ON SUMS AND PRODUCTS ALONG THE EDGES, II

NOGA ALON, IMRE RUZSA, AND JÓZSEF SOLYMOSI

ABSTRACT. This note is an addendum to an earlier paper of the authors [1]. We describe improved constructions addressing a question of Erdős and Szemerédi on sums and products of real numbers along the edges of a graph. We also add a few observations about related versions of the problem.

1. INTRODUCTION

In this note we describe an improved construction addressing a question of Erdős and Szemerédi about sums and products along the edges of a graph. We also mention some related problems. The main improvement is obtained by a simple modification of the construction in [1] which works for real numbers, instead of the integers considered there.

In their original paper Erdős and Szemerédi [4] considered sum and product along the edges of graphs. Let G_n be a graph on n vertices, v_1, v_2, \ldots, v_n , with n^{1+c} edges for some real c > 0. Let \mathcal{A} be an n-element set of real numbers, $\mathcal{A} = \{a_1, a_2, \ldots, a_n\}$. The sumset of \mathcal{A} along G_n , denoted by $\mathcal{A} +_{G_n} \mathcal{A}$, is the set $\{a_i + a_j | (i, j) \in E(G_n)\}$. The product set along G_n is defined similarly,

$$\mathcal{A} \cdot_{G_n} \mathcal{A} = \{ a_i \cdot a_j | (i, j) \in E(G_n) \}.$$

The Strong Erdős-Szemerédi Conjecture, which was proved in [5] for the special case of n positive integers of size at most $n^{O(1)}$, but was refuted in its original form in [1], is the following.

Conjecture 1. [4] For every $c > and \varepsilon > 0$, there is a threshold, n_0 , such that if $n \ge n_0$ then for any *n*-element subset of reals $\mathcal{A} \subset \mathbb{R}$ and any graph G_n with *n* vertices and at least n^{1+c} edges

$$|\mathcal{A} +_{G_n} \mathcal{A}| + |\mathcal{A} \cdot_{G_n} \mathcal{A}| \ge |\mathcal{A}|^{1+c-\varepsilon}$$

Now the question is to find dense graphs with small sumset and product set along the edges. Here we extend the construction in [1]. The improvement follows by considering real numbers, instead of integers only.

2. Constructions

2.1. Sum-product along edges with real numbers. Here we extend our earlier construction so that we get better bounds in a range of edge densities. In our previous paper for arbitrary large m_0 , we constructed a set of integers, \mathcal{A} , and a graph on $|\mathcal{A}| = m \geq m_0$ vertices, G_m , with $\Omega(m^{5/3}/\log^{1/3} m)$ edges such that

$$|\mathcal{A} +_{G_m} \mathcal{A}| + |\mathcal{A} \cdot_{G_m} \mathcal{A}| = O\left((|\mathcal{A}| \log |\mathcal{A}|)^{4/3}\right)$$

Thus we had a graph on m vertices and roughly m^{2-c} edges with roughly m^{2-2c} sums and products along the edges for c = 1/3. In the following construction we show a similar bound in a range covering all $1/3 \leq c \leq 2/5$. In what follows it is convenient to ignore the logarithmic terms. We thus use from now on the common notation $f = \tilde{O}(g)$ for two functions f(n) and g(n) to denote that there are absolute positive constants c_1, c_2 so that $f(n) \leq c_1 g(n) (\log g(n))^{c_2}$ for all admissible values of n. The notation $f = \tilde{\Omega}(g)$ means that $g = \tilde{O}(f)$ and $f = \tilde{\Theta}(g)$ denotes that $f = \tilde{\Omega}(g)$ and $g = \tilde{O}(f)$.

Research supported in part by NSF grant DMS-1855464, and the Simons Foundation.

Research supported in part by an OTKA NK 104183 grant.

Research supported in part by a NSERC and an OTKA NK 104183 grant.

Theorem 2. For arbitrary large m_0 , and parameter α , where $0 \leq \alpha \leq 1/6$, there is a set of reals, \mathcal{A} , and a graph on $|\mathcal{A}| = m \geq m_0$ vertices, G_m , with

$$\tilde{\Omega}\left(m^{2-\frac{2-2\alpha}{5}}\right)$$

edges such that

$$|\mathcal{A} +_{G_m} \mathcal{A}| + |\mathcal{A} \cdot_{G_m} \mathcal{A}| = \tilde{O}\left(|\mathcal{A}|^{2 - \frac{4 - 4\alpha}{5}}\right).$$

Proof: It is easier to describe the construction using prime numbers only. We get a slightly larger exponent in the hidden logarithmic factor, but we are anyway ignoring these factors here. The set of primes is denoted by \mathbb{P} here. We define the set \mathcal{A} first and then the graph using the parameter α .

$$\mathcal{A} := \left\{ \frac{su\sqrt{w}}{t\sqrt{v}} \mid u, v, w, s, t \in \mathbb{P} \text{ distinct and } s, t \le n^{\alpha}, v, w \le n^{\frac{1-6\alpha}{5}}, u \le n^{\frac{3+2\alpha}{5}} \right\}.$$

It is clear that distinct choices of 5-tuples u, v, w, s, t lead to distinct reals. Thus with this choice of parameters the size of \mathcal{A} is $\Theta(n)$. We are going to define a graph G_m with vertex set \mathcal{A} , where $|\mathcal{A}| = m = \tilde{\Theta}(n)$. Two elements, $a, b \in \mathcal{A}$ are connected by an edge if in the definition of \mathcal{A} above $a = \frac{su\sqrt{w}}{t\sqrt{v}}$ and $b = \frac{tz\sqrt{v}}{s\sqrt{w}}$. Since the degree of every vertex here is $\tilde{\Theta}(n^{\frac{3+2\alpha}{5}})$ the number of edges is

$$\tilde{\Omega}\left(m^{\frac{8+2\alpha}{5}}\right) = \tilde{\Omega}\left(m^{2-\frac{2-2\alpha}{5}}\right).$$

The products of pairs of elements of \mathcal{A} along an edge of G_m are integers of size at most

$$n^{2\frac{3+2\alpha}{5}} = n^{2-\frac{4-4\alpha}{5}} = \tilde{O}\left(m^{2-\frac{4-4\alpha}{5}}\right).$$

The sums along the edges are of the form

$$\frac{su\sqrt{w}}{t\sqrt{v}} + \frac{tz\sqrt{v}}{s\sqrt{w}} = \frac{s^2wu + t^2vz}{st\sqrt{vw}}.$$

The number of possibilities for the denominator is at most $n^{\frac{2-2\alpha}{5}}$ and the numerator is a positive integer of size at most $2n^{\frac{4+6\alpha}{5}}$, hence the number of sums is at most

$$O(n^{\frac{6+4\alpha}{5}}) = O(n^{2-\frac{4-4\alpha}{5}}) = \tilde{O}\left(m^{2-\frac{4-4\alpha}{5}}\right).$$

Based on this construction one can easily get examples for sparser graphs, simply taking smaller copies of G_m and leaving other vertices isolated.

Theorem 3. For every parameters $0 \le \nu \le 3/5$ and n_0 there are $n > n_0$, an n-element set of reals, $\mathcal{A} \subset \mathbb{R}$, and a graph H_n with $\tilde{\Omega}(n^{1+\nu})$ edges such that

$$|\mathcal{A} +_{H_n} \mathcal{A}| + |\mathcal{A} \cdot_{H_n} \mathcal{A}| = \tilde{O}\left(|\mathcal{A}|^{3(1+\nu)/4}\right).$$

Proof: The construction of Theorem 2 with $\alpha = 0$ supplies a set of m reals and a graph with $\tilde{\Omega}(m^{8/5})$ edges so that the number of sums and products along the edges is at most $\tilde{O}(m^{6/5})$. Take this construction with $m = n^{5(1+\nu)/8} (\leq n)$ and add to it n-m isolated vertices assigning to them arbitrary distinct reals that differ from the ones used already.

A similar statement holds for integers too.

Theorem 4. For every parameters $0 \le \nu \le 2/3$ and n_0 there are $n > n_0$, an n-element set of integers \mathcal{A} , and a graph H_n with $\tilde{\Omega}(n^{1+\nu})$ edges such that

$$|\mathcal{A} +_{H_n} \mathcal{A}| + |\mathcal{A} \cdot_{H_n} \mathcal{A}| = \tilde{O}\left(|\mathcal{A}|^{4(1+\nu)/5}\right).$$

This follows as in the real case by starting with the construction of [1] that gives a set of m integers and a graph with $\tilde{\Omega}(m^{5/3})$ edges so that the number of sums and products along the edges is at most $\tilde{O}(m^{4/3})$. This construction with $m = n^{3(1+\nu)/5} \leq n$ together with n - m isolated vertices with arbitrary n - m new integers implies the statement above.

2.2. Matchings. A particular variant of the sum-product problem for integers is the following:

Problem 5. Given two n-element sets of integers, $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ let us define a sumset and a product set as

$$S = \{a_i + b_i | 1 \le i \le n\}$$
 and $P = \{a_i \cdot b_i | 1 \le i \le n\}.$

Erdős and Szemerédi conjectured that

(1) $|P| + |S| = \Omega(n^{1/2+c})$

for some constant c > 0.

The best known lower bound is due to Chang [3], who proved that

$$|P| + |S| \ge n^{1/2} \log^{1/48} n.$$

It was shown recently in [7] that under the assumption of a special case of the Bombieri-Lang conjecture [2], one can take c = 1/10 in equation (1), i.e. $|P| + |S| = \Omega(n^{3/5})$, even for multi-sets.

Theorem 6. [7] Let $M = \{(a_i, b_i) | 1 \le i \le n\}$ be a set of distinct pairs of integers. If P and S are defined as above, then under the hypothesis of the Bombieri-Lang conjecture $|P| + |S| = \Omega(n^{1/2+c})$ with c = 1/10.

If multisets are allowed and the only requirement is that the pairs assigned to distinct edges of the matching are distinct, then any construction of a graph with n edges yields a construction of a matching of size n. It thus follows from [1, Theorem 3] (or from Theorem 4 here) that for the multi-set version there is, for arbitrarily large n, an example of a matching M of size n as above, with n distinct pairs of integers (a_i, b_i) , so that $|P| + |S| = \tilde{O}(n^{4/5})$. This shows that the statement of Theorem 6 cannot be improved beyond an extra 1/5 in the exponent.

References

- [1] N. Alon, I. Ruzsa and J. Solymosi, Sums, products, and ratios along the edges of a graph, Publ. Mat. 64 (2020), no. 1, 143–155.
- [2] L. Caporaso, J. Harris, and B. Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), no. 1, 1–35.
- [3] M.-C. CHANG, On problems of Erdős and Rudin, Journal of Functional Analysis Volume 207, Issue 2, (2004), 444–460.
- [4] P. Erdős and E. Szemerédi, On sums and products of integers, Studies in pure mathematics, Birkhäuser, Basel (1983), 213–218.
- [5] X.-D. Jia and M. B. Nathanson, Finite graphs and the number of sums and products, in: Number Theory, New York Seminar 1991–1995, Springer, New York, 1996, 211–219.
- [6] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960) 203-227.
- [7] I.D. Shkredov and J. Solymosi, The Uniformity Conjecture in Additive Combinatorics arxiv (May 26.)

PRINCETON UNIVERSITY, PRINCETON, NJ 08544 AND TEL AVIV UNIVERSITY, TEL AVIV 69978, ISRAEL *Email address*: nalon@math.princeton.edu

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, H-1364 Budapest, Hungary

Email address: ruzsa.z.imre@renyi.mta.hu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, 1984 MATHEMATICS ROAD, VANCOUVER, BC, V6T 1Z2, CANADA

Email address: solymosi@math.ubc.ca