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Abstract

Phylogenetic tree reconstruction is a fundamental biological
problem. Quartet trees, trees over four species, are the
minimal informational unit for phylogenetic classification.
While every phylogenetic tree over n species defines

(
n
4

)
quartets, not every set of quartets is compatible with some
phylogenetic tree.
Here we focus on the compatibility of quartet sets. We
provide several results addressing the question of what can
be inferred about the compatibility of a set from its subsets.
Most of our results use probabilistic arguments to prove the
sought characteristics. In particular we show that there are
quartet sets Q of size m = cn logn in which every subset of
cardinality c′n/ logn is compatible, and yet no fraction of
more than 1/3+ ε of Q is compatible. On the other hand, in
contrast to the classical result stating when Q is the densest,
i.e. m =

(
n
4

)
the consistency of any set of 3 quartets implies

full consistency, we show that even for m = Θ(
(
n
4

)
) there

are (very) inconsistent sets for which every subset of large
constant cardinality is consistent.
Our final result, relates to the conjecture of Bandelt and
Dress regarding the maximum quartet distance between
trees. We provide asymptotic upper and lower bounds for
this value.

1 Introduction

The study of evolution and the construction of phylo-
genetic (evolutionary) trees are classical subjects in bi-
ology. A phylogeny, the evolutionary history of a set
of species, is normally represented by a tree where the
species under study are mapped to the leaves of the tree
and the tree structure represents evolutionary relation-
ships. Frequently, it is desirable to combine several trees
over overlapping sets of species. This task is called the
supertree task [6, 5] where the goal is to find a tree over
the full set of species that satisfies most of the partial
input trees. We distinguish between rooted and unrooted
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settings. In the rooted setting a rooted triplet tree (Fig-
ure 1:a) is the basic unit of information. We denote the
triplet over leaves {a, b, c} as [ab|c] if the lowest com-
mon ancestor (LCA) for a, b is a (proper) descendant of
the LCA for all {a, b, c}. However, the more prevailing
setting is the unrooted setting. In the unrooted setting,
the notion of LCA is meaningless and therefore the ba-
sic unit of information is a quartet tree (Figure 1:b).
We denote a quartet over leaves {a, b, c, d} as [ab|cd] -
meaning that there is an edge in the underlying tree
separating a and b from c and d.
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Figure 1: In a rooted setting, a rooted triplet is the
smallest informative tree versus an unrooted quartet in
the unrooted setting. (a) - a rooted triplet tree [12|3].
(b) - an unrooted quartet tree [12|34].

For its fundamental role in phylogenetics, a vast
research effort has been devoted to phylogenetic tree
reconstruction from quartets, a field denoted as quartet-
based reconstruction (see e.g. [3, 4, 25, 31, 28, 33]
among many). Here, accurate trees over four species
are constructed, normally using some quartet oracle [12,
13, 17, 21], from a (possibly partial) set of 4-sets.
These trees are subsequently combined together into
the big tree on the full species set. The latter problem,
however, deciding whether there exists a tree satisfying
all the quartets in an arbitrary given set, is NP-
complete [32]. Moreover, the ideal case in which all
quartets agree on a single tree, is very rare. This
raises the problem of finding a tree maximizing the
number of compatible quartets - maximum quartet
compatibility (MQC) [27]. MQC is obviously NP-
hard and therefore several approximation algorithms
have been suggested [4, 8, 24, 29, 30], but the best
approximation to the general problem is still obtained



by a naive “random tree” with expected approximation
ratio of 1/3.

A possible direction to follow in this respect, is to
check compatibility of relatively small subsets of the
ground set as “witnesses” for compatibility, under the
trivial observation that if the ground set is compatible
(agreeing on some tree), then necessarily every subset
of it is compatible. Of course the number of such
subsets is exponentially large, but one might suspect
that a sampling approach can lead to a randomized
algorithm for set compatibility. In this work we address
the question of how much can we infer about a quartet
set just by examining its constituting subsets. We
examine this question in several settings, all of which are
abstract and asymptotically large. We use probabilistic
arguments to base our claims, allowing us to show large
incompatibility in (relatively sparse) sets of quartets,
despite the compatibility of all their (rather large)
subsets. One consequence of the results here is that no
sampling algorithm, even one based on m/polylog(m)
quartets among m given ones, can be used to determine
the compatibility of the given quartet set, or estimate
the maximum cardinality of a compatible subset of it.

More concretely, one might expect that the larger
the subsets with respect to the ground quartet set are,
the more information they endow us about the set.
However, our first result shows, perhaps surprisingly,
that even when the subsets are only of small polyloga-
rithmic factor smaller than the ground set, the compat-
ibility of all subsets of this size cannot guarantee even
relative compatibility (compatibility of a large fraction)
of the ground set. This result extends a result of [23]
where a constant size (six) quartet set is incompatible
yet every subset of it, is compatible. However, the con-
struction from [23] has some additional properties that
we do not require here.

On the other extreme, however, it can be directly
inferred from a result of Colonius and Schulze [11] that
when the ground set is the densest, that is the full

(
n
4

)
quartet set, compatibility of every subset of at least
three quartets implies set compatibility. There is a big
gap between these two results. In the first result, even
a polylog factor between the sizes of the ground set and
the subsets, cannot guarantee compatibility of the set,
whereas in the second result, even a constant size, in fact
the minimal meaningful set size, is enough to warrant
compatibility. This raises the natural question whether
it is the density of the ground set that determines if
subset compatibility implies set compatibility.

Our next result tackles this latter question. Specif-
ically, we show that for any ε there is a quartet set of
size ε

(
n
4

)
that is (very) incompatible, yet every subset

of it of size Θ̃
(
(1/ε)1/3

)
is compatible. This means that

for every given (arbitrarily large) constant C, we can
take a quartet set on n species which is dense (namely,
of constant density) that is very incompatible, and yet
every subset of size C is compatible. We use a blowup
argument for this result where a constant size set is ex-
panded to arbitrary, asymptotic, size. The latter also
extends a result of [23] showing an example of a con-
stant size incompatible quartet set all of whose subsets
are compatible. We can use the same blowup technique
we use here on that example, to get a big incompati-
ble set (of magnitude a constant fraction of

(
n
4

)
), but

the size of the compatible subsets this way will only be
limited to 5.

Compatibility is inherently linked to the subject of
closure operations on a quartet set [7, 10, 15, 16, 23].
These operations rely on inference rules allowing a
recursive augmentation of a set of quartets with quartets
that are implied by the existing set. A quartet set Q
is closed when it contains all the quartets induced by
all the trees satisfying Q. Part of our work is also
related and relies on these inference rules, used here
in Section 4.

Our last result touches compatibility from a differ-
ent angle. We tackle the question of how much can a
compatible set be violated. In particular we are inter-
ested in answering what fraction of the largest, unam-
biguous, compatible, set - the full set of

(
n
4

)
compatible

quartets - can be violated. This question has signif-
icance when measuring similarity between trees based
on quartet similarity [20]. It was presented by Bandelt
and Dress [2] where they conjectured that this value
tends to 2/3. We give upper and lower bounds on this
fraction.

We end the paper with open problems and further
research questions arising as a result of this work.

2 Preliminaries

A binary rooted tree is a tree whose edges are directed,
every internal vertex has two children and every vertex
but one distinguished vertex, the root, has a single
ancestor. In a binary undirected (also called unrooted)
tree, edges are undirected (and hence parenthood does
not exists), and all internal vertices have three neighbors
each. Such a tree is also called a trivalent tree.
Throughout this paper, unless stated otherwise, all trees
are assumed to be unrooted binary trees, with leaves
labeled bijectively by a taxa (species) set X of size
n. Such trees are called phylogenetic trees. For a tree
T = (V,E), the set of leaves of T is denoted by L(T ).

The removal of an edge e in a tree splits the tree
into two subtrees and therefore induces a split among
the leaves of the tree. We identify an edge e by the
split (U,L(T ) \ U) it generates on the set of leaves,



and denote the split by Ue. As external edges (edges
adjacent to leaves) induce trivial splits, we refer only to
internal edges.
Let T be a tree and A ⊂ L(T ) a subset of the leaves of T .
We denote by T |A, the topological subtree of T induced
by A where all leaves in L(T ) \ A and paths leading
exclusively to them are removed, and subsequently
internal vertices with degree two are contracted.

For two trees T and T ′, we say that T satisfies T ′

(or, equivalently, that T ′ is satisfied by T ), if L(T ′) ⊂
L(T ) and T |L(T ′) = T ′. Otherwise, T ′ is violated by
T . Let T = {T1, . . . , Tk} be a set of trees with possibly
overlapping leaves, and denote by L(T ) =

⋃
i L(Ti), the

union of the set of leaves of all trees Ti ∈ T . Then for a
tree T with L(T ) = L(T ), we denote by Ts(T ) the set
of trees in T that are satisfied by T . We say that T is
compatible if there exists a tree T ∗ over the set of leaves
L(T ) that satisfies every tree Ti ∈ T , i.e. Ts(T ∗) = T
(see Figure 2). We denote by co(T ) the set of trees that
satisfy T , co(T ) = {T : Ts(T ) = T }.

Further, we say that T ∗ is defined by T if co(T ) is
the singleton {T ∗}. If there is no such compatible tree
T ∗, (i.e. co(T ) = ∅), we say that T is incompatible.

(a) (b)

Figure 2: (a) A phylogenetic tree over five leaves. (b) Two
quartets compatible with the tree on the left.

A quartet tree (or just a quartet for short), is
a phylogenetic tree over four leaves {a, b, c, d}. We
denote a quartet over {a, b, c, d} as [ab|cd] if there
exists an edge e whose corresponding split Ue satisfies
a, b ∈ U and c, d /∈ U . Quartets are the most
elementary informational unit in an unrooted tree, as
a pair corresponds to a path in a tree and a triplet -
to a vertex. Every phylogenetic tree T with n leaves
uniquely defines

(
n
4

)
quartets, one for each set of four

leaves. Let Q(T ) denote this full quartet set of T .
Obviously, Q(T ) uniquely defines T .

We mention two basic problems and results regard-
ing quartet based reconstruction. When a set of trees

T is incompatible, it is desirable to find a tree T ∗ over⋃
i L(Ti) that maximizes some objective function. This

meta-problem is commonly known as the supertree prob-
lem and a corresponding solution T ∗ is a supertree. An
important case of the supertree problem is when the set
of input trees is a set of quartet trees Q and the task
is to find a tree T such that |Qs(T )| (the subset of Q
maximized by T ) is maximized. This problem is called
maximum quartet compatibility (MQC).

Problem 2.1. (MQC) Given a set of quartets Q with
leaves labeled by a taxa set X , find a tree T with
leaves labeled bijectively by X that satisfies the maximum
number of elements of Q.

We note that MQC is NP-hard. In fact, the decision
problem of whether Q is compatible is NP-Complete
[32].

Let T be any tree with n leaves labeled by a taxa set
X . Consider a random bijection π between a taxa set
X of size n and the leaves of T . The corresponding
labeled tree is denoted by Tπ. As each of the n!
possible bijections is equally likely, we notice that a
quartet [ab|cd] with labels from X is satisfied by Tπ

with probability 1/3. We therefore have, by linearity of
expectation:

Lemma 2.1. Let Q be an arbitrary set of quartets over
a taxa set X of size n, and let Tπ be a random bijection
between the leaves of a tree T and X . Then the expected
number of elements in Q satisfied by T is |Q|/3.

Lemma 2.1 immediately yields an efficient (randomized)
1/3 approximation algorithm for MQC. This naive
solution is presently the best known approximation ratio
for general instances of MQC that can be achieved by a
polynomial time algorithm.

3 Subset compatibility does not imply set
compatibility

Our first result shows that even when all relatively large
subsets of a given set are compatible, the whole set can
still be very far from compatible.

Theorem 3.1. There exists a set Q of Θ(n log n) quar-

tets such that every subset Q′ ⊂ Q of size Θ
(

n
logn

)
is compatible, yet Q is (very) incompatible, that is, no
subset consisting of more than a 1/3 + ε fraction of its
quartets is compatible.

In the following we prove the existence of Q in Theorem
3.1 via probabilistic arguments.

Definition 3.1. (Random quartet set) A set of m
quartets Q is a random quartet set if it is constructed



by the following process. A quartet q is composed by
first sampling four distinct taxa a, b, c, d ∈ {1, . . . , n}
uniformly at random. Then, q is set to be one out of
the three possible quartets over {a, b, c, d} (namely, one
of [ab|cd], [ac|bd], [ad|bc]) with equal probability. Finally,
q is added to Q. The process repeats m times (observe
that Q is constructed with replacement, so it may be a
multiset; however, the probability of having a repeated
element in Q tends to zero as n grows, assuming m =
o(n2)).

Lemma 3.1. Fix ε > 0. Let Q be a random quartet set
of size |Q| = m ≥ 4

ε2n log n. Then, with probability of
at least 2/3 there is no phylogenetic tree satisfying more
than a fraction of 1/3 + ε quartets of Q.

Proof. Let T be any phylogenetic tree over the taxa
set X = {1, . . . , n} and let Qs(T ) be the quartets of
Q satisfied by T . Clearly, by the construction of Q,
a quartet q is satisfied with probability 1/3 and by
linearity of expectation, E[m − |Qs(T )|] = 2m/3. By
a Chernoff bound (cf. [1], Theorem A.1.13)

Pr[|Qs(T )| − m

3
> εm]

= Pr[(m− |Qs(T )|)− 2m

3
< −εm]

< e−
ε2m2

4m/3

≤ 1

n3n
.

Now, a phylogenetic tree with n leaves has 2n−2 vertices
and it is well known that there are exactly (2n− 2)2n−4

(not necessarily phylogenetic) labeled trees with 2n− 2
vertices. Hence, using the union bound, we obtain that
the probability that any phylogenetic tree satisfies more
than m/3 + εm quartets is less than

(2n− 2)2n−4 · 1

n3n
� 1

3
.

We next prove the existence of a set Q all of whose
subsets of size O(n/ log n) are compatible. Again, we
use probabilistic arguments to establish the desired
properties.

Definition 3.2. (Quartet Cover) Let Q′ be a set
of quartets. Let cover(Q′) denote the set of taxa
contained in some quartet of Q′. If X ′ ⊂ cover(Q′),
then we say that Q′ covers X ′.

Lemma 3.2. Let Q′ be a random quartet set of size m′.
For k ≤ n,

Pr[|cover(Q′)| ≤ k] ≤
(
k

n

)4m′−k

ek .(3.1)

Proof. For a given subset X ′ of k taxa, we consider
the event that cover(Q′) ⊂ X ′. The probability that
a random quartet has all its taxa in X ′ is

k(k − 1)(k − 2)(k − 3)

n(n− 1)(n− 2)(n− 3)
≤
(
k

n

)4

.

Hence,

Pr[cover(Q′) ⊂ X ′] ≤
(
k

n

)4m′

.

As there are
(
n
k

)
possible choices for X ′ we have (by the

union bound and the fact that k! ≥ (k/e)k)

Pr[|cover(Q′)| ≤ k] ≤
(
n

k

)(
k

n

)4m′

≤
(ne
k

)k (k
n

)4m′

=

(
k

n

)4m′−k

ek .

Notice that the proof works seamlessly when Q′ is a
multiset.

Equation (3.1) bounds the probability that a given
random quartet set Q′ satisfies |cover(Q′)| ≤ k. As
our ground set of m quartets Q is also random, so is
every subset of Q. We want to bound the probability of
having a small value of |cover(Q′)| for any subset Q′ of
Q of size m′. As there are

(
m
m′

)
subsets to consider, we

immediately obtain the following corollary from Lemma
3.2.

Corollary 3.1. Let Q be a random quartet set of size
m. For m′ ≤ m, the probability that there exists some
subset Q′ of Q of size m′ with |cover(Q′)| ≤ k is at most(
m

m′

)(
k

n

)4m′−k

ek ≤
(me
m′

)m′ (k
n

)4m′−k

ek

=
(m
m′

)m′ (k
n

)4m′−k

ek+m
′
.

On the one hand, the larger k is, the stronger the result
in Theorem 3.1 is. On the other hand, making k too
large makes it more difficult to maintain compatibility.
The next few claims establish a value of k which is
relatively large, while guaranteeing compatibility.

Definition 3.3. A quartet set Q̂ satisfies twofold cov-
erage (TFC) if |cover(Q̂)| > 2|Q̂|.



The following lemma can also be deduced from a
result of Grünewald [22] but the proof presented here is
simpler.

Lemma 3.3. Let Q′ be a set of quartets with the prop-
erty that every nonempty subset Q̂ ⊂ Q′ satisfies TFC,
then Q′ is compatible.

Proof. Suppose that every nonempty subset Q̂ ⊂ Q′

satisfies TFC. We first note that any such Q̂ has at least
one taxon covered by a single quartet of Q̂. Indeed, the
average number of quartets containing a specific taxon
is precisely

4|Q̂|
|cover(Q̂)|

<
4|Q̂|
2|Q̂|

= 2

and so at least one taxon is contained in less than two
quartets of Q̂, namely in one.

Observation 3.1. Let T be a tree over a set
X and let q be a quartet over {a, b, c, d}, s.t.
|{a, b, c, d} \ X | ≥ 1. Then it is possible to
construct a tree (over {a, b, c, d}∪X ) satisfying
both q and T .

Proof. We consider the case |{a, b, c, d} \ X | =
1, if this cardinality is bigger the argument is
simpler. WLOG let q = [ab|cd] and assume
d /∈ X . Let T ′ be constructed from T as
follows. Split the edge incident with c in T
by adding a new internal vertex v, and attach
a new edge connecting v and d. Hence, T ′

satisfies both T and q.

As any nonempty Q̂ ⊂ Q′ satisfies TFC and thus has
a taxon x covered by a single quartet of Q̂, the last
observation shows that if we already have a tree over
the rest of the taxa X \x that satisfies all Q′ \ q, we can
construct a tree over the whole set X by adding x such
that q is satisfied and hence all Q′ is satisfied.

We now construct a tree satisfying Q′. The proof
follows by induction on the size of Q′. The basis of the
induction is trivial, Q′ is a single quartet and such is
the tree. In order to prove the induction step, we need
some auxiliary observation.

Observation 3.2. For a quartet set Q′ such
that every nonempty subset Q̂ ⊂ Q′ satisfies
TFC, it is possible to order Q′ as (qi) such that
every qi contains a new taxon, i.e. a taxon not
contained in any quartet qj for j < i.

Proof. We build the ordering backward, start-
ing from the complete set Q′. Since, Q′ sat-
isfies TFC, there must be a quartet q′ with a

taxon covered only by q′. Then we take out q′

to be the last in the ordering. Since Q′ \ {q′}
also satisfies the TFC, we can repeat this pro-
cess all the way until Q′ is depleted.

We can now prove the induction step. Since every qi in
the ordering (qi) contains a taxon not covered by any
qj , for j < i, by Observation 3.1 it can be added to the
existing tree.

It now remains to establish the probability of the event
described by the conditions of Lemma 3.3 for the values
of interest.

Lemma 3.4. Let C ≥ 1 be a constant and let n be
sufficiently large as a function of C. Let Q be a random
quartet set of size m ≤ Cn log n. Then the probability
that every subset Q′ ⊂ Q of size at most n2/(4e4m) is
compatible is at least 2/3.

Proof. By Corollary 3.1 the probability that there exists
a quartet subset of size m′ (of a set of m quartets) that
covers at most k taxa is at most

(m
m′

)m′ (k
n

)4m′−k

ek+m
′
.

As we wish to use the properties of TFC , we set
k = 2m′. The probability in the last equation becomes

(m
m′

)m′ (2m′

n

)4m′−2m′

e3m
′

=

(
4e3mm′

n2

)m′
.(3.2)

However, we need to bound the above probability not
for a single value of m′, but for all values m′ = 1, . . . ,m∗

where m∗ = n2/(4e4m). Thus, by (3.2) and the union
bound, we must prove:

m∗∑
m′=1

(
4e3mm′

n2

)m′
≤ 1

3
.

Indeed, such a bound implies that with probability at
least 2/3, every subset of quartets of size m′ ≤ m∗

covers more than k = 2m′ quartets, and hence satisfies
TFC. Consequently, by Lemma 3.3, every such subset
is compatible.

To bound the left hand side of the last inequality
note that for m′ = 1 we have 4e3mm′/n2 = O(log n/n)
and for each 2 ≤ m′ ≤ log n we have (4e3mm′/n2)m

′
=

O( log2 n
n2 ). For bigger values of m′ the assumption that

m′ ≤ n2/(4e4m) implies (4e3mm′/n2)m
′ ≤ (1/e)m

′ ≤



1
n . Therefore the sum is at most

O

(
log n

n

)
+

∑
2≤i≤logn

O

(
log2 n

n2

)
+
∑

i>logn

(
1

e

)i
= O

(
log n

n

)
,

which is smaller than 1/3 provided n is sufficiently large.

Proof (Theorem 3.1): Let ε > 0 and let C = 4/ε2.
Let n be sufficiently large as a function of ε (and hence
C). Let Q be a random quartet set of size |Q| = m =
4
ε2n log n. Then, by Lemma 3.1, with probability of at
least 2/3 there is no phylogenetic tree satisfying more
than a fraction of 1/3+ ε quartets of Q. By Lemma 3.4,
with probability at least 2/3, every subset of Q of size at

most ε2n
16e4 logn is compatible. Since with probability at

least 1/3 (namely, positive probability) both lemmata
hold for a randomly chosen Q, the theorem follows.

4 Tri-compatibility implies compatibility

In Section 3 we have shown that even when all quartet
subsets of a fairly large magnitude are compatible,
the whole quartet set Q may still be very far from
compatible. In this section we observe that when Q
is very dense, this cannot happen. As before, our taxa
set is of size n. Recall that a full quartet set has size(
n
4

)
where every four taxa induce a single quartet. The

following proposition is a direct consequence of a result
of Colonius and Schulze [11].

Proposition 4.1. Let Q be a full quartet set. If every
subset of three quartets (a quartet triplet) is compatible,
then Q is compatible.

The motivation to study quartet triplets stems from the
following reason. Trivially, a single quartet is compat-
ible, and by our assumption (that every four taxa in-
duce a single quartet) and Observation 3.1, also a pair
of quartets is compatible. This, however, changes when
considering three or more quartets. For example, the set
[ab|cd], [ac|ed], and [ae|cd] is easily seen to be incompat-
ible. Figure 3:a shows two compatible quartets inducing
a tree over five taxa whereas Figure 3:b shows a quartet
triplet that is incompatible - every pair of quartets in-
duces a different tree. We denote trees over five taxa as
quintets and usually mark quintets by r (as q is reserved
for quartets). Observe that all unlabeled phylogenetic
trees on five leaves are isomorphic. Precisely two pairs
of leaves have a common neighbor (such a pair is called
a cherry). We therefore have the following definition.

1

2 4

3 3

2 5

4

2 4 2 5

1

2 5
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(a)

1

2 4

3 3

2 5

4 1

5 2

4

2 4 2 5 5 2

(b)

Figure 3: (a) Two quartets inducing a tree over five taxa.
(b) Three incompatible quartets.

Definition 4.1. A quintet is an unrooted phylogenetic
tree over five taxa. We mark a quintet r = [12|3|45]
denoting that {1, 2} and {4, 5} are the two cherries and
3 is the remaining leaf.

Proof (Proposition 4.1): For a quartet set Q, let
[ab ∗ cd] denote that [ac|bd] /∈ Q and [ad|bc] /∈ Q. The
following result has been proved in [11]

Let Q be a quartet set. If for every five taxa
{a, b, c, d, e} the following holds:

[ae|bc] ∨ [ae ∗ cd]⇒ ([ab ∗ cd]⇒ [be ∗ cd]) ,

then Q is consistent.

Since in Proposition 4.1 we assume that Q is a full
quartet set, we can rephrase this condition as

[ae|bc] ∨ [ae|cd]⇒ ([ab|cd]⇒ [be|cd]) .

It is easy to verify that indeed each five taxa {a, b, c, d, e}
obey this rule. Indeed, if [ae|bc] and also [ab|cd] then
the quintet must [ae|b|cd] so [be|cd] holds. Similarly, if
[ae|cd] and [ab|cd] then the quintet is either [qb|e|cd] or
[ae|b|cd] so [be|cd] holds in any case.

5 Extension to dense inputs

In the previous sections we have shown that when
the quartet set is rather sparse, specifically O(n log n)
quartets, it is possible that even if every relatively large
subset of it is compatible, the entire set may still be
very far from compatible. On the other hand, if the set



is the full
(
n
4

)
quartet set, then it is enough that every

quartet triplet is compatible, to force compatibility of
the entire set. A natural question to ask is how far can
we push up the size of the ground set, that is, increasing
the number of quartets towards

(
n
4

)
, and still obtain a

negative result while requiring that all non-negligible
size subsets are compatible. In this section we show
that even for size Θ(

(
n
4

)
) there are (very) incompatible

sets of this size in which every subset of large constant
cardinality is compatible.

Theorem 5.1. For any γ > 0 there exists δ ≤ γ and
there exists quartet sets of size δn4 that are incompati-
ble, and yet have the property that every subset of size
Θ̃
(
(1/δ)1/3

)
is compatible. 1

We give a short overview of the proof. We start with
a small constant size basic set X ∗ of N taxa that is
big enough for Theorem 3.1 to hold. We therefore
have a quartet set of size Θ(N logN) for which we
know that it is not compatible and yet every subset
of size Θ(N/ logN) is compatible. Next, we use a
blowup argument to expand the basic set to a set
of taxa X of size n and Θ(

(
n
4

)
) quartets. We prove

that the expanded quartet set is still very far from
being compatible yet any appropriate large constant size
subset of it is compatible. Adjusting the parameter γ
and hence δ controls the size of N and the blowup scale,
and the theorem follows. We proceed with the details.

Proof. By the proof of Theorem 3.1 we know that for
any ε > 0 there exists N0 = N0(ε) such that for all
N > N0 there exists a quartet set Q over a taxa set
of size N with |Q| = 4

ε2N logN with the following
properties: No tree satisfies more than a fraction of
1/3 + ε elements of Q and yet every subset of Q with
at most ε2N/(16e4 logN) elements is compatible. For
γ > 0, let ε > 0 be the largest constant for which
N0 = N0(ε) satisfies

γ ≥ 4 logN0

ε2N3
0

.

Let N ≥ N0 be the smallest constant which satisfies(
1

δ(log 1
δ )4

)1/3

≤ ε2N

16e4 logN
(5.3)

where

δ =
4 logN

ε2N3
.

Observe that indeed δ ≤ γ.

1The notation Θ̃(.) is used to suppress polylogarithmic factors.

Let X ∗ be a ground set of N taxa and let Q∗ be a set
of |Q∗| = 4

ε2N logN quartets over X ∗ with the following
properties: No tree satisfies more than a fraction of
1/3 + ε elements of Q∗ and yet every subset of Q∗ with
at most ε2N/(16e4 logN) elements is compatible.

Let X be obtained from X ∗ by replacing each
taxon x ∈ X ∗ with k copies denoted x1, . . . , xk where
k = n/N . Observe that |X | = n. Correspondingly,
construct a quartet set Q = (Q∗)k by constructing, for
each q = [ab|cd] ∈ Q∗ a set of k4 copies of the form
qi,j,`,p = [aibj |c`dp] for i, j, `, p = 1, . . . , k. Notice that

|Q| = k4|Q∗| =
( n
N

)4 4

ε2
N logN = δn4 .

We next show that Q is (very) incompatible. Let
Q′ ⊂ Q be any set of size least (1/3 + ε)|Q|. We show
that Q′ is incompatible. We can partition Q′ into k4

equivalence classes Q′(i, j, `, p) according to the indices
of the quartets in it. A quartet [aibj |c`dp] belongs
to the class Q′(i, j, `, p). By averaging, there is some
equivalence class, say WLOG Q’(1,1,1,1), of size at least

|Q′|
k4
≥ (1/3 + ε)|Q|

k4
=

(1/3 + ε)δn4

(n/N)4
= (1/3 + ε)|Q∗| .

But Q′(1, 1, 1, 1) is isomorphic to a subset of quartets
of Q∗ (simply ignore the indices), and by the properties
of Q∗ we have that no subset of more than a fraction of
1
3 + ε elements of it is satisfied, and hence Q′(1, 1, 1, 1)
is incompatible. Thus, Q′ is incompatible.

It remains to prove that every subset of Q of size(
1

δ(log 1
δ )

4

)1/3
is compatible. Indeed, let Q′ be such a

subset. If we ignore the indices of the taxa we get that
the index-free Q′ is a (multi) set of Q∗ of size at most(

1
δ(log 1

δ )
4

)1/3
, and hence, by (5.3) and by the property

of Q∗, it is compatible. Let T ′ be a tree satisfying the
index-free Q′ over X ∗. Replace every leaf (taxa) in T ′

with a tree on its k copies, as shown in Figure 4, to
obtain a tree over X satisfying Q′.

6 Maximum violation of compatible quartets

The issue of tree similarity is central in phylogenetics.
The most common tree distance measure between two
trees is the Robinson-Foulds metric that counts how
many distinct bipartitions (a bipartition is the taxa
partition of a tree resulting from the removal of an edge)
are induced by exactly one of the two trees [26].

Another common measure that involves quartet
compatibility is quartet distance [19]. Let T be a tree
over n leaves and let Q(T ) be its full quartet set of

(
n
4

)
quartets. For another tree T ′ with n leaves, let qdT (T ′)
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Figure 4: (a) A tree T ′ on taxa set X ∗ = {a, b, c, d, e}. (b)
The tree T ′ on taxa set X after replacing each leaf with its
k copies (k = 3 in this example).

denote the number of quartets out of Q(T ) satisfied by
T ′. Clearly, qdT (T ) =

(
n
4

)
and qdT (T ′) = qdT ′(T ). A

natural question to ask is how small can qdT (T ′) be.
It is clear that a tree over four taxa, i.e a quartet q,
can easily be violated by another quartet q′, simply by
rewiring (permuting) the taxa of q, yielding qdq(q

′) = 0.
However, as we show next, for larger trees, the problem
gets significantly more involved.

We now define the problem rigorously using, for
convenience, the following notation. Let f(n) denote
the maximum cardinality of a set of compatible quartets
Q over n taxa such that there is some tree which violates
all of Q. Trivially, f(n) ≤

(
n
4

)
and f(4) = 1. A classical

conjecture of Bandelt and Dress [2] states that f(n)/
(
n
4

)
converges to 2/3.

The simplest non trivial tree is a quintet. As
we have seen in Section 4, there is a single unlabeled
structure for a quintet so for n = 5, we can only rewrite
the labels on the leaves. Observe that the quintet
r′ = [15|3|24] violates all the quartets defined by the
quintet r = [12|3|45] thereby showing that f(5) = 5 (or,
equivalently, that qdr(r

′) = 0). However, as we shall see
in Lemma 6.1, already for n = 6 we no longer have total
violation, as f(6) = 14 <

(
6
4

)
. This was also proved in

[2] but the proof here is a bit simpler. The main result of

this section provides upper and lower bounds for f(n).

Theorem 6.1. 9
10

(
n
4

)
(1 + o(1)) ≥ f(n) > 2

3

(
n
4

)
.

We first establish the following lemma (see also [2]).

Lemma 6.1. f(6) = 14.

Proof. There are two non-isomorphic unlabeled phylo-
genetic trees on 6 leaves. One with three cherries and
another with two cherries, which we denote as the flower
and the caterpillar respectively (see Figure 5). Let T
and T ′ be two labeled trees on the 6 taxa {1, 2, 3, 4, 5, 6}.
We need to show that at least one quartet is satisfied
by both of them.

1

6

5

2

3

4

1 53 4

2 6

(a) (b)

Figure 5: (a) The 6-flower tree. (b) The 6-caterpillar tree
[12|3|4|56].

Assume first that at least one of T or T ′ is a flower.
WLOG T is a flower. Observe that the flower has the
property that for any two of its taxa x, y, there is at
least one quartet of the form [xy|ab]. Indeed, if {a, b}
is a cherry not involving x or y, then the quartet on
{x, y, a, b} has this form. Now, for any cherry {x, y} of
T ′, and for any cherry {a, b} of T which does not involve
x, y, the quartet [xy|ab] is satisfied by both T ′ and T .

We may now assume that both T and T ′ are
caterpillars. Assume WLOG that {1, 2}, {5, 6} are the
cherries of T and that 3 is the “non-cherry”closer to
{1, 2}. For convenience, we can denote T by [12|3|4|56].

Now, if 1 and 2 are not in opposite cherries in T ′

(namely T ′ is not of the form [1a|b|c|2d]), then there is
at least one quartet in T ′ of the form [12|ab], as we can
take a, b to be a cherry of T ′ not involving 1, 2.

So, we may now assume that 1 and 2 are in opposite
cherries in T ′, and, symmetrically, we can assume that
5 and 6 are in opposite cherries in T ′. So, either T ′

is equivalent to one of [15|3|4|26] or [15|4|3|26]. In the



first case, [13|46] is the only quartet satisfied by both
trees and in the second case, [23|45] is the only quartet
satisfied by both trees, proving that, in fact f(6) = 14.

Proof (Theorem 6.1): We first prove that f(n) >
2
3

(
n
4

)
.
Let T be any tree on the n-taxa set X . Let

Q = Q(T ) be the full quartet set of T . In particular,
any subset of Q is a compatible set. Let Tπ be obtained
from T by randomly permuting the labels on the leaves.
Then, for any quartet in Q, the probability that it is
satisfied by Tπ is 1/3. By linearity of expectation, the
expected number of quartets of Q satisfied by Tπ is(
n
4

)
/3. As the random variable (that counts the number

of quartets of Q satisfied by Tπ) is non-constant, we get
that there is a permutation on the leaves such that the
resulting Tπ does not satisfy more than 2

3

(
n
4

)
quartets

of Q.
We next prove that f(n) ≤ 9

10

(
n
4

)
(1 + o(1)). Recall

that an r-uniform hypergraph on n vertices is a subset
of r-sets of {1, . . . , n} (the r-sets are the edges of the
hypergraph). An r-uniform hypergraph is complete
if it contains all

(
n
r

)
possible edges. Denote by Kr

k

the complete r-uniform hypergraph on k vertices. For
positive integers r < k < n, let T (n, k, r) denote the
maximum possible number of edges in an r-uniform
hypergraph that does not contain Kr

k as a subgraph. A
result of de Caen [14] asserts that T (n, 6, 4) ≤ 9

10

(
n
4

)
(1+

o(1)).
Given two trees T and T ∗ on the n taxa set

{1, . . . , n}, construct the following 4-uniform hyper-
graph H whose vertices are the taxa. For any 4-set
{a, b, c, d}, we make {a, b, c, d} an edge of H if and only
if the quartet on {a, b, c, d} in T ∗ is different from the
quartet on {a, b, c, d} in T . By Lemma 6.1, we have that
H does not contain K4

6 as a subgraph. Hence, the num-
ber of edges of H is at most T (n, 6, 4) ≤ 9

10

(
n
4

)
(1+o(1)).

7 Further research and open problems

In this work we presented several results regarding
quartet subset compatibility. We drew a direct linkage
between the density of the incompatible ground quartet
set and the gap to its compatible constituting subsets.
Our results rely on probabilistic arguments and hence do
not necessarily provide explicit examples for the given
proofs of existence.
As mentioned in the introduction, one consequence of
the results here is that no sampling algorithm can
effectively be used to determine the compatibility of the
given quartet set, or estimate the maximum cardinality

of a compatible subset of it.
The results presented here have tight link to quartet

set closure as studied extensively in [9, 16, 23]. Recall
that co(Q) is the set of trees that satisfy Q. Then the
closure of Q, cl(Q) is defined as,

Definition 7.1.

cl(Q) =
⋂

T∈co(Q)

Q(T ).

That is, cl(Q) is the quartet set that exists in every tree
compatible with Q. There is no polynomial time algo-
rithm known to compute cl(Q). An implied property
of cl(Q) is that it cannot be extended by any quartet
inference rule such as the dyadic closure rules presented
below. In [23] an explicit set of six quartets over n = 8
taxa is given. This set has the property that it is incom-
patible yet every subset of it is compatible and closed.
The example demonstrates that there are cases in which
no quartet rule can be applied on any compatible sub-
set, in order to arrive at a conflict at the ground set.
However, it is not shown how this example can be ex-
tended to any n.
In this respect, it is interesting to find whether we can
extend our compatible subsets by applying some quar-
tet rules. We give here a partial answer to this ques-
tion that extends our result from Theorem 3.1. We say
that a set Q is 2-closed if it cannot be extended by any
of the two following two obvious rules (denoted as the
dyadic closure, introduced first by [15] and used further
in [17, 18]).

Definition 7.2. The dyadic closure of a quartet set
Q, denoted as cl2(Q), is a minimal set of quartets that
contains Q and satisfies the following two rules:

1. dc1: [ab|cd], [ab|ce] ∈ cl2(Q)⇒ [ab|de] ∈ cl2(Q).

2. dc2: [ab|cd], [bc|de] ∈ cl2(Q)⇒
[ab|ce], [ab|de], [ac|de] ∈ cl2(Q).

Observe that, indeed, any tree which satisfies the quar-
tets on the l.h.s. of a dyadic rule, must also satisfy the
r.h.s. of the rule. Hence, Q is 2-closed if Q = cl2(Q).
Below is a restatement of Theorem 3.1 with the restric-
tion to 2-closed sets.

Theorem 7.1. There exists a set Q of m quartets, such
that m = Θ(n log n) and every subset Q′ ⊂ Q of size

m′ = O
(

n
logn

)
is compatible and 2-closed, yet Q is

incompatible.

Proof. We need to show that in no subset of Q we can
apply one of the dyadic rules. Note that to apply each
of these rules we need to have jointly three taxa in both



quartets. We need to show that there exists such a set,
satisfying the conditions of Theorem 3.1 and also no two
quartets share the same three taxa.

Observation 7.1. If Q is a set of Θ(n log n)
random quartets, the probability of two quar-
tets sharing the same three taxa, is o(1).

Proof. For three taxa a, b, c, the proba-
bility of being selected in a quartet is

1
n(n−1)(n−2)

(
4
3

)
3! = Θ

(
1
n3

)
, and for being se-

lected in two quartets q1 and q2, Θ
(

1
n6

)
. Since

we have
(
n
3

)
triplets of taxa, the probabil-

ity of any three taxa appearing in two quar-

tets is Θ
(
n3

n6

)
. Finally, since the size of Q

is Θ(n log n), there are Θ(n2 log2 n) pairs of
quartets, so the total probability is at most

O
(

log2 n
n

)
= o(1).

Since the probability to find such a pair of quartets is
so low, it is clear that this constraint does not affect the
existence of such a set Q as we showed in Theorem 3.1.

The order of a closure inference rule is the minimal
number of quartets necessary to derive the inference
(i.e. number of quartets on the left side of the rule).
Theorem 7.1 answers only partially the question of
under what order our subsets are closed, that is, what
are the closure inference rules that cannot be applied
to them. In particular, if no inference rule can be
applied to these subsets, they are fully closed. While
using similar arguments to those used here can push the
limit a bit upward, it seems that a different approach is
necessary to prove/disprove full closeness.

As the majority of this work provides negative
results regarding the inability to infer set compatibility
based on subset compatibility, it would be beneficial to
expand the positive result of Section 4 to other cases. It
is noteworthy that compatibility of the full quartet set
can be checked in polynomial time [2], and therefore the
result of Section 4 is not of direct practical algorithmic
use, and is mostly a structural result.

On the realm of quartet fit measure studied in
Section 6, the task of closing the gap between the two
bounds remains open. This is essential for providing a
normalization means for this measure, representing the
relative (as opposed to the absolute) quartet violation
between trees.
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