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Abstract. In this paper we study sum-free sets of order m in finite Abelian groups. We
prove a general theorem on 3-uniform hypergraphs, which allows us to deduce structural
results in the sparse setting from stability results in the dense setting. As a consequence,
we determine the typical structure and asymptotic number of sum-free sets of order m
in Abelian groups G whose order is divisible by a prime q with q ≡ 2 (mod 3), for every
m > C(q)

√
n log n, thus extending and refining a theorem of Green and Ruzsa. In particular,

we prove that almost all sum-free subsets of size m are contained in a maximum-size sum-free
subset of G. We also give a completely self-contained proof of this statement for Abelian
groups of even order, which uses spectral methods and a new bound on the number of
independent sets of size m in an (n, d, λ)-graph.

1. Introduction

An important trend in Combinatorics in recent years has been the formulation and proof
of various ‘sparse analogues’ of classical extremal results in Graph Theory and Additive
Combinatorics. Due to the recent breakthroughs of Conlon and Gowers [10] and Schacht [34],
many such theorems, e.g., the theorems of Turán [37] and Erdős and Stone [14] in extremal
graph theory, and the theorem of Szemerédi [36] on arithmetic progressions, are now known
to extend to sparse random sets. For structural and enumerative results, such as the theorem
of Kolaitis, Prömel and Rotshchild [25] which states that almost all Kr+1-free graphs are
r-colorable, perhaps the most natural sparse analogue is a corresponding statement about
subsets of a given fixed size m, whenever m is not too small. In this paper, we prove such a
result in the context of sum-free subsets of Abelian groups and provide a general framework
for solving problems of this type. To be precise, we obtain a sparse analogue of a result
of Green and Ruzsa [18], which describes the structure of a typical sum-free subset of an
Abelian group.

Sparse versions of classical extremal and Ramsey-type results were first proved for graphs
by Babai, Simonovits and Spencer [5], and for additive structures by Kohayakawa,  Luczak
and Rödl [24], and in recent years there has been a tremendous interest in such problems (see,
e.g, [15, 30, 31]). Mostly, these results have been in the random setting; for example, Graham,
Rödl and Ruciński [17] showed that if p � 1/

√
n, and B ⊆ Zn is a p-random subset1, then
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1A p-random subset of a set X is a random subset of X, where each element is included with probability
p, independently of all other elements.

1
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with high probability every 2-colouring of B contains a monochromatic solution of x+y = z.
The extremal version of this question was open for fifteen years, until it was recently resolved
by Conlon and Gowers [10] and Schacht [34].

For problems of the type we are considering, results are known only in a few special cases.
Most notably, Osthus, Prömel and Taraz [27], confirming (and strengthening) a conjecture

of Prömel and Steger [29], proved that if m >
(√

3
4

+ ε
)
n3/2
√

log n then almost all triangle-

free graphs with m edges are bipartite; moreover, the constant
√

3/4 is best possible. This
result can be seen as a sparse version of the classical theorem of Erdős, Kleitman and
Rothschild [12], which states that almost all triangle-free graphs are bipartite. A similarly
sharp result was proved by Friedgut, Rödl, Ruciński and Tetali [15] for the existence of
monochromatic triangles in two-colourings of Gn,p. It is an interesting open problem to
prove such a sharp threshold in the setting of Theorem 1.1, below.

A set A ⊆ G, where G is an Abelian group, is said to be sum-free if (A + A) ∩ A = ∅,
or equivalently, if there is no solution to the equation x + y = z with x, y, z ∈ A. Sum-free
subsets of Abelian groups are central objects of interest in Additive Combinatorics, and have
been studied intensively in recent years. The main questions are as follows: What are the
largest sum-free subsets of G? How many sum-free sets are there? And what does a typical
such set look like? Over forty years ago, Diananda and Yap [11] determined the maximum
density µ(G) of a sum-free set in G whenever |G| has a prime factor q 6≡ 1 (mod 3), but it
was not until 2005 that Green and Ruzsa [18] completely solved this extremal question for all
finite Abelian groups. On the second and third questions, Lev,  Luczak and Schoen [26] and
Sapozhenko [33] determined the asymptotic number of sum-free subsets in an Abelian group
of even order by showing that almost all such sets2 lie in the complement of a subgroup
of index 2. Green and Ruzsa [18] extended this result to Abelian groups which have a
prime factor q ≡ 2 (mod 3), and showed also that a general finite Abelian group G has
2(1+o(1))µ(G)|G| sum-free subsets.

We say that G is of Type I if |G| has a prime divisor q with q ≡ 2 (mod 3), and Type I(q)
if q is the smallest such prime. Diananda and Yap [11] proved that if G is of Type I(q),
then µ(G) = (q + 1)/(3q); moreover, they described all sum-free subsets of G with µ(G)|G|
elements. Green and Ruzsa [18] determined the asymptotic number of sum-free subsets of
an Abelian group G of Type I, by showing that almost every sum-free set in G is contained
in some sum-free set of maximum size. Balogh, Morris and Samotij [6] studied p-random

subsets of such groups, and showed that if p > C(q)
√

log n/n, G is an Abelian group of
Type I(q) and order n, and Gp is a p-random subset of G, then with high probability every
maximum-size sum-free subset of Gp is contained in some sum-free subset of G of maximum
size. In the case G = Z2n, they showed that if p >

(
1√
3
+ε
)√

n log n and A ⊆ G is a p-random

subset, then with high probability the unique largest sum-free subset of is A ∩ O2n, where
O2n ⊆ Z2n denotes the set of odd residues modulo 2n. Moreover, the constant 1/

√
3 in this

result is best possible.

2We say that almost all sets in a family F of subsets of G satisfy some property P if the ratio of the
number of sets in F that have P to the number of all sets in F tends to 1 as |G| tends to infinity.
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Let us denote by SF(G,m) the collection of sum-free subsets of size m in a finite Abelian
group G. The following theorem refines the result of Green and Ruzsa [18] to sum-free sets
of fixed size m, provided that m > C(q)

√
n log n.

Theorem 1.1. For every prime q ≡ 2 (mod 3), there exists a constant C(q) > 0 such
that the following holds. Let G be an Abelian group of Type I(q) and order n, and let
m > C(q)

√
n log n. Then almost every sum-free subset of G of size m is contained in a

maximum-size sum-free subset of G, and hence

|SF(G,m)| = λq ·
(
#
{

elements of G of order q
}

+ o(1)
)(µ(G)n

m

)
as n→∞, where λq = 1 if q = 2 and λq = 1/2 otherwise.

Although the factor λq · #{elements of Gof order q} above may appear mysterious, it is
a natural consequence of the characterization of maximum-size sum-free sets in groups of
Type I, see Theorem 6.2. We remark that the lower bound m > C(q)

√
n log n is sharp up to

a constant factor, since there are at least (n/2)
(
µ(G)n− 3m

)m−1
/(m− 1)! sum-free subsets

of G which contain exactly one element outside a given maximum-size sum-free subset of G,
and this is larger than m1/5

(
µ(G)n
m

)
if m 6 1

5

√
n log n. (Here, and throughout, log denotes

the natural logarithm.) Hence, assuming m1/5 is much larger than the number of elements
of order q in G, almost no sum-free subset of G of this size is contained in a maximum-size
sum-free subset of G.

We shall prove Theorem 1.1 using a new theorem (see Section 2) which describes the
structure of a typical independent set in a 3-uniform hypergraph H that satisfies a certain
natural ‘stability’ property, see Definition 2.1. The key ingredient in the proof of this theorem
is a new method of enumerating independent sets in 3-uniform hypergraphs. We shall also
use a simplified version of this method to prove a new bound on the number of independent
sets in a certain class of expander graphs known as (n, d, λ)-graphs.

First, let us recall the definition of (n, d, λ)-graphs, which are an important class of ex-
panders; for a detailed introduction to expander graphs, we refer the reader to [4] or [19].
Given a graph G, let λ1 > . . . > λn denote the eigenvalues of the adjacency matrix of G. We
call max{|λ2|, |λn|} the second eigenvalue of G.

Definition 1.2 ((n, d, λ)-graphs). A graph G is an (n, d, λ)-graph if it is d-regular, has n
vertices, and the absolute value of each of its nontrivial eigenvalues is at most λ.

Alon and Rödl [3] gave an upper bound on the number of independent sets in an (n, d, λ)-
graph, and used their result to give sharp bounds on multicolour Ramsey numbers. When
λ = Ω(d) (as n→∞), Theorem 1.3 below provides a significantly stronger bound than that
of Alon and Rödl, for a wider range of m; it is moreover asymptotically sharp. In fact, we will
not assume anything about the second eigenvalue of a graph G as our bound on the number
of independent sets of G will depend only on the smallest eigenvalue of G. Given a graph
G, let λ(G) be the smallest eigenvalue of the adjacency matrix of G (denoted by λn above)
and let I(G,m) be the number of independent sets of size m in G. Observe that λ(G) < 0
for every non-empty G and that, by definition, every (n, d, λ)-graph satisfies λ(G) > −λ.
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Theorem 1.3. For every ε > 0, there exists a constant C = C(ε) such that the following
holds. If G is an n-vertex d-regular graph with λ(G) > −λ, then

I(G,m) 6

((
λ
d+λ

+ ε
)
n

m

)
for every m > Cn/d.

We remark that the constant λ
d+λ

in Theorem 1.3 is best possible, since there exist n-

vertex d-regular graphs with λ(G) > −λ and α(G) = λ
d+λ

n for many values of n, d and λ
(here α(G) denotes the independence number of G). For example, consider a blow-up of the
complete graph Kt+1, where each vertex is replaced by a set of size n/(t+ 1) and each edge
is replaced by a random d/t-regular bipartite graph with colour classes of size n/(t+1) each.
This blown-up graph G is d-regular and, with high probability, it satisfies λ(G) = −d/t and
α(G) = n/(t+ 1).

In Section 7, we shall use Theorem 1.3, together with some basic facts about characters
of finite Abelian groups, to give a completely self-contained proof of Theorem 1.1 in the
case q = 2. For previous results relating the problem of estimating the number of sum-
free subsets of groups, to that of estimating the number of independent sets in regular
graphs, see for example [1, 26, 33]. For other results on counting independent sets in graphs
and hypergraphs, see Balogh and Samotij [7, 8], Carroll, Galvin and Tetali [9], Galvin and
Kahn [16], Kahn [21, 22], Peled and Samotij [28], Sapozhenko [32] and Zhao [38].

The rest of the paper is organised as follows. In Section 2, we state our structural theorem
for 3-uniform hypergraphs, and in Section 3 we prove Theorem 1.3. In Sections 4 and 5,
we prove the structural theorem, and in Sections 6 we shall apply it to prove Theorem 1.1.
Finally, in Section 7, we shall prove Theorem 1.1 again in the case q = 2.

2. A structural theorem for 3-uniform hypergraphs

In this section we shall introduce our main tool: a theorem which allows us to deduce
structural results for sparse sum-free sets from stability results in the dense setting. Since
we wish to apply our result to sum-free sets in various Abelian groups, we shall use the
language of general 3-uniform (sequences of) hypergraphs H = (Hn)n∈N, where |V (Hn)| = n.
Throughout the paper, the reader should think of H as encoding the Schur triples (that is,
triples (x, y, z) with x+ y = z) in an additive structure.

We now define the stability property with which we shall be able to work. Let α ∈ (0, 1)
and let B = (Bn)n∈N, where Bn is a family of subsets of V (Hn). We shall write |Bn| for the
number of sets in Bn, and set ‖Bn‖ = max{|B| : B ∈ Bn}.

Definition 2.1. A sequence of hypergraphs H = (Hn)n∈N is said to be (α,B)-stable if
for every γ > 0 there exists β > 0 such that the following holds. If A ⊆ V (Hn) with
|A| > (α− β)n, then either e(Hn[A]) > βe(Hn), or |A \B| 6 γn for some B ∈ Bn.

Roughly speaking, a sequence of hypergraphs (Hn) is (α,B)-stable if for every A ⊆ V (Hn)
such that |A| is almost as large as the extremal number for Hn (i.e., the size of the largest
independent set), the set A is either very close to an extremal set B ∈ Bn, or it contains
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many (i.e., a positive fraction of all) edges of Hn. Observe that classical stability results,
such as that of Erdős and Simonovits [13, 35], are typically of this form.

We shall need two further technical conditions on H. Let

∆2(Hn) = max
T⊆V (Hn), |T |=2

∣∣{e ∈ Hn : T ⊆ e
}∣∣,

and note that if H encodes Schur triples then ∆2(Hn) 6 3. Also define

δ(Hn,Bn) := min
B∈Bn

min
v∈V (Hn)\B

∣∣{e ∈ Hn : |e ∩B| = 2 and v ∈ e
}∣∣ ,

and, as usual, write α(Hn) for the size of the largest independent set in Hn.
The following theorem is the key step in the proof of Theorem 1.1.

Theorem 2.2. Let H = (Hn)n∈N be a sequence of 3-uniform hypergraphs which is (α,B)-
stable, with e(Hn) = Θ(n2) and ∆2(Hn) = O(1). Suppose that |Bn| = nO(1), that α(Hn) >
‖Bn‖ > αn, and that δ(Hn,Bn) = Ω(n). Then there exists a constant C = C(H,B) > 0 such
that if

m > C
√
n log n,

then almost every independent set in Hn of size m is a subset of some B ∈ Bn.

We shall prove Theorem 2.2 in Sections 4 and 5. In Section 6, we shall use it to prove
Theorem 1.1.

3. Independent sets in regular graphs with no small eigenvalues

As a warm-up for the proof of Theorem 2.2, we shall prove a bound on the number of
independent sets in regular graphs with no small eigenvalues, Theorem 1.3, which improves
a theorem of Alon and Rödl [3]. This result will be a key tool in our self-contained proof
of Theorem 1.1 in the case q = 2, see Section 7. Moreover, many of the ideas from the
proof of Theorem 1.3 will be used again in the proof of Theorem 2.2. We remark that the
technique of enumerating independent sets in graphs used in this section was pioneered by
Kleitman and Winston [23] and our proof of Theorem 1.3, below, requires little more than
their original method.

Given a graph G on n vertices, and an integer m ∈ [n], let I(G) denote the number of
independent sets in G, and recall that I(G,m) denotes the number of independent sets of size
m in G. Alon [1] proved that if G is a d-regular graph on n vertices, then I(G) 6 2n/2+o(n) (as
d→∞), resolving a conjecture of Granville (see [1]), and suggested that the unique G that
maximizes I(G) among all such (i.e., n-vertex d-regular) graphs might be a disjoint union
of copies of Kd,d. This conjecture was proven (using the entropy method) by Kahn [21] for
bipartite graphs, and recently in full generality by Zhao [38].

Theorem 3.1 (Kahn [21], Zhao [38]). Let G be a d-regular graph on n vertices. Then

I(G) 6
(
2d+1 − 1)n/2d,

where equality holds if and only if G is a disjoint union of copies of Kd,d.
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Since −d is an eigenvalue of Kd,d, any d-regular graph G containing a copy of Kd,d satisfies
λ(G) = −d. One might hope that a stronger bound on I(G) holds for d-regular graphs G
with λ(G) > −d. Alon and Rödl [3] proved such a bound on I(G,m) for the slightly narrower
class of (n, d, λ)-graphs and used their result to give sharp bounds on Ramsey numbers.

Theorem 3.2 (Alon and Rödl [3]). Let G be an (n, d, λ)-graph. Then

I(G,m) 6

(
emd2

4λn log n

)2(n/d) logn(
2λn/d

m

)
for every m > 2(n/d) log n.

If λ = Ω(d) as n → ∞, then Theorem 1.3 improves the above result in three ways:
it provides a stronger bound for a wider range of values of m in a wider class of graphs.
Theorem 1.3 is an immediate consequence of the following theorem, combined with the
Alon-Chung lemma (Lemma 3.4, below).

Theorem 3.3. For every ε, δ > 0, there exists a constant C = C(ε, δ) such that the following
holds. Let G be a d-regular graph on n vertices, and suppose that 2e(A) > ε|A|d for every
A ⊆ V (G) with |A| >

(
α + δ

)
n. Then

I(G,m) 6

(
(α + 2δ)n

m

)
for every m > Cn/d.

The assumption in Theorem 3.3 that 2e(A) > ε|A|dmight seem somewhat strong; however,
it follows from the Expander Mixing Lemma that it is satisfied by every (n, d, λ)-graph with
λ/(d+λ) 6 α. For two sets S, T ⊆ V (G), let e(S, T ) denote the number of pairs (x, y) ∈ S×T
such that {x, y} ∈ E(G). In particular, we have e(S, S) = 2e(S) for every S ⊆ V (G). The
following result is proved3 in [2].

Lemma 3.4 (Alon-Chung [2]). Let G be an n-vertex d-regular graph. Then for all A ⊆ V (G),

2e(A) >
d

n
|A|2 +

λ(G)

n
|A|
(
n− |A|

)
.

We first deduce Theorem 1.3 from Theorem 3.3 and Lemma 3.4.

Proof of Theorem 1.3. We claim that if G is an n-vertex d-regular graph with λ(G) > −λ
and α = λ/(d + λ), then 2e(A) > ε|A|d for every A ⊆ V (G) with |A| > (α + ε)n. This
implies that G satisfies the assumption of Theorem 3.3 (with δ = ε), and so the theorem
follows.

To prove the claim, suppose that A ⊆ V (G) satisfies |A| > (α + ε)n. By Lemma 3.4,

2e(A) >
d

n
· |A|2 − λ

n
· |A|

(
n− |A|

)
=
|A|
n

[(
d+ λ

)
|A| − λn

]
.

3Although the result is stated in [2] in a slightly different form, its proof there in fact implies Lemma 3.4.



COUNTING SUM-FREE SETS IN ABELIAN GROUPS 7

Our lower bound on |A| and the choice of α = λ/(d+ λ) now give

2e(A) > |A|
[(
d+ λ

)(
α + ε

)
− λ
]

= ε|A|
(
d+ λ

)
> ε|A|d,

as required. �

In the proof of Theorem 3.3, we shall use an algorithm which uniquely encodes every
independent set I of size m in G as a pair (S, I \S), where |S| 6 2n/εd 6 2m/Cε, and I \S
is contained in some set A, with |A| 6 (α + δ)n, which depends only on S. At all times,
it maintains a partition of V (G) into sets S, X, and A (short for Selected, eXcluded, and
Available), such that S ⊆ I ⊆ A ∪ S.

At each stage of the algorithm, we will need to order the vertices of A with respect to their
degrees. For the sake of brevity and clarity of the presentation, let us make the following
definition.

Definition 3.5 (Max-degree order). Given a graph G and a set A ⊆ V (G), the max-degree
order on A is the following linear order (v1, . . . , v|A|) on the elements of A: For every i ∈
{1, . . . , |A|}, vi is the maximum-degree vertex in the graph G[A \ {v1, . . . , vi−1}]; we break
ties by giving preference to vertices that come earlier in some predefined ordering of V (G).

We are now ready to describe the Basic Algorithm.

The Basic Algorithm. Set A = V (G) and S = X = ∅. Now, while |A| > (α + δ)n, we
repeat the following:

(a) Let i be the minimal index (in the max-degree order on A) such that vi ∈ I.
(b) Move vi from A to S.
(c) Move v1, . . . , vi−1 from A to X (since they are not in I by the choice of i).
(d) Move N(vi) from A to X (since I is independent and vi ∈ I).

Finally, when |A| 6 (α + δ)n, we output S (which is a subset of V (G)) and I \ S (which is
a subset of A).

We remark that, as well as in [23], algorithms similar to the one above have been considered
before to bound the number of independent sets in graphs [3, 32] and hypergraphs [7, 8].

Proof of Theorem 3.3. The theorem is an easy consequence of the following two statements:

I(G,m) 6
t0∑
t=1

(
n

t

)(
(α + δ)n

m− t

)
, (1)

where t0 =
n

εd
+ 1, and (

n

t

)(
(α + δ)n

m− t

)
6

1

m

(
(α + 2δ)n

m

)
(2)

if t 6 2n/εd and m > Cn/d. We shall prove (1) using the Basic Algorithm; (2) follows from
a straightforward calculation.

To prove (1), let t ∈ N be the number of elements of S at the end of the algorithm,
and note that we have at most

(
n
t

)
choices for S. Now, crucially, we observe that A is
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uniquely determined by S (given the original ordering of V (G)); indeed, step (a) of the Basic
Algorithm requires no knowledge of I, only of S and G. Since |A| 6 (α+ δ)n, it follows that

we have at most
(

(α+δ)n
m−t

)
choices for I \ S.

It will thus suffice to show that, given our assumptions on G, the algorithm terminates in
at most t0 = n

εd
+ 1 6 2n

εd
steps. We shall show that A loses at least εd elements at each

step of the algorithm (except perhaps the last), from which this bound follows immediately.
Indeed, consider a step of the algorithm (not the last), in which a vertex vi is moved to S,
and set A′ = A \ {v1, . . . , vi−1}. Since this is not the last step, we have |A′| > (α+ δ)n, and
so 2e(A′) > ε|A′|d, by our assumption on G. Thus |N(vi) ∩ A′| > εd, since vi is the vertex
of maximum degree in G[A′], and hence A loses at least εd elements in this step, as claimed.

To prove (2), we use the fact that, if t is replaced by t + 1, then the left-hand side is
multiplied by

n− t
t+ 1

· m− t
(α + δ)n−m+ t+ 1

. (3)

We claim that (3) is at most 2
δ
·
(
m
t

)2
. To prove this, we consider two cases: if m 6 (α+δ/2)n,

then (3) is at most
n

t
· 2m

δn
=

2m

δt
while if m > (α + δ/2)n then it is at most

n

t
· m
t
6

2

δ
·
(m
t

)2

,

since n 6 2m/δ, and our assumptions imply that α(G) < (α + δ)n, so we may assume that
m < (α + δ)n. Thus, for each t with t 6 t0 6 2n

εd
,(

n

t

)(
(α + δ)n

m− t

)
6

(
(α + δ)n

m

) t∏
r=1

2

δ
·
(m
r

)2

6

(
1

t0!

)2(
2m

δ

)2t0 ((α + δ)n

m

)
.

Since
(
b
c

)
6
(
b
a

)c(a
c

)
for every a > b > c > 0, k! > (k/e)k for every k ∈ N, the function

t0 7→
(
em
δt0

)t0 is increasing on the interval (0,m), and t0 6 2n
εd
6 2m

Cε
, this is at most(

2em

δt0

)2t0 ((α + δ)n

m

)
6

(
Cεe

δ

) 4
Cε
m(

α + δ

α + 2δ

)m(
(α + 2δ)n

m

)
6

1

m
·
(

(α + 2δ)n

m

)
as required. In the final inequality we used the fact that C is sufficiently large as a function
of δ and ε, and that m is sufficiently large (as a function of δ), since m > Cn/d. �

4. Algorithm argument

In this section, we shall introduce a more powerful algorithm than that used in Section 3.
We shall use this algorithm in the proof of Theorem 2.2 to bound the number of independent
sets which contain at least δm elements of V (Hn) \B for every B ∈ Bn. We shall show that
when m�

√
n, then the number of such independent sets is exponentially small. The model

example that the reader should keep in mind when reading this section is when Hn is the
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hypergraph of Schur triples in an n-element Abelian group of Type I(q), where q is some
prime satisfying q ≡ 2 (mod 3).

Given a hypergraph Hn, a family of sets Bn, and δ > 0, we define

SF
(δ)
> (Hn,Bn,m) :=

{
I ∈ SF(Hn,m) : |I \B| > δm for every B ∈ Bn

}
,

where SF(Hn,m) denotes the collection of independent sets in Hn of size m. The following
theorem shows that there are few independent sets in Hn (i.e., sum-free sets) of size m which
are far from every set B ∈ Bn.

Theorem 4.1. Let α > 0 and let H = (Hn)n∈N be a sequence of 3-uniform hypergraphs
which is (α,B)-stable, has e(Hn) = Θ(n2) and ∆2(Hn) = O(1). If ‖Bn‖ > αn, then for
every δ > 0, there exists a C > 0 such that the following holds. If m > C

√
n and n is

sufficiently large, then∣∣SF
(δ)
> (Hn,Bn,m)

∣∣ 6 (2−εm + δm|Bn|
)(‖Bn‖

m

)
for some ε = ε(H, δ) > 0.

We shall describe an algorithm which encodes every independent set I in Hn and produces

short output for every I ∈ SF
(δ)
> (Hn,Bn,m). As before, our algorithm will maintain a

partition of V (Hn) into sets S, X, and A (short for Selected, eXcluded, and Available),
such that S ⊆ I ⊆ A ∪ S. We shall also maintain a set T ⊆ S (for Temporary), and the
corresponding graph GT , i.e., the graph with vertex set V (Hn), and edge set

E(GT ) =
{
{u, v} ⊆ V (GT ) : {u, v, w} ∈ Hn for some w ∈ T

}
.

We shall frequently consider the max-degree order (defined in Section 3) on the vertices of
the graph GT [A].

4.1. The Algorithm. The idea of the algorithm is quite simple: we apply the Basic Algo-
rithm of Section 3 to the graph GT [A] as long as it is reasonably dense. If GT [A] becomes too
sparse, then there are four possibilities: either we have arrived at a set A which has at most
(α− β)n elements, or a set A which is almost contained in some B ∈ Bn; or if not, then we
can use the (α,B)-stability of H to find either a new set T for which GT is dense (see Case 2
below), or a set of linear size that contains very few elements of I. Therefore, after moving
relatively few vertices of Hn to S, our choice for I \ S is limited to a set A ⊆ V (G) that is
either small or almost contained in some B ∈ Bn. It follows that if I was far from every
B ∈ Bn, then (in both cases) the number of ways to choose I \ S from A is very small.

We begin by choosing some constants. Let γ > 0 and note that since H is (α,B)-stable,
there exists β > 0 so that if |A| > (α−β)|V (Hn)| and |A \B| > γ|V (Hn)| for every B ∈ Bn,
then e(Hn[A]) > βe(Hn). Let us choose β > 0 sufficiently small so that e(Hn) > βn2 and
∆2(Hn) 6 1/β for all sufficiently large n. Let C = C(β) > 0 be sufficiently large, and set

d =
Cn

m
6

m

C
6

n

C
.

We are ready to describe the Main Algorithm; this is the key step in our proof of Theorem 2.2.
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The Main Algorithm. We initiate the algorithm with T = S ⊆ I, a deterministically
chosen subset of I of size d (the first d elements of I in our ordering of V (Hn), say), and
with A = V (Hn) \ S and X = ∅. Now, while |A| > (α − β)n and |A \ B| > γn for every
B ∈ Bn, we repeat the following steps:

Case 1: If the average degree in GT [A] is at least β4d, then:

(a) Let i be the minimal index in the max-degree order on V (GT [A]) such that vi ∈ I.
(b) Move vi from A to S.
(c) Move v1, . . . , vi−1 from A to X (since they are not in I by the choice of i).
(d) Move N(vi) from A to X (since I is independent and vi ∈ I).

Case 2: If the average degree of GT [A] is less than β4d, then we find a new set T as follows.
Since H is (α,B)-stable, |A| > (α−β)n, and |A\B| > γn for every B ∈ Bn, then A contains
at least βe(Hn) edges of Hn. Set

Z =
{
z ∈ A : e

(
Gz[A]

)
> β2n

}
,

where Gz[A] is the graph with vertex set A and edge set
{
{x, y} : {x, y, z} ∈ E(Hn)

}
. We

call the elements of Z useful. Since e(Hn) > βn2, we have e
(
Hn[A]

)
> β2n2, and so∑

z∈A

e
(
Gz[A]

)
= 3e(Hn[A]) > 3β2n2.

Moreover, we have e
(
Gz[A]

)
6 ∆(Hn) 6 ∆2(Hn)n 6 n/β for every z ∈ V (G). Thus, by the

pigeonhole principle, it follows that |Z| > 2β3n.
Now we have two subcases:

(a) If I contains fewer than d useful elements, then move these elements from A to S
and move the other useful elements from A to X.

(b) If I contains more than d useful elements, choose d of them u1, . . . , ud (the first d in
our ordering, say) and move them from A to S. Moreover, set T = {u1, . . . , ud}.

Finally, when |A| 6 (α − β)n, or |A \ B| 6 γn for some B ∈ Bn, then we output S (which
is a subset of V (G)) and I \ S (which is a subset of A) and stop.

We shall show that the Main Algorithm encodes at most β2m elements of I in S, and that
S determines A. Theorem 4.1 then follows from some simple counting.

4.2. Proof of Theorem 4.1. We begin by proving three straightforward claims about the
Main Algorithm; these, together with some simple counting, will be enough to prove the
theorem. The following statements all hold under the assumptions of Theorem 4.1.

Claim 1. The Main Algorithm passes through Case 1 at most 2n/(β4d) times, and through
Case 2 at most 1/β5 times.

Proof. We prove the second statement first. To do so, simply observe that each time we pass
through Case 2(a), we move at least 2β3n−d > β3n vertices from A to X, and each time we
pass through Case 2(b), we obtain a graph GT [A] with at least β2nd/∆2(Hn)−O(d2) > 2β4nd
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edges. In the latter case, we must remove at least β4nd edges from GT [A] before we can return
to Case 2. Since ∆2(Hn) 6 1/β, it follows that ∆(GT ) 6 |T |/β = d/β, since if xy ∈ E(GT )
then there exists z ∈ T such that {x, y, z} ∈ E(Hn), and for each pair {x, z} there are at
most ∆2(Hn) such y. Thus we must remove at least β5n vertices from A before returning to
Case 2, and hence the algorithm can pass through Case 2 at most 1/β5 times before the set
A shrinks to size αn, as claimed.

To prove the first statement, note that each time we pass through Case 1 on two successive
steps of the algorithm, we remove at least β4d vertices of A in the first of these. Indeed,
since GT [A] (for the second step) has average degree at least β4d, then by the definition of
the max-degree order, the vertex we removed in the first step must have had forward degree
at least β4d. By the argument above, there are at most 1/β5 steps at which this fails to
hold, and therefore the algorithm passes through Case 1 at most

n

β4d
+

1

β5
6

2n

β4d

times, as claimed. �

The next claim is a simple consequence of Claim 1 and our choice of d.

Claim 2. If C > 3/β7, then |S| 6 β2m at the end of the Main Algorithm.

Proof. Each time the Main Algorithm passes through Case 1, |S| increases by one; each time
it passes through Case 2, |S| increases by at most d. Thus, by Claim 1 and our choice of d,

|S| 6 d+
2n

β4d
+

d

β5
6

m

C
+

2m

β4C
+

2m

Cβ5
6 β2m

if C > 3/β7, as claimed. �

We next make the key observation that the set S contains all the information we need to
recover the final set A produced by the algorithm.

Claim 3. The set A is uniquely determined by the set S of selected elements.

Proof. This follows because all steps of the Main Algorithm are deterministic, and every
element of I which we need to observe is placed in S. Indeed, in Case 1 we observe only that
vi ∈ I, and that the elements v1, . . . , vi−1 6∈ I. Since vi ∈ S and v1 . . . , vi−1 6∈ S, this can be
deduced from S. In Case 2, the set Z does not depend on I. If at most d − 1 elements of
Z are in S, then we are in Case 2(a) and the remaining elements of Z are in X; otherwise,
we are in Case 2(b) and the first d elements of S ∩ Z (in the order on V (Hn)) form the set
T . Thus, inductively, we see that at each stage of the algorithm, the set A is determined by
the set S. �

After all this preparation, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let H = (Hn)n∈N be an (α,B)-stable sequence of 3-uniform hyper-
graphs as in the statement of the theorem, let δ > 0 be arbitrary, and choose γ = γ(α, δ) > 0
to be sufficiently small. Since H is (α,B)-stable, there exists β > 0 such that if |I| >
(α− 2β)n, then either |I \ B| < γn for some B ∈ Bn, or I is not an independent set in Hn.
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In particular, note that if γ < δ/(α − 2β), then either m 6 (α− 2β)n or SF
(δ)
> (Hn,Bn,m)

is empty. We choose such a β sufficiently small, set C = 3/β7, and choose ε = ε(β) > 0 to
be sufficiently small. Finally, let n be sufficiently large.

Applying the Main Algorithm to each independent set I ∈ SF
(δ)
> (Hn,Bn,m), that is, to

every independent set in Hn such that |I| = m and |I \B| > δm for every B ∈ Bn, we obtain
(for each such I) a pair (A, S) such that S ⊆ I ⊆ A ∪ S. There are two cases to deal with,
corresponding to the two possibilities that can occur at the end of the Main Algorithm. We
first show that if |A \B| 6 γn for some B ∈ Bn then a much stronger bound holds.

Claim 4. There are at most δm|Bn|
(‖Bn‖

m

)
sets I ∈ SF

(δ)
> (Hn,Bn,m) such that the Main

Algorithm ends because |A \B| 6 γn for some B ∈ Bn.

Proof. We claim first that the number of such sets I is at most∑
B∈Bn

β2m∑
t=0

∑
r>δm

(
n

t

)(
γn

r − t

)(
‖Bn‖
m− r

)
. (4)

Indeed, let S and A be the selected and available sets at the end of the algorithm, set t = |S|,
and recall that t 6 β2m by Claim 2. We have at most

(
n
t

)
choices for S and, by Claim 3,

the set S determines the set A. Let B ∈ Bn be such that |A \ B| 6 γn and recall that
|I \B| > δm by our assumption on I. Thus we must choose the set B ∈ Bn, at least δm− t
elements of A \B, and the remaining elements from B.

Note that t 6 δm/2 by our choice of β and so either m 6 (2γ/δ)n or the number of
choices for I is zero. Since ‖Bn‖ > αn and γ is small, it follows that the summand in (4) is

maximized exactly when r = δm. Now, using the inequalities
(
n
k

)
6
(
en
k

)k
and(

a

b− c

)
6

(
b

a− b

)c(
a

b

)
, (5)

which holds for every a > b > c > 0, and since t 6 δm/2, m 6 (2γ/δ)n 6 (α/2)n and
‖Bn‖ > αn, we can bound each summand in (4) from above by(en

t

)t(2eγn

δm

)δm−t(
m

αn−m

)δm(‖Bn‖
m

)
.

Since t 6 δm/2 and t 7→ (c/t)t is increasing on (0, c/e), this is at most(
δm

2γt

)t(
2eγn

δm
· 2m

αn

)δm(‖Bn‖
m

)
6

(
1

γ

)δm/2(
4eγ

αδ

)δm(‖Bn‖
m

)
6 δ2m

(
‖Bn‖
m

)
if γ 6 (αδ/4e)2 · δ4/δ. Since m2 · δ2m 6 δm, the claim follows. �

Finally, we deal with the case in which |A| 6 (α− β)n for some B ∈ Bn.

Claim 5. There are at most 2−εm
(‖Bn‖

m

)
sets I ∈ SF

(δ)
> (Hn,Bn,m) such that the Main Algo-

rithm ends because |A| 6 (α− β)n.
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Proof. As in the previous claim, we have t = |S| 6 β2m, by Claim 2, and the set S determines
the set A, by Claim 3. Thus, the number of choices for I is at most

β2m∑
t=0

(
n

t

)(
(α− β)n

m− t

)
. (6)

Now, recall that either m 6 (α− 2β)n or SF
(δ)
> (Hn,Bn,m) is empty. Thus, estimating each

summand in (6) as in the proof of Claim 4, we obtain(
n

t

)(
(α− β)n

m− t

)
6

(
en

t

)t(
m

(α− β)n−m

)t(
(α− β)n

m

)
6

(
em

βt

)t(
(α− β)n

m

)
.

Now, using the inequality
(
b
c

)
6
(
b
a

)c (a
c

)
, which is valid for all a > b > c > 0, and recalling

that t 6 β2m and that t 7→ (c/t)t is increasing on (0, c/e), we get(
em

βt

)t(
(α− β)n

m

)
6

(
e

β3

)β2m(
α− β
α

)m(
αn

m

)
6

(
e

β3

)β2m

e−βm/α
(
αn

m

)
.

Since ‖Bn‖ > αn, the right-hand side is at most 1
m
· 2−εm

(‖Bn‖
m

)
if β > 0 and ε = ε(β) > 0

are sufficiently small, as required. �

Combining Claims 4 and 5, we obtain Theorem 4.1. �

5. Janson argument

In this section, we shall complete the proof of Theorem 2.2 by showing that, under certain
conditions, almost all independent (i.e., sum-free) sets I of size m in Hn either satisfy I ⊆ B
for some B ∈ Bn, or |I \ B| > δm for every B ∈ Bn. The key properties of H which we
will use are that ∆2(Hn) = O(1), and that δ(Hn,Bn) = Ω(n); our key tool will be Janson’s
inequality. An argument similar to that presented in this section was used in [6] to study
sum-free sets in random subsets of Abelian groups.

Given a hypergraph Hn, a family of sets Bn and δ > 0, we define

SF
(δ)
6 (Hn,Bn,m) :=

{
I ∈ SF(Hn,m) : |I \B| 6 δm for some B ∈ Bn

}
.

The following proposition shows that, if δ > 0 is sufficiently small, then almost all indepen-

dent sets in SF
(δ)
6 (Hn,Bn,m) are contained in some B ∈ Bn. We write 2B to denote the

power set of B, i.e., the family of all subsets of B.

Proposition 5.1. Let α > 0, let H = (Hn)n∈N be a sequence of 3-uniform hypergraphs with
∆2(Hn) = O(1), and let B = (Bn)n∈N be a family of sets with ‖Bn‖ > αn. For every β > 0,
there exists constants δ > 0 and C0 > 0 such that the following holds. If δ(Hn,Bn) > βn
and C > C0, then ∣∣∣SF

(δ)
6 (Hn,Bn,m) \

⋃
B∈Bn

2B
∣∣∣ 6 n−C |Bn|

(
‖Bn‖
m

)
for every m > C

√
n log n.
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Note that δ and C0 in the statement of Proposition 5.1 may depend on H, B, α and β. We
begin by recalling the Janson inequalities, and some basic facts about the hypergeometric
distribution.

5.1. The hypergeometric distribution. The following well-known inequality (see [20,
page 35], for example) allows us to deduce bounds in the hypergeometric distribution from
results on product measure. For completeness we give a proof.

Lemma 5.2 (Pittel’s inequality). Let m,n ∈ N, and set p = m/n. For any property Q on
[n] we have

P
(
Q holds for a random m-set

)
6 3
√
m · P

(
Q holds for a random p-subset of [n]

)
.

Moreover, if Q is monotone decreasing and m 6 n− 1, then

P
(
Q holds for a random m-set

)
6 C · P

(
Q holds for a random p-subset of [n]

)
for some absolute constant C > 0.

Proof. For the first part, simply note that a random p-subset of [n] has size m = pn with
probability at least 1/(3

√
m). If Q is monotone decreasing, say, then we apply the ‘Local

LYM inequality’ to Qm, the set of m-sets in Q, and deduce that

P
(
Q holds for a random k-set

)
> P

(
Q holds for a random m-set

)
for every k 6 m. It is well-known that the median of the binomial distribution lies between
bpnc and dpne, and if m 6 n− 1 then it is easy to see that Bin(n, p) = dpne has probability
at most (1− 1/n)n−1 → 1/e as n→∞. Thus, if m 6 n− 1 and n is sufficiently large, then
a random p-subset of [n] has size at most m = pn with probability at least 1/2− 1/e+ o(1)
as n→∞, and the result follows. �

The following result is an easy corollary of Janson’s inequality (see [4, 20]), combined with
Pittel’s inequality.

Lemma 5.3 (Hypergeometric Janson Inequality). Suppose that {Ui}i∈I is a family of subsets
of an n-element set X and let m ∈ {0, . . . , n}. Let

µ =
∑
i∈I

(m/n)|Ui| and ∆ =
∑
i∼j

(m/n)|Ui∪Uj |,

where the second sum is over ordered pairs (i, j) such that i 6= j and Ui ∩ Uj 6= ∅. Let R be
a uniformly chosen random m-subset of X. Then

P
(
Ui * R for all i ∈ I

)
6 C ·max

{
e−µ/2, e−µ

2/(2∆)
}
,

where C > 0 is the constant in Pittel’s inequality.

We now return to the proof of Proposition 5.1.
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5.2. Proof of Proposition 5.1. We begin by partitioning SF
(δ)
6 (Hn,Bn,m) according to

the set B ∈ Bn such that |I \B| 6 δm, and also according to the set S = I \B. (Technically
there could be more than one such set B, so in fact this might be a cover, rather than a
partition.) Set

I(B, S) :=
∣∣∣{I ∈ SF(Hn,m) : I \B = S

}∣∣∣.
We shall prove the following lemma.

Lemma 5.4. Let H = (Hn)n∈N be a sequence of 3-uniform hypergraphs with ∆2(Hn) = O(1).
For every sufficiently small β > 0, there exists a C0 > 0 such that the following holds. Let
C > C0, let B ⊆ [n] with δ(Hn, B) > βn, and let S ⊆ [n] \B. Then, writing k = |S|,

I(B, S) 6
(
|B|−5Ck + e−β

3m
)( |B|

m− k

)
for every m > C

√
n log n.

In order to prove Lemma 5.4, we shall apply the following lemma to the Cayley graph
of S, restricted to B. The lemma is a straightforward consequence of the Hypergeometric
Janson’s inequality.

Lemma 5.5. For every β > 0, there exists a constant C0 > 0 such that the following holds.
Let G be a graph on n vertices with maximum degree at most d. If

e(G) > 4βdn,

then for every C > C0,

I(G,m) 6
(
n−Cd + e−βm

)(n
m

)
for every m > C

√
n log n.

Proof. Let {Ui}i∈I be the collection of pairs of vertices which span an edge of G, so Ui * R
for all i ∈ I if and only if R is an independent set in G. It is easy to see that, letting µ and
∆ to be the quantities defined in the statement of Lemma 5.3,

µ = e(G)
m2

n2
and ∆ 6

(
d

2

)(
2e(G)

d

)(
m

n

)3

6 e(G)
dm3

n3
.

Thus, by our bounds on e(G) and m, and assuming C > 4/β,

µ > 4Cd log n and
µ2

∆
> e(G)

m

dn
> 4βm.

By the Hypergeometric Janson Inequality,

I(G,m)/

(
n

m

)
6 C ·max

{
e−µ/2, e−µ

2/(2∆)
}

6 C ·max
{
n−2Cd, e−2βm

}
6 max

{
n−Cd, e−βm

}
,

as required. �
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Recall that, given Hn, the Cayley graph GS of S is defined to be the graph with vertex
set V (Hn) and edge set

E(GS) =
{
{u, v} ⊆ V (Hn) : {u, v, w} ∈ Hn for some w ∈ S

}
.

In order to apply Lemma 5.5, we shall need the following easy property of the Cayley graph.

Observation 5.6. ∆(GS) 6 |S|∆2(Hn).

We can now easily deduce Lemma 5.4 from Lemma 5.5 and Observation 5.6.

Proof of Lemma 5.4. If I is an independent set in Hn containing S, then I \ S is an inde-
pendent set in GS, so

I
(
B, S

)
6 I

(
GS[B],m− k

)
,

where k = |S|. Choose β > 0 sufficiently small so that ∆2(Hn) 6 1/(2β), recall that
δ(Hn, B) > βn, note that d = ∆(GS) 6 |S|∆2(Hn) 6 |S|/(2β), and observe that therefore

e
(
GS[B]

)
>

β|S|n
∆2(Hn)

> 2β2|S| · |B| > 4β3d|B|.

Thus, by Lemma 5.5, if β < 1/10 then d > 5|S| = 5k and

I
(
GS[B],m− k

)
6
(
|B|−5Ck + e−β

3m
)( |B|

m− k

)
,

for every m > C
√
n log n, as required. �

Finally, let us deduce Proposition 5.1 from Lemma 5.4.

Proof of Proposition 5.1. Summing over all setsB ∈ Bn and subsets S ⊆ [n]\B, and applying
Lemma 5.4, we have∣∣∣SF

(δ)
6 (Hn,Bn,m) \

⋃
B∈Bn

2B
∣∣∣ 6 ∑

B∈Bn

δm∑
k=1

∑
S⊆[n]\B : |S|=k

I(B, S)

6 |Bn|
δm∑
k=1

(
n

k

)(
n−4(C+k) + e−β

3m
)( ‖Bn‖

m− k

)
,

for every m > C
√
n log n, since δ(Hn,Bn) > βn and ∆2(Hn) = O(1) together imply that

|B| = Θ(n) for every B ∈ Bn. We consider three cases.

Case 1: If n−4(C+k) > e−β
3m, then(

n

k

)(
n−4(C+k) + e−β

3m
)( ‖Bn‖

m− k

)
6 n−2C

(
‖Bn‖
m

)
,

since
(‖Bn‖
m−k

)
6
(
n
k

)(‖Bn‖
m

)
.

Case 2: If n−4(C+k) 6 e−β
3m and m 6 αn/2, then by (5) we have(

‖Bn‖
m− k

)
6

(
m

αn−m

)k (‖Bn‖
m

)
6

(
2m

αn

)k (‖Bn‖
m

)
,
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since ‖Bn‖ > αn. Thus, using the bound
(
n
k

)
6
(
en
k

)k
, we have(

n

k

)(
n−4(C+k) + e−β

3m
)( ‖Bn‖

m− k

)
6 2 · e−β3m

(
2em

αk

)k (‖Bn‖
m

)
6 e−β

3m/2

(
‖Bn‖
m

)
,

if δ = δ(α, β) > 0 is sufficiently small, since k 6 δm.

Case 3: If ‖Bn‖−4(C+k) 6 e−β
3m and m > αn/2, then we again use the (trivial) bound(‖Bn‖

m−k

)
6
(
n
k

)(‖Bn‖
m

)
, to obtain(

n

k

)(
n−4(C+k) + e−β

3m
)( ‖Bn‖

m− k

)
6 2e−β

3m

(
n

k

)2(‖Bn‖
m

)
6 e−β

3m/2

(
‖Bn‖
m

)
,

if δ = δ(α, β) > 0 is sufficiently small, since
(
n
k

)
6
(

2m/α
k

)
6
(

2e
αδ

)δm
6 e−β

3m/6 for k 6 δm.

Since e−β
3m/2 � n−2C for m > C

√
n log n, the claimed bound follows. �

We finish this section by observing that Theorem 4.1 and Proposition 5.1 together imply
Theorem 2.2.

Proof of Theorem 2.2. Let H = (Hn)n∈N be a sequence of 3-uniform hypergraphs which is
(α,B)-stable, where B = (Bn)n∈N is a family of sets, and α > 0. Suppose that α(Hn) >
‖Bn‖ > αn, and that there exists β > 0 such that e(Hn) > βn2, ∆2(Hn) 6 1/β, |Bn| 6 n1/β

and δ(Hn,Bn) > βn for every n ∈ N. Let δ = δ(β) > 0 be sufficiently small, and let
C = C(β, δ) > 0 be sufficiently large. We claim that if

m > C
√
n log n,

then almost every independent set in Hn of size m is a subset of some B ∈ Bn.
Indeed, by Theorem 4.1, the number of independent sets I in Hn of size m for which
|I \B| > δm for every B ∈ Bn is at most(

2−εm + δm|Bn|
)(‖Bn‖

m

)
for some ε > 0 and by Proposition 5.1, the number of such sets for which 1 6 |I \ B| 6 δm
for some B ∈ Bn is at most

n−C |Bn|
(
‖Bn‖
m

)
.

Since |Bn| 6 n1/β, C > 1/β, and α(Hn) > ‖Bn‖, the result follows. �

6. Abelian groups of Type I

In this section, we shall use Theorem 2.2 to prove Theorem 1.1 for all q > 2. We remark
that the proof below can also be adapted to cover the case q = 2; however, since we shall
give a different proof of the case q = 2 in Section 7, we leave the details to the reader. (If
Hn denotes the hypergraph that encodes Schur triples in a group G of even order n and Bn
denotes the collection of maximum-size sum-free subsets of G, then it is not always true that
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Ω(Hn,Bn) = Ω(n). This problem can be easily overcome by considering triples of the form
(x, x, 2x), cf. the proof of the 1-statement in [6, Theorem 1.2].)

In order to prove that our hypergraph is (α,B)-stable, we shall use the following re-
sult (see [6, Corollary 2.8]), which follows immediately by combining results of Green and
Ruzsa [18] and Lev,  Luczak, and Schoen [26]. Let SF0(G) denote the collection of maximal-
size sum-free subsets of G and recall that each B ∈ SF0(G) has size µ(G)|G|.

Proposition 6.1. Let G be a finite Abelian group of Type I(q), where q ≡ 2 (mod 3) and
let 0 < γ < γ(q) and 0 < β < β0(γ, q) be sufficiently small. Let A ⊆ G, and suppose that

|A| >
(
µ(G)− β

)
|G|.

Then one of the following holds:

(a) |A \B| 6 γ|G| for some B ∈ SF0(G).

(b) A contains at least β|G|2 Schur triples.

We shall also use the following classification of extremal sum-free sets for Type I groups.

Theorem 6.2 (Diananda and Yap [11]). Let G be a finite Abelian group of Type I(q), where
q ≡ 2 (mod 3). Then every B ∈ SF0(G) is a union of cosets of some subgroup H of G of
index q, B/H is an arithmetic progression in G/H, and B ∪ (B +B) = G.

In other words, for every B ∈ SF0(G), there exists a homomorphism ϕ : G→ Zq such that
B = ϕ−1({k + 1, . . . , 2k + 1}), where q = 3k + 2.

Combining Theorem 6.2 with Kronecker’s Decomposition Theorem, we easily obtain the
following well-known corollary.

Corollary 6.3. Let G be an arbitrary group of Type I. Then |SF0(G)| 6 |G|.

It is now straightforward to deduce Theorem 1.1 from Theorem 2.2, Proposition 6.1, and
Corollary 6.3.

Proof of Theorem 1.1 for q 6= 2. Let q ≡ 2 (mod 3) be an odd prime, let C = C(q) be
sufficiently large, and let Gn be an Abelian group of Type I(q), with |Gn| = n. We shall
show that if m > C(q)

√
n log n, then almost every sum-free set of size m in Gn is contained

in a member of SF0(G).
We begin by choosing an infinite set X ⊆ N such that, for every n ∈ X, q is the smallest

prime divisor of n with q ≡ 2 (mod 3). For each n ∈ X, let Gn be an Abelian group of
Type I(q), with |Gn| = n, and define H = (Hn)n∈X to be the sequence of hypergraphs on
vertex set V (Hn) = Gn which encodes Schur triples. To be precise, let V (Hn) = Gn, let
{x, y, z} ∈

(
Gn

3

)
be an edge of Hn whenever x + y = z, and observe that every sum-free

subset of Gn is an independent set in Hn.4 Let Bn = SF0(Gn), the collection of maximum
size sum-free subsets of Gn, and recall that |Bn| 6 n, by Corollary 6.3.

We claim that H and B satisfy the conditions of Theorem 2.2. Indeed, Hn is 3-uniform,
has Θ(n2) edges, and satisfies ∆2(Hn) = 3. Setting α = µ(G), we have α(Hn) = ‖Bn‖ = αn

4But not vice-versa, since Hn does not contain the Schur triples in Gn of the form (x, x, 2x). Thus, by
bounding I(Hn,m) we are in fact proving a statement which is slightly stronger than Theorem 1.1.
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and |Bn| 6 n, as observed above. Moreover, the statement that H is (α,B)-stable is exactly
Proposition 6.1. Thus it will suffice to show that δ(Hn,Bn) = Ω(n).

Claim. For each B ∈ SF0(G) and every x ∈ G \B,∣∣∣∣{{y, z} ∈ (B2
)

: x = y + z

}∣∣∣∣ > n

2q
− 1

2
.

Proof of claim. Let B ∈ SF0(G) and let x ∈ G\B. By Theorem 6.2, there exists a subgroup
H of G of index q such that B is a union of cosets of H and B ∪ (B + B) = G. It follows
that x = y + z for some y, z ∈ B, and that y + h, z − h ∈ B for every h ∈ H. Thus,{

y + h, z − h
}
∈ C(x) :=

{{
y, z
}
∈
(
B

2

)
: x = y + z

}
whenever h ∈ H and y + h 6= z − h. Moreover, since |G| is odd, there is at most one h ∈ H
such that 2h = z − y, so |C(x)| > (|H| − 1)/2 = n/2q − 1/2, as required. �

Thus the pair (H,B) satisfies the conditions of Theorem 2.2 and hence if C(q) is sufficiently
large and m > C(q)

√
n log n, then almost every sum-free set of size m in Gn is contained in

some B ∈ Bn, as required.
Finally, let us deduce that if G is an Abelian group of Type I(q), and m > C(q)

√
n log n,

then

|SF(G,m)| =
1

2
·
(
#
{

elements of G of order q
}

+ o(1)
)(µ(G)n

m

)
.

Indeed, it suffices to observe that |SF0(G)| = #
{

elements of G of order q
}
/2, by Theo-

rem 6.2, and that each pair B,B′ ∈ SF0(G) intersect in at most (1− 1/q)µ(G)|G| elements.
The result now follows from some easy counting. �

7. Abelian groups of even order

In this section, we shall prove the following theorem, which implies Theorem 1.1 in the
case q = 2. We shall use Theorem 1.3 and some ideas from Section 5, but otherwise this
section is self-contained. In particular, we shall not use Proposition 6.1 and thus we give a
new proof of the main theorem of [26] and [33].

Theorem 7.1. If G is an Abelian group of order n, then

|SF(G,m)| =
(
#
{

elements of G of order 2
}

+ o(1)
)(n/2

m

)
for every m > 4

√
n log n.

We remark that we shall prove the theorem for all finite Abelian groups, not just those of
even order. We begin by partitioning the collection of sum-free sets into two pieces. Given
an Abelian group G, let

SF
(δ)
6 (G,m) :=

{
I ∈ SF(G,m) : |I ∩H| 6 δm for some H 6 G with [G : H] = 2

}
,
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and

SF
(δ)
> (G,m) :=

{
I ∈ SF(G,m) : |I ∩H| > δm for every H 6 G with [G : H] = 2

}
.

Note that if |G| is odd then SF
(δ)
6 (G,m) is empty. We shall prove the following proposition

using the method of Section 5.

Proposition 7.2. Let G be an Abelian group of order n, and let δ > 0 be sufficiently small.
Then

|SF
(δ)
6 (G,m)| 6

(
#
{

elements of G of order 2
}

+ o(1)
)
·
(
n/2

m

)
for every m > 4

√
n log n.

For sets in SF
(δ)
> (G,m), i.e., far from any H 6 G of index 2, we shall prove the following

stronger bound using Theorem 1.3.

Proposition 7.3. Let G be an Abelian group of order n, and let δ > 0. If ε = ε(δ) > 0 is
sufficiently small and C = C(δ) is sufficiently large, then

|SF
(δ)
> (G,m)| 6 2−εm

(
n/2

m

)
for every m > C

√
n and every sufficiently large n ∈ N.

We begin by proving Proposition 7.2. In this section, we shall use a slightly different
notion of Cayley graph than that used earlier. Given S ⊆ G, define G∗S to be the graph with
vertex set G \S and edge set

{
xy : x− y ∈ S

}
, and note that if I is a sum-free set in G with

S ⊆ I, then I \ S is an independent set in G∗S.

Proof of Proposition 7.2. Let G be an Abelian group of even order n, let H be a subgroup
of G of index 2, and let S ⊆ H satisfy |S| = k 6 δm. Set γ = 1/65. We claim that for every
m > 4

√
n log n, there are at most(

n−4k + e−γm
)( n/2

m− k

)
(7)

sum-free subsets I of G of order m with I ∩H = S.
Observe first that the graph G∗S[G\H] is d-regular, where d = |S∪(−S)| ∈ [k, 2k]. Indeed,

for each x ∈ G \H, let

N(x) =
{
y ∈ G \H : x− y ∈ S or y − x ∈ S

}
.

Since S ⊆ H, it follows that x− S and x+ S are in G \H, and hence |N(x)| = |S ∪ (−S)|,
as claimed. Since |S| = k, we have k 6 d 6 2k.

Now, by the Hypergeometric Janson Inequality, Lemma 5.3, there are at most

C ·max
{
e−km

2/4n, e−m/64
}( n/2

m− k

)
6
(
n−4k + e−γm

)( n/2

m− k

)
,
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independent sets of size m− k in G∗S[G \H]. This follows because k 6 δm, so

µ >

(
kn

4

)(
(m− k)2

(n/2)2

)
>

km2

2n
and ∆ 6

(
2k

2

)
n

2

(
(m− k)3

(n/2)3

)
6

8k2m3

n2
,

and m > 4
√
n log n. Since each sum-free subset I ⊆ G induces an independent set in

G∗S[G \H], then (7) follows.
Finally, summing (7) over subgroups H and sets S, we obtain

|SF
(δ)
6 (G,m)| 6 #

{
H 6 G : [G : H] = 2}

δm∑
k=0

(
n

k

)(
n−4k + e−γm

)( n/2

m− k

)
(8)

6

(
#
{

elements of G of order 2
}

+ O

(
1

n2

))(
n/2

m

)
for every m > 4

√
n log n. To see the last inequality, observe that the number of subgroups

H of index 2 in G is exactly the number of elements of G of order 2 and consider three
cases as in the proof of Proposition 5.1. Indeed, if n−4k > e−γm or m > n/4, then each

summand in (8) is at most
(
n−2k + e−γm/2

)(
n/2
m

)
by the trivial bound

(
n/2
m−k

)
6
(
n
k

)(
n/2
m

)
. But

if n−4k 6 e−γm and m 6 n/4, then by (5),(
n

k

)(
n/2

m− k

)
6
(en
k

)k ( 2m

n− 2m

)k (
n/2

m

)
6

(
4em

k

)k (
n/2

m

)
6 eO(

√
δm)

(
n/2

m

)
since k 6 δm. Thus, if δ > 0 is chosen small enough, then each summand in (8) is at most

e−γm/2
(
n/2
m

)
, as required. �

We next turn to the proof of Proposition 7.3. We shall divide into two cases: either the
smallest eigenvalue λ(I) of I (see below) is at most (δ − 1)|I|, in which case we shall use
some basic facts about characters of finite Abelian groups to show that there are few such
sets; or λ(I) is larger, in which case we shall find a small subset S ⊆ I such that G∗S is a
d-regular graph with smallest eigenvalue satisfying λ > (δ/4− 1)d, and apply Theorem 1.3.
We begin with the following key definition.

Definition 7.4 (The smallest eigenvalue of S). Given a finite Abelian group G, and a subset
0 6∈ S ⊆ G, let

λ(S) := min
{

Re(λ) : A(S)v = λv for some v 6= 0
}
,

where Re(λ) is the real part of the complex number λ, A(S) is the adjacency matrix of the
directed Cayley graph on G, i.e., the (0, 1)-matrix with A(x, y) = 1 iff y − x ∈ S, and 0 is
the zero vector.

Next, we recall some simple properties of characters of finite Abelian groups.

7.1. Characters of finite Abelian groups.

Definition 7.5. A character of a group G is a homomorphism from G into the multiplicative
group of non-zero complex numbers, i.e., a function χ : G→ C∗ such that χ(a+b) = χ(a)χ(b)
for all a, b ∈ G.
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A character χ is called trivial if χ(x) = 1 for all x ∈ G; we will denote the trivial character

by χT . The set of all characters of G is denoted by Ĝ. The following statement establishes
a relation between the smallest eigenvalue of the matrix A(S) and the characters of G.

Lemma 7.6. For every 0 6∈ S ⊆ G,

λ(S) = min

{
Re

(∑
s∈S

χ(s)

)
: χ ∈ Ĝ

}
> −|S|.

We shall use the following facts about finite Abelian groups in the proof of Lemma 7.6.

Fact 1. If G is a finite Abelian group of order n, then all its characters take values in the
set

Un :=
{

(ξn)k : k ∈ {0, . . . , n− 1}
}
, where ξn = e2πi/n,

of nth roots of unity. Moreover, if χ ∈ Ĝ then range(χ) = Uk for some k = k(χ).

Fact 2. Ĝ is an orthogonal basis of the vector space CG.

Proof of Lemma 7.6. Let us start by breaking up the adjacency matrix A(S) into |S| pieces
as follows:

A(S) =
∑
s∈S

As, where As(x, y) =

{
1 if y − x = s

0 otherwise.

Thus, for every s, x ∈ G and χ ∈ Ĝ,

(Asχ)(x) = χ(x+ s) = χ(x)χ(s) = (χ(s)χ)(x),

and so every χ ∈ Ĝ is an eigenvector of each As with χ(s) being the corresponding eigen-

value. Hence, every χ ∈ Ĝ is an eigenvector of A(S), with eigenvalue
∑

s∈S χ(s). Since the
characters of G form an orthogonal basis of CG, it follows that the set of eigenvalues of A(S)
is exactly {∑

s∈S

χ(s) : χ ∈ Ĝ
}
.

The inequality λ(S) > −|S| follows since |χ(s)| = 1 for every s ∈ S and χ ∈ Ĝ. �

Let us note for future reference the following fact from the proof above.

Lemma 7.7. For every 0 6∈ S ⊆ G, the characters of G form a basis of eigenvectors of the
matrix A(S).

7.2. Sum-free sets with small smallest eigenvalue. Using the properties described
above, we shall prove the following lemma.

Lemma 7.8. Let δ > 0 be sufficiently small and let n ∈ N be sufficiently large. Then, there
exist constants ε = ε(δ) > 0 and C = C(δ) such that, for every m > C

√
n,∣∣∣{I ∈ SF

(δ)
> (G,m) : λ(I) 6 (δ − 1)|I|

}∣∣∣ 6 2−εm
(
n/2

m

)
.
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Proof. For each character χ of G and each A ⊆ G, define λ(A,χ) = Re
(∑

x∈A χ(x)
)
. We

shall bound the number of I ∈ SF
(δ)
> (G,m) such that λ(I, χ) 6 (δ − 1)|I| by

2−εm

n

(
n/2

m

)
.

The desired bound will follow since λ(I) = minχ∈Ĝ λ(I, χ) and there are at most |G| char-
acters of G. We split into two cases, depending on the number of different values taken
by χ.

Case 1. |range(χ)| = 2.

Since χ is a group homomorphism, it corresponds to a subgroup H of G of index 2, namely,
H = χ−1(1). Since |I ∩H| > δn for every such H, we have

λ(I, χ) = Re

(∑
x∈I

χ(x)

)
= |I ∩H| − |I \H| >

(
2δ − 1

)
|I|

and hence in this case, there are no I ∈ SF
(δ)
> (G,m) such that λ(I, χ) 6 (δ − 1)|I|.

Case 2. |range(χ)| > 3.

Let k = |range(χ)| and recall (from Fact 1) that range(χ) = Uk, where Uk is the multi-
plicative group of kth roots of unity. Observe that |χ−1(ξ)| = n/k for every ξ ∈ Uk, and
consider, for each ζ on the complex unit circle S1, the open arc Cζ of length π/3 centred at
ζ on S1. Set Kζ := χ−1(Cζ), and note that |Cζ ∩ Uk| 6 k/3 for every ζ ∈ S1, and hence
|Kζ | 6 n/3. Note also that, even though there are infinitely many Cζ , there are at most 2k
different sets Kζ .

Let c > 0 and suppose first that there exists ζ ∈ S1 such that |Kζ ∩ I| > (1− c)|I|. The
number of such sets I is at most

2k ·
cm∑
`=0

(
n− |Kζ |

`

)(
|Kζ |
m− `

)
6 n2

(
n/3

(1− c)m

)(
2n/3

cm

)
6

(
2

3
+ c′

)m(
n/2

m

)
,

where c′(c)→ 0 as c→ 0.
So suppose that |Kζ∩I| 6 (1−c)|I| for every ζ ∈ S1. We claim that, if δ > 0 is sufficiently

small, then

|λ(I, χ)| =
∣∣∣∑
x∈I

χ(x)
∣∣∣ 6 (1− c+ c · cos

(
π/6
))
· |I| <

(
1− δ

)
|I|. (9)

To see this let v =
∑

x∈I χ(x), note that if v = 0 then we are done, and otherwise observe
that, by our assumption, χ(x) can lie within the open arc of length π/3 centred in direction
v for at most (1− c)|I| elements x ∈ I. Since each of the others contribute at most cos(π/6)
in the direction of v, (9) follows. This is a contradiction, so the proof is now complete. �
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7.3. Sum-free sets with large smallest eigenvalue. We shall prove the following state-
ment using Theorem 1.3. Together with Lemma 7.8 it will easily imply Proposition 7.3, and
hence Theorem 7.1.

Lemma 7.9. For every finite Abelian group G and every δ > 0, there exist ε = ε(δ) > 0
and C = C(δ) > 0 such that∣∣∣{I ∈ SF

(δ)
> (G,m) : λ(I) > (δ − 1)|I|

}∣∣∣ 6 2−εm
(
n/2

m

)
for every m > C

√
n.

The idea of the proof is as follows: we choose a set S ⊆ I of size εm and observe that,
since I is sum-free, I \ S is an independent set in G∗S, the Cayley graph of S. The key point
is that, for some such S, our bound on λ(I) implies the existence of a non-trivial bound on
λ(G∗S), the smallest eigenvalue of the adjacency matrix of the Cayley graph of S. Combined
with Theorem 1.3, this implies that there are only very few choices for I \ S, and hence for
I itself.

The first step is the following lemma, which shows that our bound on λ(I) allows us to
find a small set S such that λ(S)/|S| is also bounded away from minus one.

Lemma 7.10. If I ∈ SF
(δ)
> (G,m) satisfies λ(I) > (δ − 1)|I|, then there exists a set S ⊆ I

of size εm such that

λ(S) >

(
δ

2
− 1

)
|S|. (10)

Proof. Recall the definition of λ(A,χ) from the proof of Lemma 7.8. Since λ(I) > (δ− 1)|I|,
it follows from Lemma 7.6 that λ(I, χ) > (δ− 1)|I| for every χ ∈ Ĝ. Choose a subset S ⊆ I
of size εm uniformly at random; we claim that λ(S, χ) is tightly concentrated around the
mean, i.e., around ελ(I, χ). Indeed, by Chernoff’s inequality, we have

P
(
λ(S, χ) 6 (δ/2− 1)ε|I|

)
6 e−Ω(m),

where the implicit constant depends on ε and δ. There are exactly n characters in Ĝ, and
so, by the union bound, the probability that S does not satisfy (10) is at most 1/2. Thus
there exists a set S as claimed. �

Next, we show that this bound on λ(S) implies a similar bound on λ(G∗S), the smallest
eigenvalue of the adjacency matrix of the Cayley graph of S. Recall that the adjacency
matrix of G∗S is A

(
S ∪ (−S)

)
, and hence

λ
(
G∗S
)

= λ
(
S ∪ (−S)

)
.

We shall use the following lemma, which bounds λ(G∗S) in terms of λ(S).

Lemma 7.11. Let 0 6∈ S ⊆ G and δ > 0. If λ(S) > (δ − 1)|S|, then

λ
(
G∗S
)
>

(
δ

2
− 1

)
|S ∪ (−S)|.
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Proof of Lemma 7.11. By Lemma 7.7, the characters of G are a basis of eigenvectors of both
A(S) and A((−S) \ S). Thus, by Lemma 7.6,

λ
(
G∗S
)

= λ
(
S ∪ (−S)

)
= λ(S) + λ

(
(−S) \ S

)
> (δ − 1)|S| − |(−S) \ S| >

(
δ

2
− 1

)
|S ∪ (−S)|,

as required. The last inequality follows from the fact that |(−S) \ S| 6 |(−S)| = |S|. �

We can now complete the proof of Lemma 7.9.

Proof of Lemma 7.9. Let I ∈ SF
(δ)
> (G,m) and suppose that λ(I) > (δ − 1)|I|. By Lem-

mas 7.10 and 7.11, there exists a set S ⊆ I with |S| = εm, such that

λ(G∗S) >

(
δ

4
− 1

)
|S ∪ (−S)|.

Since I is sum-free, I\S is an independent set in G∗S. We claim that G∗S satisfies the conditions
of Theorem 1.3. Indeed, G∗S is a dS-regular graph on n vertices, where dS = |S ∪ (−S)|, and

|I \ S| =
(
1− ε

)
m >

C(ε)n

εm
>

C(ε)n

|S ∪ (−S)|
,

since m > C
√
n. Note also that

|λ(G∗S)|
dS + |λ(G∗S)|

6
1− (δ/4)

2− (δ/4)
6

1

2
− δ

16
.

Hence, by Theorem 1.3,

I(G∗S, (1− ε)m) 6

(
(1/2− δ/20)n

(1− ε)m

)
,

and so∣∣∣{I ∈ SF
(δ)
> (G,m) : λ(I) 6 (1− δ)|I|

}∣∣∣ 6 ( n

εm

)(
(1/2− δ/20)n

(1− ε)m

)
6 2−εm

(
n/2

m

)
if ε = ε(δ) > 0 is sufficiently small. This proves the lemma. �

Finally, note that Lemmas 7.8 and 7.9 imply Proposition 7.3.

7.4. Proof of Theorem 7.1. First, observe that if |G| is even, then the claimed lower
bound on |SF(G,m)| is a straightforward consequence of the fact that, by Theorem 6.2,
|SF0(G)| = #

{
elements of G of order 2

}
and that each pair of distinct B,B′ ∈ SF0(G)

intersects in |G|/4 elements. If |G| is odd, then Theorem 7.1 only gives an upper bound on
|SF(G,m)|.

For the upper bound, observe that by Propositions 7.2 and 7.3, we have

|SF(G,m)| 6 |SF
(δ)
6 (G,m)| + |SF

(δ)
> (G,m)|

6
(
#
{

elements of G of order 2
}

+ o(1)
)(n/2

m

)
+ 2−εm

(
n/2

m

)
,
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for every m > 4
√
n log n, as required.
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