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Abstract

We say that a random integer variable X is monotone if the modulus of the char-
acteristic function of X is decreasing on [0, π]. This is the case for many commonly
encountered variables, e.g., Bernoulli, Poisson and geometric random variables. In
this note, we provide estimates for the probability that the sum of independent mono-
tone integer variables attains precisely a specific value. We do not assume that the
variables are identically distributed. Our estimates are sharp when the specific value
is close to the mean, but they are not useful further out in the tail. By combining with
the trick of exponential tilting, we obtain sharp estimates for the point probabilities in
the tail under a slightly stronger assumption on the random integer variables which
we call strong monotonicity.
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1 Introduction

In this note we provide sharp estimates for the probability that the sum of independent
(not necessarily identically distributed) integer-valued random variables attains precisely
a specific value. Our estimates hold under a fairly general assumption on the properties
of the random variables, which for example is satisfied for Bernoulli, Poisson and
geometric random variables. The bounds on the point probabilities derived in this paper
have been used to understand the distribution of balls in capacitated bins [1]. In the
cleanest combinatorial variant of the problem, where the balls arrive sequentially and
each ball picks a uniformly random non-full bin, they just needed the point probabilities
of sums of i.i.d. Bernoulli variables. However, for a more dynamic distribution system,
they had to apply the bounds for sums of a mix of Bernoulli and geometrically distributed
variables.
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On Sums of Monotone Random Integer Variables

Recall that for a real random variable X, the characteristic function of X is the
map fX : R → C given by fX(λ) = E[eiλX ]. We say that a real random variable X is
monotone if |fX | is decreasing on [0, π]. In the first part of this note (Section 2), we
provide estimates for the point probabilities of a sum, X =

∑
j∈[k]Xj , of independent

monotone random integer variables1. To be precise, for any given t ∈ Z, we estimate the
probability Pr[X = t]. Our estimates are sharp whenever t is close to the mean E[X], but
they are not useful further out in the tail. To handle point probabilities in the tail, we
require a slightly stronger assumption on the random variables which we now describe.

For a random integer variable X we define IX = {θ ∈ R : E[eθX ] < ∞}, to consist
of those θ ∈ R for which the moment generating function of X is defined. We note
that IX is an interval with 0 ∈ IX . For θ ∈ IX , we may define the exponentially tilted

random variable Xθ by Pr[Xθ = t] = Pr[X=t]eθt

E[eθX ]
for t ∈ Z. We say that X is strongly

monotone if (1) IX 6= {0} and (2) Xθ is monotone for each θ ∈ IX . In the second part of
this note (Section 3), we use the trick of exponential tilting to provide estimates for the
point probabilities of a sum of independent strongly monotone random integer variables,
X =

∑
j∈[k]Xj , which are also sharp in the tail.

It follows by direct computation that Bernoulli, Poisson, and geometric random
variables are monotone, and moreover, that exponentially tilting these variables again
yields Bernoulli, Poisson and geometric variables. In particular, these variables are all
strongly monotone, so our results give sharp estimates for the point probabilities of the
sum of (a mix of) such variables. In Section 3, we provide examples of the estimates that
can be obtained for such a sum using our results.

In the note we will consider the following setting. Let k be an integer and (Xj)j∈[k]
independent integer-valued random variables with E [Xj ] = µj and Var[Xj ] = σ2

j for
j ∈ [k]. Let X =

∑
i∈[k]Xi, and further µ =

∑
j∈[k] µj and σ2 =

∑
j∈[k] σ

2
j be respectively

the expectation and variance of X. The main result of the note is the following theorem.

Theorem 1.1. There exists a universal constant c, such that if X is monotone, then for
every t for which µ+ tσ is an integer, the probability that X is precisely µ+ tσ satisfies,

∣∣∣∣Pr [X = µ+ tσ]− 1√
2πσ

e−t
2/2

∣∣∣∣ ≤ c
∑j∈[k] E

[
|Xj − µj |3

]
σ3

2

. (1.1)

Remark 1.2. We note that if each Xj is monotone, then X is as well. Indeed, the
characteristic function of X can be factorized as fX(λ) =

∏
j∈[k] fXj (λ). In particular,

Theorem 1.1 holds when each of the variables (Xj)j∈[k] is monotone.

Our result is reminiscent of the Berry-Esseen theorem, but instead of bounding the
distance between the cumulative function of X and the cumulative function of the normal
distribution as the Berry-Esseen theorem does, our result bounds the distance between
the density function of X and the density function of the normal distribution. This setting
has been studied before in the context of large deviation theory, e.g., by Blackwell and
Hodges [3] and by Iltis [7] in the d-dimensional case. They do not require X to be
monotone but they only consider the case where (Xj)j∈[k] are identically distributed and
are interested in the asymptotical behavior when k →∞. In particular the distribution
of the variables (Xj)j∈[k] cannot depend on k. McDonald [8] considers variables that
are not necessarily identically distributed but again in the limit k →∞ and with certain
extra assumptions on the distribution of the variables. In this work we are not interested
in such asymptotic bounds and our result is a uniform bound for monotone variables.

Another line of related work is the asymptotic expansions in the local limit theorem.
See for instance [5] (Section 51) or [6] (Theorems 4.5.3 and 4.5.4) which for any given r

1We define [k] = {0, . . . , k − 1}
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On Sums of Monotone Random Integer Variables

provide expressions for the point probabilities of a sum of k i.i.d. random integer vari-
ables (Xj)j∈[k] up to an additive error of o(k−r). Again, these results holds asymptotically
as k →∞ and the distributions of the (Xj)j∈[k] cannot depend on k. The case of different
distributions is considered in [4] which provide expansions of the point probabilities
using regular and trigonometric polynomials up to an additive error of o(σ−r) (without
any assumptions of monotonicity).

2 Point Probabilities Near the Mean

The goal of this section is to prove Theorem 1.1, but before diving into the proof,
we provide some examples of random variables for which the condition of the lemma
is satisfied. Let p ∈ [0, 1] and λ > 0. Let Y be a Bernoulli variable with Pr[Y = 1] =

1− Pr[Y = 0] = p, let Z be geometric with Pr[Z = k] = pk(1− p) for k ∈ N0, and let W
be Poisson with Pr[W = k] = λke−λ/k! for k ∈ N0. Let fY , fZ , fW be the characteristic
functions for Y , Z, and W . Then for λ ∈ R,

fY (λ) = 1− p+ peiλ, fZ(λ) =
1− p

1− peiλ
, and fW (λ) = eλ(e

iλ−1).

Thus,

|fY (λ)|2 = (1− p+ peiλ)(1− p+ pe−iλ) = 1 + 2p(1− p)(cosλ− 1)

|fZ(λ)|2 =

(
1− p

1− peiλ

)(
1− p

1− pe−iλ

)
=

(1− p)2

1 + p2 − 2p cosλ
, and

|fW (λ)| = eλ(cosλ−1),

which are all decreasing functions on [0, π].
We will need the following simple Lemma on random integer variables.

Lemma 2.1. Let X be an integer random variable X with third moment. Then2

E[|X − E[X]|3] ≥ Var[X]/2.

Proof. Let µ = E[X]. We may clearly assume that 0 ≤ µ < 1 by replacing X with X − a
for an appropriate integer a. Define Z0 = [X ≤ 0] and Z1 = [X ≥ 1] = 1− Z0. Then,

0 = E[X − µ] = E[Z1 · |X − µ|]− E[Z0 · |X − µ|],

and,

E[|X − µ|] = E[Z1 · |X − µ|] + E[Z0 · |X − µ|].

It follows that

Var[X] = E[Z1 · (X − µ)2] + E[Z0 · (X − µ)2]

≥ (1− µ) E[Z1 · |X − µ|] + µE[Z0 · |X − µ|] =
E[|X − µ|]

2
. (2.1)

Now finally,

Var[X]2 ≤ E[|X − µ|] · E[|X − µ|3] ≤ 2 Var[X] E[|X − µ|3],

where the first inequality is by Cauchy-Schwartz and the second is an application of (2.1).
The desired result follows.

2Originally, our bound was E[|X − E[X]|3] ≥ Var[X]/10, which sufficed for our purposes. We thank Ahmad
Beirami [2] for pointing out how we could replace the constant 10 with 2 which is optimal as can be seen by
letting X be a Bernoulli variable with parameter 1/2.
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On Sums of Monotone Random Integer Variables

Proof of Theorem 1.1. We start by noting that we may assume that σ2 > C for a suffi-
ciently large constant C. Indeed, by Lemma 2.1,

c

(∑
j∈[k] E[|Xj − µj |3]

σ3

)2

≥ c

4σ2
,

so (1.1) is immediate when σ2 ≤ C (by choosing c sufficiently large).
Now the proof proceeds, similarly to proofs of the Berry-Esseen theorem and uses

simple properties of the Fourier transformation ofX. Let fj be the characteristic function
of Xj − µj for j ∈ [k] and let F be the characteristic function of X − µ. Then

F (λ) =
∏
j∈[k]

fj(λ) =
∑
n∈Z

Pr [X = n] ei(n−µ)λ .

For non-zero integers s, it holds that 1
2π

∫ π
−π e

isλdλ = 0 whereas 1
2π

∫ π
−π e

isλdλ = 1 if s = 0.
It follows that for any integer n ∈ Z,

Pr [X = n] =
1

2π

∫ π

−π
F (λ)e−i(n−µ)λdλ .

In particular, if µ+ tσ is an integer, then

Pr [X = µ+ tσ] =
1

2π

∫ π

−π
F (λ)e−itσλdλ .

We define τ =
∑
j∈[k] E[|Xj−µj |3]

σ3 noting that we may assume that τ ≤ c0 for a suffi-
ciently small constant c0 as otherwise the result is trivial. Split the interval [−π, π] into

three parts, I1 = [−ε, ε], I2 = [ε, π], and I3 = [−π,−ε]. We will prove that if ε =

√
8 log 1/τ

σ ,
then ∣∣F (λ)e−itσλ

∣∣ = |F (λ)| ≤ τ2 for all λ ∈ I2 ∪ I3 and, (2.2)∫ ε

−ε
F (λ)e−itσλdλ =

1√
2πσ

e−t
2/2 +O(τ2). (2.3)

We note that we may assume that ε ≤ π. Indeed, by Lemma 2.1, log 1/τ
σ2 ≤ log(8σ)

σ , and σ is
assumed to be sufficiently large. The desired result thus follows immediately from (2.2)
and (2.3).

We start by proving (2.2). It is a general fact that the characteristic function fY of a
random variable Y is Hermitian, i.e., fY (−t) = fY (t). In particular, |F (λ)| = |F (−λ)|, so
it is enough to prove that |F (λ)| ≤ τ2 for λ ∈ I2. As |F | is decreasing on [0, π], it in fact
suffices to prove that |F (ε)| ≤ τ2. Now another standard fact about the characteristic
function fY of a random variable Y is that for any n,∣∣∣∣∣∣fY (λ)−

n∑
j=0

(iλ)j

j!
E[Y j ]

∣∣∣∣∣∣ ≤ |λ|
n+1 E[|Y |n+1]

(n+ 1)!
. (2.4)

By Jensen’s inequality, σ2
j ≤ (E[|Xj − µj |3])2/3, so it follows that

ε2σ2
j ≤

ε3 ∑
j∈[k]

E
[
|Xj − µj |3

]2/3

= (ε3σ3τ)2/3 ≤ 8 log(1/τ)τ2/3 ≤ 1, (2.5)
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On Sums of Monotone Random Integer Variables

where the last inequality used that τ ≤ c0 for a sufficiently small constant c0. We may
thus apply (2.4) with n = 2 to conclude that

|fj(ε)| ≤ 1− ε2

2
σ2
j + E

[
|Xj − µj |3

] ε3
6
≤ e−

ε2

2 σ
2
j+E[|Xj−µj |3] ε

3

6 .

Thus, for λ ∈ I2,∣∣F (λ)e−itσλ
∣∣ = |F (λ)| ≤ |F (ε)| ≤ e−

ε2

2 σ
2+(

∑
j∈[k] E[|Xj−µj |3]) ε

3

6 = e−ε
2σ2(1/2−σετ/6).

As σετ = τ
√

8 log 1/τ ≤ 3/2, it therefore follows that for λ ∈ I2,

|F (λ)| ≤ e− ε
2σ2

4 = τ2 , (2.6)

which proves (2.2).
Turning to (2.3), we again use the Taylor expansion formula to get

fj(λ) = 1− λ2

2
σ2
j + E

[
|Xj − µj |3

]
λ3gj(λ),

for some (complex-valued) function gj(λ) with |gj(λ)| ≤ 1/6 for all λ. As in (2.5), for
|λ| ≤ ε,

E
[
|Xj − µj |3

]
|λ|3 ≤ 1, (2.7)

and

λ4σ4
j ≤ (|λ|3 E[|Xj − µj |3])4/3 ≤ |λ|3 E[|Xj − µj |3] ≤ 1. (2.8)

It follows that |fj(λ) − 1| ≤ 5/6. Now for z ∈ C with |z| ≤ 5/6 it holds that 1 + z =

exp(z+O(z2)). Also, if a, b ∈ C satisfy that |a|2 ≤ |b| ≤ 1, then |a+b|2 ≤ 2(|a|2+ |b|2) ≤ 4|b|.
Combining these observations with (2.7) and (2.8) we find that

fj(λ) = e−
λ2

2 σ
2
j+E[|Xj−µj |3]O(λ3).

It follows that

F (λ)e−itσλ = e−
λ2

2 σ
2+(

∑
j∈[k] E[|Xj−µj |3])O(λ3)e−itσλ

We then get that

F (λ)e−itσλ = e−
λ2

2 σ
2+(

∑
j∈[k] E[|Xj−µj |3])O(λ3)e−itσλ

= e−
λ2

2 σ
2

1 +

∑
j∈[k]

E
[
|Xj − µj |3

]O(λ3)

 e−itσλ
(2.9)

for |λ| ≤ ε. Now we get that

1

2π

∫ ε

−ε

∣∣∣∣∣∣e−λ22 σ2

∑
j∈[k]

E
[
|Xj − µj |3

]O(λ3)e−itσλ

∣∣∣∣∣∣ dλ
=

1

π

∑
j∈[k]

E
[
|Xj − µj |3

]∫ ε

0

e−
λ2

2 σ
2

O(λ3)dλ

=
1

π

∑j∈[k] E
[
|Xj − µj |3

]
σ4

∫ √8 log 1/τ

0

e−
s2

2 O(s3)ds

= O

∑j∈[k] E
[
|Xj − µj |3

]
σ4


= O(τ2)

(2.10)
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On Sums of Monotone Random Integer Variables

Here we used the substitution s = λσ, and the last step uses Lemma 2.1. Again using
the same substitution we get that

1

2π

∫ ε

−ε
e−

λ2

2 σ
2

e−itσλdλ =
1

2πσ

∫ √8 log 1/τ

−
√

8 log 1/τ

e−
s2

2 e−itsds

Note that for any u > 0,∫ ∞
u

e−s
2/2 ds ≤ 1

u

∫ ∞
u

s · e−s
2/2 ds =

1

u
e−u

2/2,

so we can bound

1

2πσ

∫
|s|≥
√

8 log 1/τ

∣∣∣e− s22 e−its∣∣∣ ds ≤ τ4

πσ
√

8 log 1/τ
= O(τ2). (2.11)

Calculating the Fourier transform of function of e−
s2

2 we get that

1

2πσ

∫ ∞
−∞

e−
s2

2 e−itsds =
1√
2πσ

e−t
2/2 (2.12)

Combining (2.9), (2.10), (2.11), and (2.12) proves (2.3). This finishes the proof.

3 Point Probabilities in the Tail

As is, Theorem 1.1 is only useful when |tσ| is not too large. Indeed, for large |t|, the
term 1√

2πσ
e−t

2/2 will typically be much smaller than the error term on the right hand
side of (1.1). We now show that if our variables satisfy the stronger property of being
strongly monotone, we may also obtain precise estimates for the point probabilities in
the tail by combining with the trick of exponential tilting.

Recall that we defined a real random variable X to be strongly monotone if IX 6= {0}
and Xθ is monotone for each θ ∈ IX . Here, IX = {θ ∈ R : E[eθX ] < ∞} consisted of
those θ for which the moment generating function of X is defined, and Xθ was the

exponentially tilted random variable defined by Pr[Xθ = t] = Pr[X=t]eθt

E[eθX ]
for t ∈ Z.

Many commonly encountered random variables have the property of being strongly
monotone:

Lemma 3.1. Let X be Bernoulli, Y be geometric and Z be Poisson. Then X,Y and Z

are each strongly monotone.

Proof. We already saw that the classes of Bernoulli, geometric, and Poisson variables
consists of monotone variables. The result follows by calculating the point probabilities
of the tilted variables (when they exists) and observing that each class is closed under
exponential tilts.

Now suppose X =
∑
j∈[k]Xj is a sum of independent random integer variables and

moreover that X is not almost surely equal to a constant. We are interested in estimates
for the probability Pr[X = t] for some t ∈ Z. Let Ij = {θ ∈ R : E[eθXj ] < ∞} and
I = {θ ∈ R : E[eθX ] < ∞} = ∩j∈[k]Ij . We note each Ij and I are intervals containing 0.
We define3 A = ess inf X and B = ess supX. Let further ψX : I → R be the cumulant
generating function defined by ψX : θ 7→ log(E[eθX ]). It is well known that ψX is
strictly convex and infinitely often differentiable for θ lying in the interior of I with

3Recall that the essential infimum and supremum of a random variable X are defined by ess inf X = sup{t :
Pr[X < t] = 0} and ess supX = inf{t : Pr[X > t] = 0} which are values in R ∪ {−∞,∞}.
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On Sums of Monotone Random Integer Variables

ψ′X(θ) = E[XeθX ]
E[eθX ]

. For t ∈ R, we define g(t) = supθ∈I(θt − ψX(θ)). Now it is a standard
fact about the cumulant generating function that if I contains a non-empty open interval
(i.e., consists of more than a single point), then infθ∈I ψ

′
X(θ) = A and supθ∈I ψ

′
X(θ) = B.

If in particular A < t < B, there exists a θ0 in the interior of I with ψ′X(θ0) = t. Moreover,
this θ0 is unique since ψX is strictly convex.

Now let (Yj)j∈[k] be independent random variables obtained by tilting each Xj by θ0
as above. Let further Y =

∑
j∈[k] Yj . For s ∈ Z, we define As = {z ∈ Zk : z1+· · ·+zk = s}.

Then for any t ∈ Z,

Pr[X = t] =
∑
z∈At

∏
j∈[k]

Pr[Xj = zj ] =
E[eθ0X ]

eθ0t

∑
z∈At

∏
j∈[k]

Pr[Yj = zj ] =
E[eθ0X ]

eθ0t
Pr[Y = t],

so Y is simply the variable obtained by tilting X by θ0. Moreover, by the choice of θ0,

E[Y ] =
∑
z∈Z

Pr[X = z]eθ0zz

E[eθ0X ]
=

E[Xeθ0X ]

E[eθ0X ]
= ψ′X(θ0) = t.

Now the fact that E[Y ] = t, suggests using Theorem 1.1 to estimate the probability that
Pr[Y = t]. Doing so, we immediately obtain the following result.

Theorem 3.2. Assume that X is strongly monotone and not almost surely equal to a
constant. Moreover assume that I 6= {0}. Let t be an integer with with A < t < B and θ
be the unique real in the interior of I having ψ′X(θ) = t. Let Y be the exponential tilt of
X by θ. Then E[Y ] = t and

Pr[X = t] =
E[eθX ]

eθt

(
1√

2πσY
±O

(
η2Y
σ6
Y

))
, (3.1)

where σ2
Y = Var[Y ] and ηY =

∑
j∈[k] E[|Yj − E[Yj ]|3].

Remark 3.3. We note that if either A = ess inf X 6= −∞ or B = ess supX 6= ∞, then
[0,∞) ⊂ I or (−∞, 0] ⊂ I, respectively, and we can therefore always apply the exponential
tilt in the lemma. We moreover note that for t < A and t > B, it trivially holds that
Pr[X = t] = 0 and it is an easy exercise to show that

Pr[X = A] =
∏
j∈[k]

Pr[Xj = ess inf Xj ], and Pr[X = B] =
∏
j∈[k]

Pr[Xj = ess supXj ],

whenever A 6= −∞ and B 6=∞. Even though the lemma does not provide estimates for
these probabilities, they are therefore usually easy to determine for concrete families of
random variables.

To apply Theorem 3.2, for X =
∑
j∈[k]Xj a concrete sum of strongly monotone

random variables, say geometric variables, we would calculate ψX and find the unique θ
with ψ′X(θ) = t. We would then determine the tilted random variables (Yj)j∈[k]. Typically
Yj comes from the same family of random variables as Xj , e.g., an exponential tilt of
respectively a Bernoulli, geometric, and Poisson variable is again Bernoulli, geometric
and Poisson. We would then determine the quantities ηY and σ2

Y and plug into (3.1).

Example 3.4. Let X =
∑
j∈[k]Xj , where (Xj)j∈[k] are independent Bernoulli variables

with Pr[Xj = 1] = pj . We want to estimate Pr[X = t] for some 0 < t < k − 1. For this,
we define θ, (Yj)j∈[k] and Y as in Theorem 3.2. Then each Yj is again Bernoulli. If
Pr[Yj = 1] = qj , then E[|Yj−E[Yj ]|3] = qj(1−qj)(q2j +(1−qj)2) ≤ Var[Yj ], so that ηY ≤ σ2

Y .
Thus, the bound of (3.1) becomes

Pr[X = t] =
1√

2πσY

E[eθX ]

eθt

(
1±O

(
1

σY

))
,
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On Sums of Monotone Random Integer Variables

The bound on the error term can be shown to be asymptotically tight using known
results. We in particular note that if σY = ω(1), the bound on Pr[X = t] is within a factor
of 1 + o(1) of the true value. Consider as a very simple example4, the case where the
Bernoulli variables (Xj)j∈[k] are identically distributed. Then the same holds for the
(Yj)j∈[k], and since E[Y ] = t, we must have that σ2

Y = t(1− t/k). In particular, the bound
is within a factor of 1 + o(1) of the true value as long as ω(1) < t < k − ω(1).

Example 3.5. Let X =
∑
j∈[k]Xj be a sum of independent geometric variables such

that for some probabilities (pj)j∈[k] and each s ∈ N0, Pr[Xj = s] = psj(1 − pj). Let
µj = E[Xj ] =

pj
1−pj for j ∈ [k] and µ = E[X]. Assume that µj = O(1) for j ∈ [k]. We want

to estimate Pr[X = t] for some integer t > 0 using Theorem 3.2, and we define θ, (Yj)j∈[k]
and Y accordingly. For simplicity, we will assume that t = O(E[X]). By Lemma 3.1,
each Yj is again geometric, say with Pr[Yj = s] = qsj (1− qj) for s ∈ N0. Moreover, since
E[Xj ] = O(1) for j ∈ [k] and t = O(E[X]), it follows that also E[Yj ] = O(1) for j ∈ [k].
Now simple calculations yields that Var[Yj ] = Θ(E[Yj ]) and E[|Yj − E[Yj ]|3] = Θ(E[Yj ]).
Plugging into (3.1), we thus obtain that

Pr[X = t] =
1√

2πσY

E[eθX ]

eθt

(
1±O

(
1
√
µY

))
,

where µY = E[Y ] = t. In particular, the bound is within a factor of 1 + o(1) of the true
value as long as t = ω(1).
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