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Abstract. This note is an addendum to an earlier paper of the authors [1]. We describe improved

constructions addressing a question of Erdős and Szemerédi on sums and products of real numbers
along the edges of a graph. We also add a few observations about related versions of the problem.

1. Introduction

In this note we describe an improved construction addressing a question of Erdős and Szemerédi
about sums and products along the edges of a graph. We also mention some related problems. The
main improvement is obtained by a simple modification of the construction in [1] which works for real
numbers, instead of the integers considered there.

In their original paper Erdős and Szemerédi [4] considered sum and product along the edges of
graphs. Let Gn be a graph on n vertices, v1, v2, . . . , vn, with n1+c edges for some real c > 0. Let A
be an n-element set of real numbers, A = {a1, a2, . . . , an}. The sumset of A along Gn, denoted by
A+Gn A, is the set {ai + aj |(i, j) ∈ E(Gn)}. The product set along Gn is defined similarly,

A ·Gn A = {ai · aj |(i, j) ∈ E(Gn)}.
The Strong Erdős-Szemerédi Conjecture, which was proved in [5] for the special case of n positive

integers of size at most nO(1), but was refuted in its original form in [1], is the following.

Conjecture 1. [4] For every c > and ε > 0, there is a threshold, n0, such that if n ≥ n0 then for any
n-element subset of reals A ⊂ R and any graph Gn with n vertices and at least n1+c edges

|A+Gn A|+ |A ·Gn A| ≥ |A|1+c−ε.

Now the question is to find dense graphs with small sumset and product set along the edges. Here
we extend the construction in [1]. The improvement follows by considering real numbers, instead of
integers only.

2. Constructions

2.1. Sum-product along edges with real numbers. Here we extend our earlier construction so
that we get better bounds in a range of edge densities. In our previous paper for arbitrary large m0, we

constructed a set of integers, A, and a graph on |A| = m ≥ m0 vertices, Gm, with Ω(m5/3/ log1/3m)
edges such that

|A+Gm A|+ |A ·Gm A| = O
(

(|A| log |A|)4/3
)
.

Thus we had a graph on m vertices and roughly m2−c edges with roughly m2−2c sums and products
along the edges for c = 1/3. In the following construction we show a similar bound in a range covering
all 1/3 ≤ c ≤ 2/5. In what follows it is convenient to ignore the logarithmic terms. We thus use

from now on the common notation f = Õ(g) for two functions f(n) and g(n) to denote that there are
absolute positive constants c1, c2 so that f(n) ≤ c1g(n)(log g(n))c2 for all admissible values of n. The

notation f = Ω̃(g) means that g = Õ(f) and f = Θ̃(g) denotes that f = Ω̃(g) and g = Õ(f).
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Theorem 2. For arbitrary large m0, and parameter α, where 0 ≤ α ≤ 1/6, there is a set of reals, A,
and a graph on |A| = m ≥ m0 vertices, Gm, with

Ω̃
(
m2− 2−2α

5

)
edges such that

|A+Gm A|+ |A ·Gm A| = Õ
(
|A|2−

4−4α
5

)
.

Proof: It is easier to describe the construction using prime numbers only. We get a slightly larger
exponent in the hidden logarithmic factor, but we are anyway ignoring these factors here. The set of
primes is denoted by P here. We define the set A first and then the graph using the parameter α.

A :=

{
su
√
w

t
√
v
| u, v, w, s, t ∈ P distinct and s, t ≤ nα, v, w ≤ n

1−6α
5 , u ≤ n

3+2α
5

}
.

It is clear that distinct choices of 5-tuples u, v, w, s, t lead to distinct reals. Thus with this choice
of parameters the size of A is Θ̃(n). We are going to define a graph Gm with vertex set A, where

|A| = m = Θ̃ (n) . Two elements, a, b ∈ A are connected by an edge if in the definition of A above

a = su
√
w

t
√
v

and b = tz
√
v

s
√
w
. Since the degree of every vertex here is Θ̃(n

3+2α
5 ) the number of edges is

Ω̃
(
m

8+2α
5

)
= Ω̃

(
m2− 2−2α

5

)
.

The products of pairs of elements of A along an edge of Gm are integers of size at most

n2
3+2α

5 = n2−
4−4α

5 = Õ
(
m2− 4−4α

5

)
.

The sums along the edges are of the form

su
√
w

t
√
v

+
tz
√
v

s
√
w

=
s2wu+ t2vz

st
√
vw

.

The number of possibilities for the denominator is at most n
2−2α

5 and the numerator is a positive

integer of size at most 2n
4+6α

5 , hence the number of sums is at most

O(n
6+4α

5 ) = O(n2−
4−4α

5 ) = Õ
(
m2− 4−4α

5

)
.

�

Based on this construction one can easily get examples for sparser graphs, simply taking smaller
copies of Gm and leaving other vertices isolated.

Theorem 3. For every parameters 0 ≤ ν ≤ 3/5 and n0 there are n > n0, an n-element set of reals,

A ⊂ R, and a graph Hn with Ω̃(n1+ν) edges such that

|A+Hn A|+ |A ·Hn A| = Õ
(
|A|3(1+ν)/4

)
.

Proof: The construction of Theorem 2 with α = 0 supplies a set of m reals and a graph with
Ω̃(m8/5) edges so that the number of sums and products along the edges is at most Õ(m6/5). Take
this construction with m = n5(1+ν)/8(≤ n) and add to it n − m isolated vertices assigning to them
arbitrary distinct reals that differ from the ones used already. �

A similar statement holds for integers too.

Theorem 4. For every parameters 0 ≤ ν ≤ 2/3 and n0 there are n > n0, an n-element set of integers

A, and a graph Hn with Ω̃(n1+ν) edges such that

|A+Hn A|+ |A ·Hn A| = Õ
(
|A|4(1+ν)/5

)
.
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This follows as in the real case by starting with the construction of [1] that gives a set of m integers

and a graph with Ω̃(m5/3) edges so that the number of sums and products along the edges is at

most Õ(m4/3). This construction with m = n3(1+ν)/5 ≤ n together with n−m isolated vertices with
arbitrary n−m new integers implies the statement above.

2.2. Matchings. A particular variant of the sum-product problem for integers is the following:

Problem 5. Given two n-element sets of integers, A = {a1, . . . , an} and B = {b1, . . . , bn} let us define
a sumset and a product set as

S = {ai + bi|1 ≤ i ≤ n} and P = {ai · bi|1 ≤ i ≤ n}.
Erdős and Szemerédi conjectured that

(1) |P |+ |S| = Ω(n1/2+c)

for some constant c > 0.

The best known lower bound is due to Chang [3], who proved that

|P |+ |S| ≥ n1/2 log1/48 n.

It was shown recently in [7] that under the assumption of a special case of the Bombieri-Lang
conjecture [2], one can take c = 1/10 in equation (1), i.e. |P |+ |S| = Ω(n3/5), even for multi-sets.

Theorem 6. [7] Let M = {(ai, bi)|1 ≤ i ≤ n} be a set of distinct pairs of integers. If P and S are
defined as above, then under the hypothesis of the Bombieri-Lang conjecture |P |+ |S| = Ω(n1/2+c) with
c = 1/10.

If multisets are allowed and the only requirement is that the pairs assigned to distinct edges of
the matching are distinct, then any construction of a graph with n edges yields a construction of a
matching of size n. It thus follows from [1, Theorem 3 ] (or from Theorem 4 here) that for the multi-set
version there is, for arbitrarily large n, an example of a matching M of size n as above, with n distinct
pairs of integers (ai, bi), so that |P | + |S| = Õ(n4/5). This shows that the statement of Theorem 6
cannot be improved beyond an extra 1/5 in the exponent.
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