

directing all edges from V0 to V1. Symmetrically, the subgraph of G induced on V3 ∪V2 is obtained

from Lemma 4.2 by taking the same parameters as above, C = V3 and D = V2 and by directing all

edges from V2 to V3.

Put m = bn/r2/3c. In case m ≤
√
n let the induced subgraph of G on V1 ∪ V2 be the complete

directed bipartite graph in which each vertex in V1 is connected by a directed edge to each vertex in
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V2. Otherwise, this induced subgraph is obtained from the graph in Lemma 4.1 withm,a = bn/r7/6c

by taking V1 = L, V2 = M and by directing all edges from V1 to V2.

Notice that by the two lemmas above, the number of edges of G is indeed O(n), as needed.

Suppose A ⊂ V0, B ⊂ V3, and |A| = |B| ≤ n/r. By the properties of the construction in Lemma

4.2 and by Hall’s Theorem it follows that there are A∗ ⊂ V1 and B∗ ⊂ V2, such that |A∗| = |B∗| =

|A| (= |B|) and there are two matchings in G joining the vertices of A with these of A∗ and the

vertices of B with these of B∗. In case m ≤
√
n there is a matching of G between the two sets A∗

and B∗, providing, together with the previous two matchings, vertex disjoint paths between the

vertices of A and those of B, as needed. Otherwise, we have to show that there is a matching of

size at least |A∗| − bn/r7/6c between A∗ and B∗. However, such a matching certainly exists by the

property of the graph in Lemma 4.1. In fact, it can even be constructed by adding, one by one,

edges to such a matching as long as there is an edge joining a yet unmatched vertex of A∗ with a

yet unmatched vertex of B∗. Since in the construction of Lemma 4.1 there is an edge between any

two sets of cardinality a in the two vertex classes, this procedure cannot be terminated before it

matches all vertices of A∗ but at most a− 1 of them with vertices in B∗. This completes the proof

of the lemma. 2

Theorem 4.4 There are depth-3 n-superconcentrators of size O(n log log n).

Proof Let U0 and U3 be two disjoint classes of vertices, |U0| = |U3| = n. We construct a super-

concentrator of depth 3 whose inputs are the members of U0 and whose outputs are these of U3.

Put r1 = 100 and ri+1 = r
7/6
i for i ≥ 1, and let l be the first i such that n/r2/3

i ≤
√
n. Clearly

l = O(log log n).

For each i, 1 ≤ i ≤ l, let Gi be the graph of Corollary 4.3 with r = ri. Let G be the graph

obtained from the disjoint union of all these graphs Gi by identifying U0 and U3 with the first and

last layers, respectively, of all these l graphs. Let G′ be the graph obtained from G by adding to it

a set of O(n) directed edges from U0 to U3, such that there is at least one edge between any two

subsets of cardinality at least n/100 of these two classes. (Such a set of edges exists by Lemma 4.1

with m = n, a = bn/100c.)

Clearly G′ is a depth-3 directed acyclic graph with O(n log log n) edges. To complete the proof

we show that G′ is a superconcentrator. Suppose, thus, that A ⊂ U0, B ⊂ U3 are two subsets,
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|A| = |B|. By applying the direct edges, if necessary, we can match members of A with members

of B until we are left with at most n/100 vertices in each of these classes. Next, we can use the

edges of G1 to obtain additional vertex-disjoint paths until the sizes of the unmatched subsets of

A and B are reduced to at most n/r7/6
1 = n/r2. Continuing in this manner, the edges of each Gi

are used in order to reduce the sizes of the remaining unmatched vertices to at most n/ri+1, where

in the last step (when the edges of Gl are used) all the remaining vertices are matched by vertex

disjoint paths. This completes the proof. 2

5 Concluding remarks

The results in the present paper, together with these in [4] and [7] determine, up to a constant

factor, the smallest possible size of an n-superconcentrator of depth d for all d ≥ 3. Since this size

is trivially n2 for d = 1, the only remaining case is depth 2, first studied in [6]. In [2] it is shown

that size Ω(n log n) is required in depth 2 even if we only assume that for a single value of k, where

nε ≤ k ≤ n1−ε, (for any fixed ε > 0 ), there are at least log k vertex disjoint paths between any two

sets of k inputs and k outputs. Therefore it is not surprising that the Ω(n log n) lower bound of [6]

is not tight for depth 2 superconcentrators, as shown in Section 2. We suspect that the O(n log2 n)

upper bound proved in [6] is closer to the correct value of the minimum possible size for depth 2

than the Ω(n(log n)3/2) lower bound, proved here.

Our proof of the O(n log log n) upper bound for the size in depth 3 is not constructive. Although

Lemma 4.1 can be replaced (with some insignificant loss in the constants) by an appropriate con-

struction using some of the known explicit expanders, it is much more difficult to obtain an explicit

version of Lemma 4.2. In fact, it seems difficult to obtain an explicit construction of size O(n1+ε)

and depth 3 even for a fixed (small) ε > 0. See [5], [1] for the (modest) known explicit constructions

for bounded depth, small size superconcentrators.
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