The number of sumsets in a finite field

Noga Alon * Andrew Granville T Adrian Ubis *

Abstract

We prove that there are 27/2+°() distinct sumsets A 4+ B in F,, where |A|, |B| — oo
as p — 00.

1 Introduction
For any subsets A and B of a group G we define the sumset
A+B:={a+b:ac Abe B}

There are 2" subsets of an n element additive group G and every one of them is a sumset,
since A = A+{0} for every A C G. However if we restrict our summands to be slightly larger,
then something surprising happens when G = IF,: there are far fewer sumsets:

Theorem 1. Let ¢(z) be any function for which ¥(x) — oo and P(z) < z/4 as v — oo.
There are exactly 2P/>+°®) distinct sumsets in F, with summands of size > 1(p); that is,
exactly 2P/2°®) distinct sets of the form A+ B with |A|,|B| > ¢ (p) where A, B C F,.

Green and Ruzsa [GrRu] proved that there are only 27/3+() distinct sumsets A+ A in F,,.
The count in Theorem 1 cannot be decreased by restricting the size of one of the sets:

Theorem 2. For any given prime p and integer k satisfying k = o(p), there exists A C F,
with |A| = k for which there are at least 2P/**°P) distinct sumsets of the form A + B with
B CF,.

These results do not give a good idea of the number of distinct sumsets of the form A+ B,
as B varies through the subsets of IF, when A has a given small size.
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Theorem 3. For each fived integer k > 1 there exists a constant puy, € [v/2,2] such that

. _  pto)
Acﬁl,%:k #{A+B: BCF,} =pu, """, (1)

We have py = 2, po = 1.754877666 . .., the real root of x* — 22* + x — 1 and, for each fized
integer k > 3, we have

| log k
\/§+§§uk§\/§+0< Oi ) 2)

Moreover i, < (5°/223%)1/5 = 1.960131704 ... for all k > 2, so that if |A| > 2 then
#{A+B: BCTF,} <1.9602r°®

Remark: With a more involved method the constant 1.9602 in the last bound can be
improved to 1.9184 (see [Ubi]).
We immediately deduce the following complement to Theorem 1:

Corollary 1. Fix integer k > 1. Let pf = maxysy pie. There are exactly (u})P*o®) distinct
sumsets in F), with summands of size > k.

The existence of yu; is deduced from the following result involving sumsets over the integers.
Define S(A, G) to be the number of distinct sumsets A+ B with B C G; above we have looked
at S(A,F,), but now we look at S(A4,{1,2,...,N}):

Proposition 1. For any finite set of non-negative integers A with largest element L, there

exists a constant pa such that S(A,{1,2,...,N}) = ,ungO(L). Moreover
Mg = Sup fa .
ACZ>0
|A|=Fk

By Theorem 3 (or by Theorems 1 and 2 taken together) we know that 1, — /2 as k — oc.
In fact we believe that it does so monotonically:

Conjecture 1. Wehaveu1:2>,u2>u3>...>uk>...>\/5.

If this is true then p; = ug, evidently.
One can ask even more precise questions, for example for the number of distinct sumsets
A+ B where the sizes of A and B are given: Define

Sie(G) = #{A+B: A BCG,|A =k |B| = (}.

for any integers k,¢ > 1. By Theorem 1 we know that if k,¢ — oo as p — oo then S (F,) <
2p/2+0(P) . We wish to determine for which values of k and ¢ we have that Sy, ¢(F,) > 2¢/2+o(®),
The Cauchy-Davenport Theorem [Cau| says that for any A, B C F, we have |A + B| >
min(p, |A| + |B| — 1), hence S ¢(F,) = O(1) whenever k + ¢ > p — O(1). Let us see what we
can say otherwise



Theorem 4. Let ¢ = %5 and let ¥ (x) be any function for which ¥ (x) — 0o as x — 0.

(i) If k+ € < \/p then Se(F,) > (,2/%,) /y/min{k, }
If k+ € < p/2¢ then Sy, (F,) > p°M (¥7F)
If p/3 + O(1) > k + £ > p/2¢ then Sy o(F,) > ¢P~+¢/p .
Ifp>k+0>¢p/3+O(1) then Sy o(F,) > po?**/(p+1—k —0).

In summary, if k + ¢ < p then Sy ,(F,) > p°MV max;, ([(]f;?z/hﬂ)
(i1) For any integers with k,¢ > 1(p) and p—k —£ > p, we have Sy 4(F,) < (kiﬁ) oM ith
x such that 2P~% ~ (kf—é)'
In particular, if k, € > 1(p) then
Spe(F,) = op/2+0(p) (3)

if and only if k+ ¢ ~ p/4.

Note that Theorem 4(ii) cannot hold for k + ¢ very close to p by the last estimate in
Theorem 4(i)

The structure of sumsets has a rich history, from Cauchy [Cau] onwards, and has been
studied from several different perspectives. Most important are lower bounds on the size of the
sumset, the lattice structure of A and B when the size of the sumset A+ B is not much larger
than that of A and B (i.e. the Freiman-Ruzsa theorem), and the discovery of long arithmetic
progressions in the sumset A + B when it is fairly small.

From our problem, many questions naturally arise:

e Give a precise asymptotic for the number of sumsets in [F,, as well as for the number of
sumsets A+ A in I,

e Which sets S have at least 2% representations as A + B for a given ¢ > 0, and in
particular for ¢ =1/2 7

e Can one quickly identify a sumset S in F,, where S = A+ B with |A|,|B| > k 7
Perhaps (though this seems unlikely) any sumset contains enough structure that is
quickly identifiable? Perhaps most non-sumsets are easily identifiable in that they lack
certain structure? We do know [Al] that any complement of a set of size < ¢ \/% is a
sumset A 4+ A for some A C F,,, for some absolute constant ¢ > 0.

e Given a set S for which there exist sets A, B with |A| =k, |B| = ¢ such that A+ B =S,
can one find such a pair A, B quickly?

e Can one quickly identify those sumsets in I, which have many representations as A+ B?



o [Dstimate the size of the smallest possible collection Cj, of sets in ), such that it S = A+ B
where |A],|B| > k then there exist A, B € Cy, for which S = A+ B

e Perhaps even something stronger than Conjecture 1 is true: for any A C Z of size
1 <k < o0, does there exist a € A such that i\ fqy > pra?

2 Lower bounds

For a given integer k let
A={0[p-F)/2+LI(p-k)/2+2..,[(p—k)/2]+k—1}.
For any subset B of {0,1,2,...,[(p — k)/2]}, we see that A+ B C [0,p — 1] and
B=(A+B)n{0,1,...2,[(p — k)/2]},

and thus the sets A+ B are all distinct. Hence there are at least 2[P=k)/2+1 > 9o(=k)/2 {istinct
sets A+ B as B varies over the subsets of F,. This implies Theorem 2, hence the lower bound
in Theorem 1 when 1 (p) = o(p), and it also implies the lower bound g > +/2 in Theorem 3.

Let A={0}U[z+1,....,24+k—u—-1U(@x+k—u—1+4))
and B=BU[z+1,..., 24+l —v—-1|U{z+l—v—1+y}

where A; C [1,y] with |A;| = u, and By C [1,z] with |B;| = v, where u < k,y, and v < {, .
Therefore By = (A+B)N[1,z] and N+A; = (A+B)N(N+[1,y|) for N = 2z+y+k+{—u—v—2.
Also A+ B C [0,p — 1] provided 2z + 2y + k + { — u — v — 2 < p. Therefore S, > (Z) (jf)

If k+¢ < p/2¢ then we select u = k—1, v = (—1,y = [p(k—1)/2(k+(-2)], x = (p—1)/2—y.
This gives Sy, > po(l)([{c’ﬁ) by Stirling’s formula; Sy ¢ > (k[fﬁg)/\/min{k,é} if k+0</p.

If k+¢ > p/2¢ then we select u = [k(p+1—k —£)/V5(k+0)], v =[l(p+1—Fk—
0 /V5(k+0)],y = [¢u], x = [v] to obtain Sy, > P+ ¢/ (p+1—k —£) by Stirling’s formula.
If K+ ¢ > ¢p/3+ O(1) then we change the above construction slightly: If instead we take
By C [0,z —1] then there is a unique block of > k+ /¢ —u—v — 3 consecutive integers in A+ B
starting with 2z 4+ 2. Now we can also consider the sums (r + A) + B, for any r (mod p);
notice that we can identify the value of r from A + B, since the longest block of consecutive
integers in A + B starts with 2z + 2 +r. Hence Sy, > po?*~¢/(p+1 -k — ().

These last three paragraphs together imply the first part of Theorem 4.

Now, given k < p/4, select ¢ = [p/4] — k so that, by the above, there are > po(l)([[ﬁﬁ}) =
2p/2p0() distinct sumsets A + B as A and B vary over the subsets of F, of size k and ¢
respectively. This implies the lower bound in Theorem 1.



3 First upper bounds

In this section we shall use a combinatorial argument to bound the number of sumsets A + B
whenever A is small, in which case we can consider A fixed. Throughout we let ¢, 4(n) (and
ro—a(n)) denote the number of representations of n as ¢ + a (respectively, ¢ — a) with a € A
and c € C.

Proposition 2. Let G be an abelian group of order n and let A C G be a subset of size k > 2.
Then

n . .

#{A+B: BCG}<n 221}214; 2 ([j/ﬂ) min {27, QUk/(k=t+1]Y (4)
Proof. Given a set B we order the elements of B by greed, selecting any b; € B, and then
by € B so as to maximize (A + {b2}) \ (A + {b1}), then b3 € B so as to maximize (A +
{bs}) \ (A + {b1,b2}), etc. Let By be the set of b; such that A + {by,bs,...,b;} contains at
least £ more elements than A+ {b1,bs,...,b;_1}, and suppose that |B,+ A| = j. By definition
j = [Be+A| > €|By|, so that |B¢| < [j/{] and so there are no more than -, (") choices for
By. Note that j/¢ <n/2, for ¢ > 2, and so Zig[j/e] (7:) < n([j%). Next we have to determine
the number of possibilities for A 4+ B given By (and hence By + A):

Our first argument: Since By+ A C B+ A C G, the number of such sets A+ B is at most
the total number of sets H for which B, + A C H C G, which equals 2",

Our second argument: Let C' = B, + A, and let D be the set of d € G for which ro_4(d) >
k+1—0. 1fbe B\ Bythen rc_a(b) = |(b+A)N(By+A)| > k+1—¢,sothat b€ D. Hence
(B\ By) C D, and so there are < 2Pl possible sets B\ By, and hence B, and hence A + B.
Now

[DI(k+1-6) <> ro-a(d) = |A|C] = kj,

deG
so that |D| < kj/(k+ 1 —¢), and the result follows. O

Simplifying the upper bound: The upper bound in Proposition 2 is evidently

n
<n? mi
=" 22igk0Zen <[j/€}

Now (U%])QU"/’/(’“*E“)} is a non-decreasing function of j, as £ > 2, and so the above is

) min{2—d, QUk/ 1]

<n? min max <[ " ]) on=i,

2<U<k Gty i \ [/

(2k—£+1)
The (j + £)th term equals the jth term times (n — [5/€])/2¢([j/¢] +1). This is < 1 if and only
if n < (24 1)[j/4] + 2°. Now

(2@+1),> 26+1) (k—(+1)

2+ D)/ + 2 > e e




((Qkk__égfl)) n+0(1) at a cost

of a factor of at most n. Therefore our bound becomes < no(l)u,? where vy, 1= ming<j<i Vi
and

and this is > n unless £ = k < 4. Hence one minimizes by taking j =

2k(0(2k — £ 4 1))2k—t+1 e
1% = — _ 9
TN D@k — 0 1) — (k£ 1))
using Stirling’s formula. A brief Maple calculation yields that v, > 2 for all £ < 7 and
v = 1.982301294, vy = 1.961945316, 119 = 1.942349376, ..., with v, < 1.91 for k& > 12,

and v, decreasing rapidly and monotonically (e.g. v, < 1.9 for £ > 13, 1, < 1.8 for k > 23,
v, < 1.7 for k > 45, and vy, < 1.6 for k > 117). In general taking £ so that ¢? ~ klogk/log 2,

one gets that
1 log?2 -logk
o= V3 exp ((2 o) «/%) |

which implies the upper bound in (2) of Theorem 3, as well as the upper bound implicit in
Theorem 1 when min{|A|, |B|} = o(p).

4 Upper bounds on S;([F,) using combinatorics

The value of x in Theorem 4(ii) must always lie in the range [p/2, p] since (kiz) < 2%, Therefore
if k + ¢ = o(p) then the number of sumsets A + B is smaller than the number of possibilities

for A and B so that

1+0(1)
P\ (pP\ _ D O(k+0) _ Z O(k+¢) _ z
< - - — .
Srallp) < (k) (e) (k - e) ’ (k: - é) ’ (k + e)

The Cauchy-Davenport Theorem states that |A + B| > min{|A| + |B| — 1, p}, so that

Sea(Fy) < i @ < (k v 1)

j=k+0—1

for k-+¢ > (1/2+¢€)p. For the last part of Theorem 4, note that this is < 2%/17 for k+¢ > 9p/10.

Now we consider the case {,p — k — ¢ > p with k < o(p) and k — oo. For each fixed
A of cardinality k£ and B of cardinality ¢, we proceed as in Proposition 2 (taking ¢ there as
m here, and choosing m = o(k) with m — o0): Hence there exists a subset B,, C B with
|A+ B,,| = j and |B,,| < j/m < p/m, and a subset D, determined by A and B,,, with
ID| < 75— < j(1+O(m/k)) and B\ B,, C D. Now A+ B = (A+ B,,) U(A+ (B\ By)) so
the number of possibilities for (A+ B)\ (A+ B,,,) is bounded above by the number of subsets
of F, \ (A + B,,), which is 2°77, and also by the number of subsets of D with cardinality in

the range [¢ — [j/m)], ¢], which is

y4 .
| D ( J
< < 200
< > (T)=(, 1))

i=t—j/m]




since |D| < j 4+ o(p) and @ = £ + k + o(p). Hence the number of possible sumsets A + B
is bounded by (,I;) < 2°() the number of possibilities for A, times Zig[p Jm] (f) < 200) the

number of possibilities for B,,, times 2°®) min{ (Zik),Qp_j }, the number of possibilities for
(A+ B) \ (A+ B,,). This gives us the upper bound

S,e(Fp) < 2°%) min{ (g i k),zm } = ot+e@)p—2) (5)

where z is chosen as in Theorem 4(ii), noting that p —x > p as £ + k > p.

5 Sumsets from big sets

We modify, simplify and generalize Green and Ruzsa’s argument [GrRu], which they used to
bound the number of sumsets A + A in F,: For a given set S, define dS := {ds : s € S}.
Let G = Z/mZ. For any A C G define A(z) = Y acaclaxr/m). For a given positive integer
L < m let H be the set of integers in the interval [—(L — 1), L — 1]. For a given integer d with
1 < dL < m we partition the integers in [1,m] as best as we can into arithmetic progressions
with difference d and length L. That is for 1 < ¢ < d we have the progressions

Ly :={i+jd: kL <j <min{(k+1)L—1,[(m—1)/d]}}

for 0 < k < [(m —1i)/Ld]. We then let Ay 4 be the union of the I, that contain an element
of A (so that A C Ay 4). Note that there are < [m/L] + d such intervals I, .
Our goal is to prove the following analogy to Proposition 3 in [GrRu]:

Proposition 3. If A, B C Z/mZ, with a = |A|/m and § = |B|/m and
m > (AL) 16t e ity [ > 3, (6)

then there exists an integer d, with 1 < d < m/4L, such that A+ B contains all those values
of n for which rAL’dJFBL’d(n) > eam, with no more than esm exceptions.

In this paragraph we follow the proof of Proposition 3 in [GrRu] (with the obvious modi-
fications):

Lemma 1. If A C Z/mZ then there exists 1 < d < m/4L such that

2

A 2
. H(dx) log4L ,
A |1 = < BT 14 thL>3
A@)] <2L—1> —1og(m/4L)| [, with L 2 3,

for all x € Z/mZ.



Proof. (Sketch) Fix ¢ so that the right side above equals (0m)?, and hence 6 > 2/m. Let R
be the set of r € Z/mZ such that |A(r)| > dm; the result follows immediately for any = ¢ R.
By Parseval’s inequality we have

|[RI(6m)* < D AP < Y AP = mlA],
reR r
so that |R| < 62| A|/m. Moreover, by the arithmetic-geometric mean inequality, we have
1 . 1 NG
AP < (310 < (X A0r) - (T
1 Py P 7

Consider the vectors v; € [0, 1)/l with rth coordinate 7i/m (mod 1) for each r € R. If we
partition the unit interval for the rth coordinate into intervals of roughly equal length, all
< (6m)Y2/(4L — 1)|A(r)[*/? (which is < 1/(4L — 1)), then, by the pigeonhole principle, two
such vectors, with 0 < i < j < m/4L, lie in the same intervals since

1/2

1/2 IR| |R|/4
4L m|A|
< <
=[]+ = <<5m>1/2) ( R )

reR

A\ e, m
et < m:—
4L(52|R|> < (1L) u

using the last displayed equation. Therefore for d = 7 — ¢ we have

1/2
‘ 1 om
< _
AL =1\ |A(r)|

for all » € R, where ||t|| is the shortest distance from ¢ to an integer. Now Re(1 — e(t)) <
2r|[¢]|* and ||jt]| < |j][|Z]], so that

A(r)
om

A(r)

m

IT(1+ML-1)

re€ER

rd
m

~

L= 2HL(C£$1 - 2L1—1 | Li (1_‘8(%))

j=—(L-1)

L—-1

272
S2L—1 Z

j==(L=1)

jdz ||? _ L 2

3

dx
m

m

If x € R then, by combining the last two displayed equations, this is

<27r2L2 1 om < om
T3 (L1 JA(z)| T 2/A(x)|

B < 9 as |H(dx)| < 2L — 1. O

The result follows since 1 +

8



Proof of Proposition 3. By Parseval’s formula, and then Lemma 1 we have

2

2
TAvdH+B1dH H(dx)
) = = EE O L LL BN COL
log 4L log 4L ese3m’
A B(x ——— |A||Blm <
< Tog(m/iL) | |Z’ 1og(m/4L)’ 1Blm < <573

in this range for m. (Here raiqgipian(n) denotes the number of representations of n as
a+di+b+dj withae A, be Bandi,j € H.) Now if g € AL 4 then there exists j € H such
that g +dj € A, by definition, and hence rayq4r(g) > 1. Therefore r41an(g9) > ra, ,(g) for all
g € GG, so that

TAvdi+B+di () > Tap 448y 4(1)
for all n. Therefore if N is the set of n & A + B such that ra, ,4p, ,(n) > €m, then
TAra+B+an(n) > €am and the above yields

I (€am)? <e§egm3

(2L —1)* =~ 16L*

so that |[N| < egm. O

Next we prove a combinatorial lemma based on Proposition 5 of [GrRul:

Proposition 4. For any subsets C, D of F,, and any m < r < min(|C|, |D|), there are at
least min(|C| + |D|,p) — r — (m — 1)p/r values of n (mod p) such that rcyp(n) > m.

Proof. Pollard’s generalization of the Cauchy-Davenport Theorem [Pol] states that

> “min{r,rcyp(n)} > rmin(p, |C| + |D| = r) > rlmin(p, |C| +|D|) — 7).

The left hand side here is < (m — 1)(p — N,,) + rN,, where N, is the number of n (mod p)
such that rcyp(n) > m. The result follows since p — N,,, < p. O

Proof of upper bounds on Sy ¢(F,) using Fourier analysis:

Suppose that L is given and d < p/4L, and that M and N are unions of some of the
arithmetic progressions /; ;. Note that there are < 2v/L+d guch sets M (given d), and hence a
total of e?®/L) possibilities for d, M and N.

We now bound the number of distinct sumsets A + B for which A4 =M and Brq =N
in two different ways:

First, since A C M and B C N there can be no more than ('A]:”) (“Z') < ('MAILM) < 2IM[+|N]
such pairs.



Second, select 2¢;p < min(|M|, |N|) and 2e3p < max(|M]|, |N|). Let @ be the values of n
(mod p) such that ry; n(n) > €¥p. Taking 7 = €;p and m = €2p in Proposition 4, we have
|Q| > R := min(|M|+ |N|,p) — 2e1p. By Proposition 3, A+ B is given by @ less at most ezp
elements, union some subset of F, \ ). Hence the number of distinct sumsets A + B is

[e3p]
S 2P—|Q| Z (|Q|) S p2p—\Q| ([|Q|]> S p2max(p—|M|—N|,0)+261p( p )
? €3p

i=0 [6329]

as |Q| > R > 2esp.

If M|+ |[N| < p/2 then the number of sumsets is < 2P/2 by the first argument. Let
L = [(logp)*/'°] and €, = €5 = 1/2L. If |A|,|B| > p/L then |M| > |A| > 2¢;p and |N| >
|B| > 2¢1p, so the second argument is applicable; therefore if |M|+|N| > p/2 then the number
of sumsets is < 2?/2L9®/L) Hence the total number of sumsets A 4+ B with |A|,|B| > p/L
is at most 2P/2LO®/L) which implies the upper bound in Theorem 1 (taken together with the
argument, for min{|A|, |B|} = o(p), given at the end of section 3).

Assume that £ > k > p/(log p)'/* with p — k — £ > p. We select €; = k/2ploglogp, €3 =
¢/2ploglogp and L = [(logp)'/?°], so that the second argument above is applicable. Taking
x = |M|+ |N| we have that

@ /
< ' max(p—z',0) O(esp) _ 9(1+o(1))(p—z)9o(p)
Sie(F,) < ,nax  min { (k N f)’Q } (1/e3) 2 2

as in (5). This completes the proof of Theorem 4(ii), combined with the results of the previous
section.
Finally, (3) follows noting that 2 p/2 unless k + ¢ ~ p/4, in which case z ~ p/2.

6 Sumsets in finite fields and the integers

Let A C T, be of given size k > 2, and let d = [p'~'/*]. Consider the sets iA, the least
residues of ia,a € A, for 0 < ¢ < p— 1. Two, say iA and jA with ¢ Z j (mod p), must
have those least residues between the same two multiples of p'~!/* for each a € A (since there
are < (p/p'~'/*)* = p possibilities), and so the least residues of fa,a € A, with £ = i — j
are all < d in absolute value. Hence the elements of d + (A are all integers in [0, 2d]; and
S(A,F,) = S(d + (A,F,) as may be seen by mapping A+ B — (d + (A) + (¢{B). Hence we
may assume, without loss of generality, that A is a set of integers in [0, L] where L < 2p'~1/%,

The case k = 2 is of particular interest since then S(A,F,) = S({0,1},F,) by taking
¢=1/(b—a), d=—al when A = {a,b}.

We now compare S(A,F,) with S(A4,{1,2,...,p}). When we reduce A + B, where A C
{0,...,L} and B C {0,...,p — 1} are sets of integers, modulo p, the reduction only affects
the residues in {0,...,L — 1} (mod p). Hence

S(A{1,2,...,p})27" < S(A,F,) < S(A,{1,2,...,p}). (7)

10



Now suppose A C {0,...,L} is a set of integers. Suppose that Mr < N < M(r + 1) for
positive integers M, r, N. We see that

S(A{1,2,...,N}) < S(A,{1,2,..., M(r+1)}) < S(A4,{1,2,..., M},

the last inequality coming since the sumsets A + B with B C {1,2,...,M(r + 1)} are the
union of the sumsets A + B; with B; € {Mi+ 1,2,... , M(i+ 1)} for i = 0,1,2,...,r. In
particular for m4(N) := S(A4,{1,2,..., NH)YY we have m4(N) < m(M)**1/7. This implies
that limsupy ma(N) < ma(M) for any fixed M, and then lim supy ma(N) = liminfy m4(N)
so the limit, say g, exists and satisfies

S(A{1,2,...,M}) > pi. (8)

In the other direction we note that if B = U;B; where B; C {(M + L)i+ 1,(M + L)i +
2,...,(M + L)i + M} then distinct {A + B;}o<i<r—1 give rise to distinct A + B. Hence
S(A{1,2,...,.M})" <S(A,{1,2,....,7(M + L)}) and letting » — oo we have

S(A{1,2,..., M}) < p**. 9)
Finally, by the inequalities (7), (8) and (9) we arrive at
S(AFy) = pheO®) = 0@ = e,

This proves Proposition 1, as well as the first part of Theorem 3.

6.1 Precise bounds when £ =2

By the previous section we know that 19 = pio,13. Now S is a sumset of the form {0,1} + B
if and only if, when one writes the sequence of 0’s and 1’s given by s,, = 1 if n € S, otherwise
s, = 0if n € S, there are no isolated 1’s.

Let C,, be the number of sequences of 0’s and 1’s of length n such that there are no
isolated 1’s, so that S({0,1},{1,2,...,N}) = Cny1. We can determine C,; by induction:
If the (n + 1)th element added is a 0 then it can be added to any element of C,,. If the
(n + 1)th element added is a 1 then the nth digit must be a 1, and then we either have
an element of C,_; or the next two digits are 1 and 0 followed by any element of C,_3.
Hence Cpyy = C, + C,,_1 + C,_3 with C; = 1,0y = 2,C3 = 4,Cy = 7. In fact it is easily
checked, by induction, that C, ., = 2C,, — C,,_; + C,,_5 (which is explained by the fact that
rl—a3—2?—1 = (z+1)(2®—2224+2—1), where the higher degree polynomials are characteristic
polynomials for the recurrence sequence), and hence C,, ~ cul for some constant ¢ > 0, with
to as in Theorem 3, implying a strong form of the first part of Theorem 3 for k£ = 2.

By a more precise analysis we could even estimate the number of sets C' = {0, 1} + B with
either C' or B of given size.
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6.2 Precise bounds when £ = 3

It is not hard to generalize the procedure for the case {0,1} to any A C Z finite, namely to
prove that gy is the root of a polynomial with integer coefficients (and degree smaller than
2261 when A C {0,1,...,L}).

In the special case of three elements is enough to deal with A = {0, a, b} for a, b coprime
positive integers. We can show that piyoqp — f« as a + b — oo, where we define

.= lim #{B+{(0,0),(1,0),(0,1)} : B CF, x F,}}/7",
p—00

which one can prove exists, and is < py. Therefore either pz = fi0,44) for some a and b or
p3 = fx. Maple experimentation leads us to guess that pus = o143 = 1.6863..., a root of
an irreducible polynomial of degree 21. All this is detailed in Chapter 3 of the third author’s
PhD. thesis [Ubi].

6.3 Lower bounds on

That u, > /2 follows by choosing A = 1 U 24’ with A’ C Z any finite set. Let A; =
{1,3,...,3* 1}, and write B C {1,2,...,3n} as B = 3By U (3B, — 1) with By, B; C
{1,2,...,n}. Since Ax;; = 1 U3A, we have

(B+ Ag1) \3Z = (3(B1 + Ag) — 1) U (3By + 1),

which shows that S(Ag11,{1,2,...,3n}) > S(A,{1,2,...,n}) 2", and so

W=

1
MA’C+1 22 Mjk

Since 14, = 2, an induction argument implies pp > pa, > 21/2+31_k/2, which gives the lower
bound for py, in (2).

7 A non-trivial bound for fixed k£ > 2

Let A be any set of given size £ > 2 in [F,. For any two distinct elements a,b € A we can
map  — (z —a)/(b—a) so that 0,1 € A, and this will not effect the count of the number of
sumsets containing A.

The number of sumsets C' = A+ B with B C IF,, is obviously bounded above by

#{B: |Bls%}+#{0: lclz%}

2
+#{C: 1B : Ep<\B]<\C\<%and3+{0,1}CC}.
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The first two terms have size < 2p([2 55]), the third requires some work: We observe that

such C' must have at least 2p/5 pairs of consecutive elements; so if ¢ is the smallest integer
> 1 that belongs to C then we suppose that C' = U (c + I}) and C = U™, (c + J;) where
L, Ji, 15, Jo, ... Ly, Jo is a partition of {0,...,p — 1} into non-empty set of integers from
intervals taken in order. Any such set partition will do provided, for iy, = |Ix| and jx = |Jk|,

we have each 1y, jp > 1,
—_— > Z’Lk > m+ -

since |C] =Y 1" ig and > -, (i, — 1) > |B|, and Y, ik + Y ey jx = p- Now there are < p
possible values for ¢, and the number of possible sets of values of i), such that ), i =z is
(;fl 1) and of 7 is (pmm_ ) Therefore the number of possible such C' is

o> oy ()0

m<p/52p/5+m<x<3p/5

2 (2m - 2) p3<[2z55_ : 2]) < pg(mzﬂ)'

(Note that (‘;) (2) < (Z“I;) follows from defining ( ) to be the number of ways of choosing b

elements from a.) Hence the number of sumsets A + B is < p ([2p /5]) = ") where ¢ =

(5°/223%)1/°> = 1.960131704 . . . This implies the bound s, < ¢ for all k > 2 of Theorem 3; and
we deduce the last part of Theorem 3 immediately from this taken together with Theorem 1.
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