
On-line Steiner Trees in the Euclidean Plane

Noga Alon ∗ Yossi Azar †

Abstract

Suppose we are given a sequence of n points in the Euclidean plane, and
our objective is to construct, on-line, a connected graph that connects all of
them, trying to minimize the total sum of lengths of its edges. The points
appear one at a time, and at each step the on-line algorithm must construct a
connected graph that contains all current points by connecting the new point
to the previously constructed graph. This can be done by joining the new
point (not necessarily by a straight line) to any point of the previous graph,
(not necessarily one of the given points). The performance of our algorithm is
measured by its competitive ratio: the supremum, over all sequences of points,
of the ratio between the total length of the graph constructed by our algorithm
and the total length of the best Steiner tree that connects all the points. There
are known on-line algorithms whose competitive ratio is O(log n) even for all
metric spaces, but the only lower bound known is of [IW] for some contrived
discrete metric space. Moreover, for the plane, on-line algorithms could have
been more powerful and achieve a better competitive ratio, and no nontrivial
lower bounds for the best possible competitive ratio were known. Here we prove
an almost tight lower bound of Ω(log n/ log log n) for the competitive ratio of
any on-line algorithm. The lower bound holds for deterministic algorithms as
well as for randomized ones, and obviously holds in any Euclidean space of
dimension greater than 2 as well.

∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel-Aviv, Israel. Supported in part by a U.S.A.- Israeli BSF Grant
†DEC Systems Research Center, 130 Lytton Ave. Palo-Alto, CA 94301.

1

1 Introduction

We consider the on-line Steiner tree problem in the Euclidean plane. The problem

can be illustrated by the following example. Suppose a company is searching for oil

in a certain (planar) region, and it is lucky enough to find a promising place for an

oil well from time to time. In order to keep the communication between the various

wells running smoothly, the company needs to maintain a connected system of roads

that enables one to move from any well to any other one. This road system is in fact

so crucial that it must be updated on-line; whenever a new well is found, the road

system must be modified instantly. Suppose that the price of a road is proportional to

its length, and thus the objective is to minimize the total length of roads. Obviously

once an amount is spent building a road, it cannot be recovered by omitting it, and

hence we may assume that the communication system is updated only by adding new

routes to it. Moreover, the manager wishes to be able to come to the stock holders

at the end of the searching process and show them that the total amount spent on

the communication system is not much larger than what it could have been even if

he had known all the places of the wells in advance.

This example and several similar ones that may arise naturally in the design of

various networks suggest the following problem, that we call here the on-line planar

Steiner-tree problem. Suppose we are given a sequence of n points v1, . . . , vn in the

Euclidean plane, and our objective is to construct, on-line, a connected graph that

connects all of them, trying to minimize the total sum of lengths of its edges. We

assume that the points appear one at a time, vi arriving at step i. At the end of

step i, the on-line algorithm must construct a connected graph Ti that contains the

points v1, . . . , vi by connecting the new point vi to the previously constructed graph

Ti−1. This can be done by joining vi (not necessarily by a straight line) to any point

of Ti−1, which need not necessarily be one of the previously given points vj. An

algorithm A for the above problem is a procedure that decides how to construct the

graphs Ti for every given sequence of points vi. Let A(v1, . . . , vn) denote the total

length of the last graph Tn constructed by the algorithm on the input v1, . . . , vn, and

let OPT (v1, . . . , vn) denote the minimum possible length of a connected graph in the

plane that contains all the points vi, i.e., the length of the optimal Steiner tree for

this set of points. The performance of the algorithm A is measured by its competitive

2

ratio: the supremum, over all sequences v1, . . . , vn as above, of the ratio

A(v1, . . . , vn)

OPT (v1, . . . , vn)
.

(Note that the exact computation of OPT (v1, . . . , vn) is in fact NP-hard (see [GJ]),

but there are simple polynomial algorithms that approximate it up to a constant

factor).

The Steiner tree problem is an extensively studied problem that has been consid-

ered not only in the plane but also in arbitrary metric spaces. Given a set S = Sn of n

vertices {vi}ni=1 which are points from a connected metric space, the minimum Steiner

tree for these points is the tree T of minimum weight that connects all the vertices in

S. Here the weight of a tree is the sum of weights of its edges where a weight of an

edge is the distance between its two end points. The Steiner tree problem is that of

finding the minimum Steiner tree for a given set of points in a metric space, or good

approximations to it. This problem plays an important role in the study of various

communication networks. A survey can be found in [Wi]. The on-line version of this

problem, described above for the planar case, is defined for a general metric space in

the obvious way.

We evaluate the performance of on-line algorithms by the competitive ratio mea-

sure, introduced by [ST], which has received a considerable amount of attention re-

cently in the study of various algorithmic problems. For the Steiner tree problem (in

any metric space) the competitive ratio of an on-line algorithm is the supremum, over

all possible sets S, of the ratio between the weight of the connected graph constructed

by the algorithm and the weight of the optimal Steiner tree for the set S. Note, that

we must assume that the points are drawn from a metric space, i.e. the triangle

inequality holds. This assumption is essential, since otherwise the competitive ratio

can be easily made unbounded as a function of n.

A natural simple on-line algorithm for constructing on-line a Steiner tree is the

greedy algorithm. At each step i simply join vi to its closest point in Ti−1. The

vertex greedy algorithm is to join vi to its closest neighbor in the set {v1, . . . , vi−1}.
Observe that the greedy algorithm always performs at least as well as the vertex

greedy algorithm. As shown by Imase and Waxman in [IW] (using the ideas of

[RSL]) the (vertex) greedy algorithm achieves an O(log n) competitive ratio in every

metric space. Moreover, they also showed that there are metric spaces in which the

competitive ratio of any on-line algorithm is at least Ω(log n); however, the examples

3

demonstrating this lower bound are not embeddable in the Euclidean plane, and as

suggested by the example in the beginning of this section, the planar case is of special

interest. Moreover, the lower bound of [IW] is proved for a contrived metric space

for which, at each step, an algorithm must choose between symmetric paths and it

always makes the wrong choice. However, in the Euclidean plane on-line algorithms

are not restricted, have infinitely many possibilities to choose from and cannot be

characterized in a simple way. They may also use unexpected curves which depend

in a complicated way on the whole history and the current state. Thus, the task of

obtaining a nontrivial lower bound is much harder for the Euclidean plane. In fact,

we can even restrict ourselves to the case in which all the points are drawn from the

n × n grid while the algorithm, which knows this information, can connect vertices

by any curve in the plane. The greedy algorithm is, of course, O(log n) competitive

here, too, and one may wonder if there is a much better algorithm for this case. Our

main result is that the O(log n) estimate is nearly optimal, as stated in the following

theorem.

Theorem 1.1 No on-line algorithm can achieve a competitive ratio which is better

than Ω(log n/ log log n) for the Steiner tree problem of n points in the plane, or even

for n points in the n by n grid.

Although this gives a rather tight estimate for the best possible competitive ratio

there is still an O(log log n) multiplicative gap between our lower bound and the

O(log n) upper bound given by the greedy algorithm, and it would be interesting to

decide which of the two bounds is closer to the truth for the optimal algorithm. Our

technique for proving the lower bound is totally different than the one used in [IW]

for obtaining the (much simpler) lower bound for the non-Euclidean case.

Our proof can be modified to deal with randomized algorithms too. The cost of

a randomized on-line algorithm is defined to be the expected cost over all possible

coin-flips performed by the algorithm, and the competitive ratio is defined as the

supremum, over all n-points inputs, of the ratio between this cost and the cost of the

best off-line algorithm on the same input. Our lower bound holds for the oblivious

adversary, i.e., the one that does not get to know the coin-flips of the algorithm, and

therefore, holds for all other types of adversaries (e.g. adaptive ones).

Theorem 1.2 The Ω(log n/ log log n) lower bound for the competitive ratio of any

on-line algorithm for the planar Steiner tree problem for n points in the plane holds

for randomized on-line algorithms as well.

4

Before concluding the introduction let us mention some related problems. It is

interesting to note that for the on-line spanning tree problem, the situation is much

simpler. There, the algorithm is not allowed to use Steiner points and thus can use

only edges between current points. As observed in [CV], no on-line algorithm can

perform better than the greedy algorithm for the on-line spanning tree problem. That

follows from the fact that the cost of adding new vertex i by any on-line algorithm is

at least d(vi, {v1, . . . , vi−1}), and the greedy algorithm (which is the same as vertex

greedy) encounters precisely this cost. Therefore the competitive ratio for the best

algorithm for this problem is Θ(log n). Note also that for this problem algorithms

cannot take advantage of the fact that the metric space is known in advance. Since

the algorithms for the on-line spanning tree problem are so restricted the proofs of

lower bounds are easy and not useful at all for Steiner trees.

It is well known that for any set S of points in an arbitrary metric space, the

weight of the optimal traveling salesman tour for S must be at least that of the

best Steiner tree for S and cannot exceed it by more than a factor of two. In fact

these two problems are intimately related and there is a tight relationship between

the nearest neighbor algorithm for the traveling salesman problem and the greedy

algorithm for the Steiner tree problem (see, e.g., [RSL]). Various papers that explore

properties of the traveling salesman problem and the nearest neighbor algorithm are

[RSL, BS, Ne, Me, BM]. Our basic approach here resembles the one of Bentley and

Saxe in [BS] but a few additional ideas are required.

The next section contains the main technical part of this short paper including the

proof of Theorem 1.1 and a sketch of the modification needed to establish Theorem

1.2. In section 3 we present a very short proof of the O(log n) upper bound estimate

for the greedy algorithm, first proved in a somewhat more complicated way in [IW].

2 The Lower Bound Proof

In this section we prove Theorem 1.1 and sketch the proof of Theorem 1.2. The metric

space considered is the Euclidean plane and all the requested points that appear one

at a time in the course of the algorithm will belong to the n by n grid. Define x by

x2x = n, so that x is (1
2

+o(1))(log n/ log log n). In order to prove the lower bound we

next show that an adversary can construct a set of at most 2n points such that the

weight of the optimal Steiner tree on these points is O(n) whereas the on-line cost of

5

• • • • • • • • • • • • • • • • •

• • • • •

• •-�

-�

-�

a0 = x2x

a1

a2

?

6

?

6

a1 ≤ c0 ≤ a1x = a0/x

a2 ≤ c1 ≤ a2x = a1/x

Figure 1: The construction for x = 2, n = 16

any algorithm will be at least nx/8 = Ω(n log n/ log log n). This yields a lower bound

of Ω(log n/ log log n), as needed.

For simplicity of notation, we assume that x is an integer and omit all floor

and ceiling signs; the proof can be repeated without this assumption with no real

complications. Since we are interested in large values of n we assume that x ≥ 2 and

hence n ≥ 16.

The points given by the adversary consist of x+1 layers, where each layer is a set

of equally spaced points on a horizontal line of length n = x2x. The coordinates of the

points in layer i, 0 ≤ i ≤ x, are (jai, bi) where ai = x2x−2i and 0 ≤ j ≤ n/ai. Thus

a0 = x2x(= n), a1 = x2x−2 and ax = 1. Hence in layer 0 there are only two points, in

layer 1 there are x2 + 1 and so on up to layer number x which contains n+ 1 points.

(See Figure 1 for an example with x = 2, n = 16.) Let b0 = 0. The vertical distance

between layer number i and layer number i+ 1 is ci = bi+1 − bi, where for all i,

ai+1 ≤ ci ≤ ai+1x = ai/x.

In fact, ci = kai+1 for some integer k between 1 and x, that is chosen by the

6

adversary. The adversary presents the points to the algorithm layer by layer (bottom

to top), where in each step it chooses ci carefully forcing the algorithm to work hard

in building its on-line Steiner tree. Note that the on-line algorithm knows all the

information stated above (e.g. the x-coordinate of all points and the range of ci for

all i). The only piece of information which the on-line algorithm does not get to know

is the exact value of ci till it is done with all the points in layer i.

First, observe that the total number of points presented is

x∑
i=0

(n/ai + 1) =
x∑
i=0

(n/x2x−2i + 1) =
x∑
i=0

(n/x2i + 1) ≤ 2n.

Note also that

bx =
x−1∑
i=0

ci ≤
x−1∑
i=0

ai/x = n/x
x−1∑
i=0

1

x2i
≤ 2n/x ≤ n

and therefore all the points lie, indeed, in the n by n grid.

Next observe that the length of the optimal (off line) Steiner tree is at most O(n).

Indeed, one can take the horizontal line in the last layer (layer number x) together

with vertical lines from it to any other point. The total length of this tree is

n+
x−1∑
i=0

ci(
n

ai
+ 1) ≤ n(1 +

x−1∑
i=0

2ci/ai) ≤ n(1 + x
2

x
) = 3n.

The next lemma shows that the adversary can force the on-line algorithm to

construct a connected graph of total weight Ω(nx). The on-line algorithm cannot

imitate the adversary’s tree since it does not know the exact value of ci till it is done

with all the points in layer i. Guessing the value, or being prepared for different

values or any other strategy turn out to be either useless or too expensive as shown

by the next lemma.

Lemma 2.1 For each i, 1 ≤ i ≤ x, the adversary can choose ci−1 in such a way that

when it reveals the points in layer i to the on-line algorithm this algorithm will have

to add total length of at least n/8 for connecting the new given points, unless the total

length of the graph it has before these points appear is already at least nx/8.

Once the lemma is proved, the assertion of the theorem follows easily. Indeed, if

for some i it turns out that the on-line algorithm already has a graph of total length

at least nx/8, there is nothing to prove. Otherwise, by the lemma, the adversary can

7

force the algorithm to add total length of at least n/8 for each layer, giving again the

required total nx/8 length, as needed.

It remains to prove the lemma. To this end, we consider, for a fixed i, the various

possibilities to choose ci−1 = kai where k is an integer in the range 1 to x. We must

show that either the algorithm has to pay at least n/8 for at least one of these choices,

or it has already paid at least nx/8.

For a fixed i, there are x possibilities to place the horizontal line of layer i, and

for each such possibility, there are (n
ai

+1) points. Consider the set of (n
ai

+1)x points

which is the union of points on all possible line placements of layer i. Let P be the

set of all (n
ai

+ 1)x ≥ nx/ai discs Cp whose centers are these points, where the radius

of each disc is ai/2. Note that since the distance between any two centers is at least

ai the interiors of the discs are pairwise disjoint. Define another set Q of discs Cq as

follows. For each disc in P we have a disc in Q with the same center but with radius

ai/4. Clearly, |P | = |Q| and the discs in Q are also pairwise disjoint. In fact the

distance between any two of them is at least ai/2.

Let Ti−1 denote the graph of the on-line algorithm just before it gets the points

in layer i. For each k, 1 ≤ k ≤ x let rk be the number of discs in Q whose centers

are on the k-th possible line of layer i, and no point in the disc contains any point

of Ti−1. Put r =
∑x
k=1 rk. If r ≤ nx

2ai
then there are more than nx

2ai
discs of Q that

contain points of Ti−1. But Ti−1 is connected and contains points outside each disc

in P (since it contains the points in layer i− 1). Therefore for each disc Cq in Q that

contains a point of Ti−1 there must be a path that connects this point to a point on

the boundary of the corresponding disc Cp in P that contains it. This path lies in the

interior of Cp and its length is clearly at least ai/2− ai/4 = ai/4. Since there are at

least nx
2ai

such paths and they are pairwise disjoint we conclude that the total weight

of Ti−1 is at least nx
2ai
· ai

4
= nx/8 as needed. (In fact this estimate can be improved by

a factor of 2 by being a little bit more careful, but we make no attempt to optimize

the constants here and in what follows).

It remains to check the case r ≥ nx
2ai

. In this case there exists an l such that

rl ≥ n
2ai

. The adversary can now choose ci−1 = ail. In order to connect the points

of layer i corresponding to this choice of ci−1 to Ti−1 the algorithm must add at least

rl paths connecting the centers of the discs in Q that lie in this horizontal line and

contain no point of Ti−1 to the circles bounding them, (since these centers have to be

joined to the graph). These paths are pairwise disjoint (and are disjoint from Ti−1)

8

as each of them lies completely inside the corresponding member of Q. Therefore,

the algorithm must pay at least rl · ai4 ≥
n

2ai
· ai

4
= n/8 total length, completing the

proof of the lemma and hence that of Theorem 1.1. 2

The proof can be modified to apply to the randomized case (and hence establish

Theorem 1.2). The argument, that is sketched below, combines the easy direction of

a result of [Ya] with the above construction. More precisely, since any randomized

algorithm is simply a probability distribution on deterministic ones it suffices to

establish a lower bound for the expected time of deterministic algorithms over some

probability distribution of the input. Thus, we define a distribution on the possible

inputs such that the expected cost for any on-line algorithm is Ω(nx) while the cost of

the off-line one on each possible instance isO(n). The adversary can use essentially the

same construction, but since it cannot compute the actual values of rk for 1 ≤ k ≤ x, it

will choose the value of k uniformly at random for each layer independently. Consider

any on-line algorithm: if the expected value of r =
∑
rk at some step i is at most

nx
2ai

we are done since the expected weight of the graph is already at least nx/8 (by

linearity of expectation). Otherwise, for each i the expected value of r at step i is

at least nx
2ai

. Thus, for each i, the expected value of rl at step i (when l is chosen

at random) is at least n
2ai

. Thus, the expected cost for the algorithm at each step is

at least n/8 and, therefore, the expected weight of the final graph is at least nx/8,

completing the proof. 2

3 The Upper Bound

In this section we give a simple proof for the upper bound theorem of [IW] for the

competitive ratio of the vertex greedy algorithm. We hope that such a simple proof

may shed more light on the behavior of the algorithm.

Theorem 3.1 The (vertex) greedy algorithm achieves a competitive ratio of O(log n)

for the Steiner tree problem for n points in any metric space.

Proof: We need the following.

Lemma 3.1 Let l be the length of the optimal Steiner tree. The number of steps in

which the greedy algorithm pays more than 2l/k is less than k

9

Proof of Lemma: Let S be the set of points whose addition caused the greedy

algorithm to pay more than 2l/k. Clearly the distance between any two of them is

more than 2l/k. Thus the length of the shortest Hamilton tour on these points is

more than |S|2l/k and hence the weight of the optimum Steiner tree for them is more

than |S|l/k. Since S is a subset of the original set of points the weight of the Steiner

tree of S is at most l implying that |S| < k. 2

To complete the proof of the theorem observe that the lemma implies that the

weight of the k’th largest edge of the tree constructed by the on-line algorithm is at

most 2l/k and thus its total weight is at most
∑n
k=1 2l/k = O(l log n). 2

4 Acknowledgement

We would like to thank Leo Guibas and John Hershberger for helpful discussions.

References

[BM] B. Bollobás and A. Meir, A traveling salesman problem in the k-

dimensional unit cube, Operations Research Letters, to appear.

[BS] J.L. Bentley and J.B. Saxe, An analysis of two heuristics for the Euclidean

Traveling salesman, 18th Annual Allerton Conference on Communication,

Control and Computing, Monticello, 1980, pp. 41-49.

[CV] B. Chandra and S. Vishwanathan, Constructing reliable communication

networks of small weight on-line, Manuscript.

[IW] M. Imase and B.M. Waxman, Dynamic Steiner tree problem, SIAM J.

Disc Math. 4, (1991), pp. 369-384.

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractability: a guide to

the theory of NP-completeness, Freeman and Company, New York, 1979.

[Me] A. Meir, A geometric problem involving the nearest neighbor algorithm,

Operations Research Letters 6 (1987), pp. 289-291.

[Ne] D.J. Newman, A problem seminar, Springer, Berlin 1982, 9, Problem 57.

10

[RSL] D.J. Rosenkrantz, R.E. Strearns and P.M. Lewis II, An analysis of sev-

eral heuristics for the traveling salesman problem, SIAM J. Computing 6,

(1977), pp. 563-581.

[ST] D. Sleator and R. Tarjan, Amortized efficiency of list update and paging

rules, Communications of the ACM 28, 2 (1985), 202–208.

[Wi] P. Winter, Steiner problem in networks, a survey, Networks 17 (1987), pp.

129-167.

[Ya] A. C. C. Yao, Probabilistic computation: towards a unified measure of

complexity, Proc. 18th Annual IEEE FOCS, Providence, RI (1977), pp.

222-227.

