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Abstract

The existence of efficient algorithms to compute the eigenvectors and eigenvalues of graphs

supplies a useful tool for the design of various graph algorithms.

In this survey we describe several algorithms based on spectral techniques focusing on their

performance for randomly generated input graphs.

1 Introduction

Graph bisection, graph coloring and finding the independence number of a graph are three well

studied algorithmic problems. All of them are NP-hard, and even the task of solving any of them

approximately cannot be done in polynomial time under the common assumptions in Complexity

Theory. It is possible, however, to develop efficient algorithms that solve these problems for almost

all graphs in appropriately defined classes. Such algorithms are desirable, since all three problems

arise often in practice, where one might hope that the input instances are not necessarily worst case

examples. Spectral techniques, based on the eigenvalues and the eigenvectors of the adjacency or

the Laplace matrices of graphs, appear to be very successful in the design of such algorithms, and

can provably solve the above problems for various classes of randomly generated graphs, where all

previous techniques failed. The analysis of the performance of algorithms for random graphs has

gained popularity recently (see [25] and its many references), and it seems to provide a useful measure

for the behaviour of algorithmic techniques. In this paper we describe the relevance of spectral

techniques to the above mentioned problems, discuss the algorithms and study their performance.

This is mostly a survey paper and hence the focus here is on the underlying ideas and not on the

detailed proofs which can be found in the relevant references.

The adjacency matrix of a graph G = (V,E) is the matrix A = (au,v)u,v∈V , in which au,v = 1 if

uv ∈ E and au,v = 0 otherwise. The Laplace matrix of G is Q = D−A, where D = (du,v)u,v∈V is the
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diagonal matrix in which du,u is the degree d(u) of u in G and du,v = 0 for all u 6= v. Both matrices

above are symmetric and hence have real eigenvalues and an orthonormal basis of eigenvectors. The

Laplace matrix is easily seen to be positive semi-definite and hence its eigenvalues are nonnegative. It

is well known that there is a tight relation between the eigenvalues of A and Q and several structural

properties of the graph G, and it is natural to expect that this fact, and the fact that all eigenvalues

and eigenvectors can be computed efficiently (see, e.g., [43]), may be useful in the design of efficient

algorithms. In the following sections we demonstrate this approach in the study of several algorithmic

questions.

2 Expansion and bisection

The vertex expansion cV (G) of a graph G = (V,E) on n vertices is

cV (G) = minX⊂V,|X|≤n/2
|N(X)−X|
|X|

,

where N(X) = {y ∈ v : xy ∈ E for some x ∈ X} is the set of all neighbors of X in G. The edge

expansion cE(G) of G is defined by

cE(G) = minX⊂V,|X|≤n/2
e(X,V −X)

|X|
,

where e(X,V − X) is the number of edges with one end in X and another end in its complement

V −X. A bisection of G = (V,E) is a partition of its set of vertices into two equal parts. The size

of the bisection is the number of edges with one end in each part.

The problem of computing the vertex expansion or edge expansion of a graph and that of finding

the minimum size of a bisection in it are useful for tackling various problems in VLSI design, and

thus received a considerable amount of attention. The task of finding an optimal solution to any

of these problems is NP-hard, and there is no known polynomial time algorithm that approximates

any of these quantities up to a constant factor. In fact, it is known that if, as is widely believed, the

complexity classes P and NP differ, then even the problem of approximating quantities related to

the above three are NP -hard (see [12]).

Leighton and Rao [37] designed a polynomial time algorithm that approximates cE(G), for any

n-vertex graph G, up to a multiplicative factor of log n. The known results concerning the tight

relation between the expansion properties of a graph and its spectral properties provide some (very

rough) efficient approximation algorithms for vertex expansion and edge expansion, which are based

on eigenvalue bounds. In particular, by the results in [20], [6] and [1], for every graph G with

maximum degree d in which λ is the second smallest Laplace eigenvalue,

Ω(
λ

d
) ≤ cV (G) ≤ O(

√
λ).
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Similarly, by the results of [20], [6] and [47], for every graph G as above

λ

2
≤ cE(G) ≤

√
2dλ.

Donath and Hoffman [18] were the first to suggest to use spectral techniques for graph parti-

tioning. Their work, that of Fiedler [20], and substantial experimental work (see, e.g., [41], [46])

demonstrated that this is indeed a very good heuristics. See also [16] for some related results.

The basic idea in the Donath-Hoffman algorithm as well as in its more recent variants is that

the eigenvector corresponding to the second smallest eigenvalue of the Laplace matrix of the graph

provides some information that can be used to find a good partition of the graph. Indeed, in the

extreme case that the graph consists of two connected components of equal size, this eigenvector is

a constant on each component, and since we always may assume that the eigenvector of the smallest

eigenvalue is the all 1 vector, and that the eigenvectors are orthogonal, this means that in the above

extreme case the sign of the coordinates of the second eigenvector provides the desired partition. It

is thus natural to expect that even in less trivial cases some information about a good bisection can

be deduced from the coordinates of the second eigenvector.

Random graphs were initiated by Erdős and Rényi [19], and their extensive study (see, e.g., the

comprehensive book of Bollobás [13] and its many references) motivated the investigation of the

performance of heuristic algorithms for input graphs generated randomly. Boppana [15] showed that

a variant of the basic spectral technique finds, with high probability, the minimum bisection in a

random graph with n vertices, m edges and bisection of size b, provided 0 ≤ b ≤ m/2− 5
√
mn log n.

Therefore, these techniques work provably well on appropriate randomly generated input graphs.

More recently, Spielman and Teng showed in [48] that by partitioning the vertices of a planar,

bounded-degree graph on n vertices according to the coordinates of the eigenvector of its second

smallest Laplace eigenvalue, one obtains a cut for which the ratio between the number of edges and

the number of vertices in the smaller side is O(1/
√
n). They also obtained similar results for other

classes of graphs. It is well known that every bounded degree planar graph has such a separator, by

the Lipton Tarjan separator Theorem [38], which also provides a linear time algorithm for finding

such a cut. Although the results of [48] do not supply a better algorithm for planar graphs, they do

provide insight for the behaviour of spectral techniques in partitioning algorithms and show that in

some cases these techniques are provably useful.

3 Coloring

The chromatic number χ(G) of a graph G is the minimum number of colors needed to color the

vertices of G so that adjacent vertices have distinct colors.
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The problem of determining or estimating this parameter has received a considerable amount of

attention in Combinatorics and in Theoretical Computer Science, as several scheduling problems are

naturally formulated as graph coloring problems. It is well known (see [30, 26]) that the problem

of properly coloring a graph of chromatic number k with k colors is NP-hard, even for any fixed

k ≥ 3. Moreover, even the problem of approximating the chromatic number of an n vertex graph

up to an nc multiplicative factor, for an appropriate positive c, is NP -hard, as shown by Lund and

Yannakakis [39]. In fact, if NP does not have efficient randomized algorithms, then there is no

polynomial time algorithm for approximating the chromatic number of an n vertex graph up to a

factor of n1−ε, for any fixed ε > 0, as proved in [23], using the result of [27]. In addition, from the

results in [2] it follows that the chromatic number of an n vertex graph cannot be approximated up

to a factor of n/(log n)7 by a monotone polynomial size circuit.

Several sophisticated polynomial time algorithms provide some very rough estimates for the

chromatic number of a graph. Despite a lot of efforts (see [34] and its references) there is no known

polynomial time algorithm that finds a proper coloring of a 3-colorable graph on n vertices by less

than, say, n1/5 colors.

There are, however, several results that indicate that the sectral properties of a graph provide

some information on its chromatic number. If G is a graph on n vertices with (adjacency matrix)

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn then, as proved by Hoffman [28], χ(G) ≥ 1− λ1
λn
. Similarly, as proved

by Wilf (cf., e.g., [36]), χ(G) ≤ 1 + λ1.

Despite the difficulties in coloring graphs efficiently in the worst case, various researchers noticed

that random k-colorable graphs are usually easy to color optimally. Polynomial time algorithms

that optimally color random k-colorable graphs for every fixed k with high probability, have been

developed by Kučera [32], by Turner [49] and by Dyer and Frieze [17], where the last paper provides

an algorithm whose average running time over all k-colorable graphs on n vertices is polynomial.

Note, however, that most k-colorable graphs are quite dense, and hence easy to color. In fact,

in a typical k-colorable graph, the number of common neighbors of any pair of vertices with the

same color exceeds considerably that of any pair of vertices of distinct colors, and hence a simple

coloring algorithm based on this fact already works with high probability. It is more difficult to

color sparser random k-colorable graphs. A precise model for generating sparse random k-colorable

graphs is described next, and the sparsity in it is governed by a parameter p that specifies the edge

probability. There are, in fact, several possible models, but since most of them are equivalent for our

purpose here we focus on one. Here is its description.

Let V be a fixed set of kn labelled vertices. For a real p = p(n), let Gkn,p,k be the random graph

on the set of vertices V obtained as follows; first, split the vertices of V arbitrarily into k color classes

W1, . . . ,Wk, each of cardinality n. Next, for each u and v that lie in distinct color classes, choose uv
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to be an edge, randomly and independently, with probability p. The input to the coloring algorithm

is now a graph Gkn,p,k obtained as above, and the algorithm succeeds to color it if it finds a proper

k coloring. The interesting case is a fixed value of k ≥ 3 and large n, and since the case k = 3 is

similar to the more general one of arbitrarily fixed k we discuss mainly this special case. We say that

an algorithm colors Gkn,p,k almost surely if the probability that a randomly chosen graph as above

is properly colored by the algorithm tends to one as n tends to infinity.

Petford and Welsh [42] suggested a randomized heuristic for 3-coloring random 3-colorable graphs

and supplied experimental evidence that it works for most edge probabilities. Blum and Spencer

[14] (see also [11] for some related results) designed a polynomial algorithm and proved that it colors

optimally, with high probability, random 3-colorable graphs on n vertices with edge probability p

provided p ≥ nε/n, for some arbitrarily small but fixed ε > 0. Their algorithm is based on a path

counting technique, and can be viewed as a natural generalization of the simple algorithm based on

counting common neighbors (that counts paths of length 2), mentioned above.

In [3] the authors designed a polynomial time algorithm that works for sparser random 3-colorable

graphs, which is based on spectral techniques. If the edge probability p satisfies p ≥ c/n, where c

is a sufficiently large absolute constant, the algorithm colors optimally the corresponding random

3-colorable graph with high probability. This settled a problem of Blum and Spencer [14], who asked

if one can design an algorithm that works almost surely for p ≥ polylog(n)/n. (Here, and in what

follows, almost surely always means: with probability that approaches 1 as n tends to infinity). The

algorithm is based on the fact that almost surely a rather accurate approximation of the color classes

can be read from the eigenvectors corresponding to the smallest two eigenvalues of the adjacency

matrix of a large subgraph. This approximation can then be improved to yield a proper coloring.

As is the case with the bisection heuristics, the intuition here is rather simple. If, in the perfectly

symmetric case, there is a constant d such that every vertex has precisely d neighbors in each of the

three color classes but its own, then −d is an eigenvector of the adjacency matrix of the graph and

the corresponding two dimensional eigenspace consists of all vectors whose sum of coordinates is 0

that attain the same value on each color class. If, in addition, the other eigenvalues of the graph

behave like those of random regular graphs (see [24]), then −d is the smallest eigenvalue. Therefore,

even if the situation is not that symmetric, enough information about the color classes can still be

deduced from the two eigenvectors of the smallest eigenvalue, and with some efforts this information

can be used to obtain a full proper 3-coloring.

The algorithm can be easily extended to the case of k-colorable graphs, for any fixed k, and to

various models of random regular 3-colorable graphs.
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4 Cliques and independent sets

A clique in a graph G is a set of vertices any two of which are connected by an edge. Let w(G)

denote the maximum number of vertices in a clique of G.

The problem of determining or estimating w(G) and that of finding a clique of maximum size in G

are fundamental problems in Theoretical Computer Science. The problem of computing w(G) is well

known to be NP-hard [30]. The best known approximation algorithm for this quantity, designed by

Boppana and Halldórsson [10], has a performance guarantee of O(n/(log n)2), where n is the number

of vertices in the graph. When the graph contains a large clique, there are better algorithms, and the

best one, given in [4], shows that if w(G) exceeds n/k+m, where k is a fixed integer and m > 0, then

one can find a clique of size Ω̃(m3/(k+1)) in polynomial time, where here the notation g(n) = Ω̃(f(n))

means, as usual, that g(n) ≥ Ω(f(n)/(log n)c) for some constant c independent of n.

On the negative side, it is known, by the work of [8] following [21] and [9], that for some ε > 0

it is impossible to approximate w(G) in polynomial time for a graph on n vertices within a factor

of nε, assuming P 6= NP. The exponent ε has since been improved in various papers and recently it

has been shown by H̊astad [27] that it is in fact larger than (1 − δ) for every positive δ, assuming

NP does not have polynomial time randomized algorithms. Another negative result, proved in [2]

following [44], shows that it is impossible to approximate w(G) for an n vertex graph within a factor

of n/ log7 n by a polynomial size monotone circuit.

These facts suggest that the problem of finding the largest clique in a general graph is intractable.

It is thus natural to study this problem for appropriate classes of randomly generated input graphs.

Let G(n, 1/2) denote the random graph on n labeled vertices obtained by choosing, randomly

and independently, every pair ij of vertices to be an edge with probability 1/2. By the results in

([40]) improved by several researchers, it is known that almost surely (that is, with probability that

approaches 1 as n tends to infinity), the value of w(G) is either br(n)c or dr(n)e, for a certain function

r(n) = (2+o(1)) log2 n which can be written explicitly (cf., e.g., [7]). Several simple polynomial time

algorithms find, almost surely, a clique of size (1+o(1)) log2 n in G(n, 1/2), that is, a clique of roughly

half the size of the largest one. However, there is no known polynomial time algorithm that finds,

almost surely, a clique of size at least (1 + ε) log2 n for any fixed ε > 0. The problem of finding such

an algorithm was suggested by Karp [31]. His results, as well as more recent ones of Jerrum [29]

implied that several natural algorithms do not achieve this goal and it seems plausible to conjecture

(see [29]) that in fact there is no polynomial time algorithm that finds, with probability more than

a half, say, a clique of size bigger than (1 + ε) log2 n.

The situation may become better in a random model in which the biggest clique is larger. Fol-

lowing [29], let G(n, 1/2, k) denote the probability space whose members are generated by choosing
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a random graph G(n, 1/2) and then by placing randomly a clique of size k in it. As observed by

Kučera [33], if k is bigger than c
√
n log n for an appropriate constant c, the vertices of the clique

would almost surely be the ones with the largest degrees in G, and hence it is easy to find them effi-

ciently. Can one design an algorithm that finds the biggest clique almost surely if k is o(
√
n log n) ?

This problem was mentioned in [33], and has recently been solved in [5] by showing that for every

ε > 0 there is a polynomial time algorithm, based on spectral techniques, that finds, almost surely,

the unique largest clique of size k in G(n, 1/2, k), provided k ≥ εn1/2. Although this beats the trivial

algorithm based on the degrees only by a logarithmic factor, it seems that the spectral technique is

crucial for the algorithm.

The relevance of graph eigenvalues to cliques or independent sets in the graphs is well known and

can be traced back to the old result that the independence number of any regular graph is at most

−nλn/(λ1 − λn) and the related results on the connection between the Shannon capacity of a graph

and its eigenvalues (see [35]).

The spectral algorithm of [5] is based on the fact that in the random model considered above

one can almost surely extract a big portion of the hidden clique using the eigenvector of the second

largest eigenvalue of the adjacency matrix of the graph, provided k is at least, say, 10
√
n. Using

this portion, it is not too difficult to recover the whole clique. Using some extra tricks this can be

extended to yield an algorithm for k = ε
√
n as well.

The basic idea behind the algorithm is that the largest (adjacency matrix) eigenvalue of a random

graph in the model G(n, 1/2, k) is likely to be (1
2 + o(1))n, all its eigenvalues besides the largest two

are likely to be at most (1 + o(1))
√
n, by a result of Füredi and Komlós [22], and the second largest

eigenvalue is likely to be close to k/2, where the corresponding eigenvector is nearly a constant on

all vertices of the largest clique and nearly another one on all other vertices.

With some efforts this can be formalized and proved (for k > 10
√
n), supplying the desired

algorithm. More details appear in [5].

5 Open problems

It would be interesting to extend the spectral algorithms for coloring and for finding the biggest

clique to a wider class of randomly generated graphs. In particular, it would be interesting to design

a coloring algorithm that finds, almost surely, a proper three-coloring of G3n,p,3 for all possible values

of p. (Note that the spectral algorithm works for all p ≥ C/n where C is a large absolute constant,

whereas a trivial algorithm based on omitting repeatedly vertices of low degree works for p ≤ c/n if

c is an absolute (small) positive constant. Hence, only the case c/n ≤ p ≤ C/n remains.)

Similarly, the obvious challenge concerning the problem of finding a large clique in input graphs
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generated according to the distribution G(n, 1/2, k) that remains open is to design efficient algorithms

that work, almost surely, for smaller values of k. If k = n1/2−ε for some fixed ε > 0, even the problem

of finding a clique of size at least (1 + ε) log2 n in G(n, 1/2, k), suggested in [29], is open and seems

to require new ideas.

Another interesting version of this problem was suggested by Saks [45]. Suppose G is a graph

on n vertices which has been generated either according to the distribution G(n, 1/2) or according

to the distribution G(n, 1/2, k) for, say, k = n0.49. It is then obvious that an all powerful prover

can convince a polynomial time verifier deterministically that, almost surely, G has been generated

according to the distribution G(n, 1/2, k) (if indeed that was the case). To do so, he simply presents

the clique to the verifier. However, suppose G has been generated according to the distribution

G(n, 1/2). Can the prover convince the verifier (without using randomness, of course) that this is

the case, almost surely ? At the moment we cannot design such a protocol if k = o(
√
n) (while for

k ≥ Ω(
√
n) the verifier can clearly convince himself, using the algorithm in [5].)

The spectral properties of a graph encode some detailed structural information about it. The

ability to compute the eigenvectors and eigenvalues of a graph in polynomial time provides a pow-

erful algorithmic tool, which has already found several applications and may well have additional

algorithmic applications in the future too.
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