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Abstract

The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal

method for solving a linear system Ax = b where A is a symmetric positive definite matrix.

The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose

underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection

method to apply to any non-singular well-separable matrix over any field. The running times we

obtain essentially match those of the nested dissection method. An important tool is a novel

method for matrix sparsification that preserves determinants and minors, and that guarantees

that constant powers of the sparsified matrix remain sparse.
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1 Introduction

Solving a linear system is the most basic, and perhaps the most important problem in computational

linear algebra. Considerable effort has been devoted to obtaining algorithms that solve a linear

system faster than the naive cubic implementation of Gaussian elimination.

For the rest of this introduction we assume that the system is given by Ax = b, where A is a

non-singular n× n matrix over a field, b is an n-vector over that field, and xT = (x1, . . . , xn) is the

vector of variables.

The fastest general algorithm for solving Ax = b was obtained by Bunch and Hopcroft [3], and by

Ibarra, Moran, and Hui [11]. The algebraic complexity of both of these algorithms is O(nω), where

ω < 2.376 is the matrix multiplication exponent [4].

If A is sparse and has only m � n2 non-zero entries, faster algorithms exist. An important

result of Wiedemann [24] asserts that if m = O(n), then a solution of Ax = b can be computed

in Õ(n2)1 time over finite fields. We note that solving sparse linear systems over finite fields has

important applications in cryptography (see, e.g., [9]). Eberly et al. [5] solve Ax = b where A is any
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sium on Foundations of Computer Science (FOCS’08) by the second named author [26]. The second appeared in the
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non-singular matrix with O(n) nonzero bounded integer entries in bit complexity Õ(n2.5). Spielman

and Teng [21] obtained an almost linear time2 algorithm for approximately solving sparse symmetric

diagonally-dominant linear systems.

In some important cases that arise in various applications, the matrix A has additional structural

properties in addition to being sparse. To make this notion more precise we need a definition. Let A

be an arbitrary n×n matrix. The underlying graph of A, denoted by GA, is defined by the vertex set

{1, . . . , n} where, for i 6= j we have an edge ij if and only if ai,j 6= 0 or aj,i 6= 0 (the diagonal entries

of A play no role in the definition of GA). Note that GA is always an undirected simple graph, while

A may or may not be symmetric.

The seminal nested dissection method of Lipton, Rose, and Tarjan [13], generalizing an earlier

result of George [7], asserts that if A is a symmetric positive definite matrix and the underlying

graph GA has an appropriate separator tree (precise definitions will follow in the next section), then

Ax = b can be solved in O(nωβ) time, where β ≥ 1/2 is a parameter of the separator tree. Notice

that for β < 1 this implies, in particular, an algorithm whose algebraic complexity outperforms the

O(nω) algorithm mentioned earlier. For example, it is known that β = 1/2 for planar graphs and for

bounded genus graph (in these cases the separator tree can be constructed in O(n log n) time so one

does not need to precondition its availability [14]). For graphs that exclude a fixed minor it is also

known that β = 1/2 (although to initially construct a separator tree with this parameter requires

O(n1.5) time with present methods [1]).

However, the nested dissection method has several algebraic restrictions. The matrix needs to be

symmetric (or Hermitian) and needs to be positive definite. The method does not apply to matrices

over finite fields, or any other arbitrary field, unless they are assumed to be symmetric pivoting-

free (exact definition will follow in the next section). Even if the matrix is, say, real, but either

non-symmetric or non positive definite, the nested dissection method is not applicable.

Our main result in this paper is a new, modified version of the nested dissection method, that

generalizes it so that all the above algebraic limitations are removed. Our method allows us to solve

systems Ax = b whenever GA has a β-separator tree. It applies to any such matrix, over any field;

there are no algebraic restrictions.

There are several new techniques that are needed in order to obtain the main result. The first,

and most notable, is a novel technique for matrix sparsification. This technique quickly sparsifies

any given matrix so that after sparsification, each row and column has a bounded number of non-

zero entries. The sparsification has the property that it is easy to derive the rank of the original

matrix from the rank of the sparsified matrix, and the determinants, as well as certain minors of

both matrices, are the same. Notice that the sparsified matrix has the property that constant powers

of it remain sparse, which is not necessarily the case for the original matrix, even if it is sparse.

Another important technique is a new idea of partitioning a non-singular linear system into

smaller (possibly rectangular) systems having unique solutions, and combining the solutions of these

smaller systems into a solution of the original one.

We now formally state the main results that we obtain. We assume that the matrix of coefficients

is non-singular (if this is not the case, our method detects this fact). The result here is stated for the

2From here and throughout, unless otherwise noted, time means algebraic complexity. That is, each arithmetic

operation in the field requires constant time.
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specific graph families of planar graphs, bounded genus graphs, and H-minor free graphs, because

we prefer to be concrete about running times. Notice, however, that the result applies to other

hereditary families of graphs that exhibit small separators (see, e.g., [17, 22]). The full generic

statement of the result appears in Section 3.

Theorem 1.1 Let A ∈ Fn×n be a non-singular matrix and let b ∈ Fn. If GA is planar or has bounded

genus, then Ax = b can be solved in O(nω/2) < O(n1.19) time. If GA excludes some fixed minor,

then Ax = b can be solved in O(n3ω/(ω+3)) < O(n1.326) time. For the fields R,Q,C the algorithm is

deterministic. For arbitrary fields (and, in particular, for finite fields) it is a randomized Las Vegas

algorithm.

As noted earlier, the stated running times are given under the assumption that each arithmetic

operation in the field takes O(1) time (namely, the algorithms are measured in terms of their algebraic

complexity). If F is a finite field whose number of elements is polynomial in n, then it is, indeed,

true that each arithmetic operation takes O(log n) time (measured in bit operations) and hence the

running times in Theorem 1.1 also measure actual bit complexity, up to a logarithmic factor. In the

case where A and b have bounded integer entries independent of n (and the system is to be solved

over Q) it is not difficult to show, using standard techniques, that the running times in Theorem 1.1,

when measured in bit complexity, are multiplied by an additional Õ(n) factor. Thus, for example, for

the case of planar graphs we obtain an O(n2.19) algorithm measured in bit complexity. For H-minor

free graphs one can exploit a tradeoff with the combinatorial part of the algorithm and also solve

the problem in O(n2.19) bit complexity. Notice that this is quite close to the obvious Ω(n2) lower

bound, as the output may consist of n rationals, each having numerators and denominators with

Ω(n) digits.

Another minor point is that the the stated running time O(nω/2) assumes that ω > 2, since the

algorithm has an ingredient that runs in Θ(n log n) time. Thus, if ω = 2, the running time for planar

graphs and bounded genus graphs is O(n log n), and not O(n).

The rest of this paper is organized as follows. In Section 2 we establish the necessary tools for

the proof of the main result. This section is split into five parts according to the nature of the tools

used: matrix sparsification, linear algebra, graph theory, vertex splitting, and nested dissection.

Section 3 contains the proof of the main result. This section is also split into parts in sync with

the sub-algorithms applied in order to achieve the main result. Section 4 contains some concluding

remarks.

2 Tools

2.1 Matrix sparsification

Throughout this paper F denotes an arbitrary field, unless stated otherwise. Recall that for a square

matrix X, the minor Mi,j(X) is the determinant of the matrix obtained from X by removing row

i and column j. If i = j then Mi,i(X) = Mi(X) is the i’th principal minor of X. An important

ingredient in the proof of our results is the following theorem.
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Theorem 2.1 Let A ∈ Fn,n be any matrix with m non-zero entries. Another matrix S ∈ Fn+2t,n+2t

can can be constructed in O(m) time and which has the following properties:

1. det(A) = det(S). Moreover, for all i = 1, . . . , n and j = 1, . . . , n, Mi,j(A) = Mi,j(S).

2. rank(S) = rank(A) + 2t.

3. t = O(m).

4. Each row and column of S has at most three nonzero entries.

Proof: We assume that A is represented in a sparse form. That is, A is given by n lists R1, . . . , Rn
representing the rows where each element in Ri is a pair (j, ai,j) and ai,j 6= 0. Each Ri is sorted by

the column indices. For implementation reasons we will maintain cross-referencing pointers between

(j, ai,j) in Ri and (i, aj,i) in Rj . Since the lists are initially sorted by the column indices, creating

these cross-reference pointers requires O(m) time.

It will be convenient to assume that A has the property that ai,j 6= 0 if and only if aj,i 6= 0

for each pair of distinct indices i, j. We can always assume this since if only one of them is 0 we

can rename it 0∗, and at the end of the algorithm dispose of any (·, 0∗) entry in any list. As this

assumption only increases m by a factor of at most 2, it no effect on the claimed running time.

At step t of the algorithm, the current matrix is denoted by St, its current order will be n+ 2t,

and its elements are denoted by sti,j or by si,j if t is clear from the context. Just like A, the matrix

S is represented by lists Ri for i = 1, . . . , n + 2t. We initially set S0 = A. A single step of the

algorithm constructs St+1 from St by increasing the number of rows and columns of St by 2 and by

modifying constantly many entries of St. The algorithm halts when each row list of St has at most

three entries. Thus, in the final matrix St we have that each row and column has at most 3 non-zero

entries. At any step of the algorithm we will have det(St+1) = det(St), rank(St+1) = rank(St) + 2,

and Mi,j(St+1) = Mi,j(St) for i = 1, . . . , n and j = 1, . . . , n. Hence, in any step we will have

det(St) = det(A), rank(St) = rank(A)+2t, and Mi,j(St) = Mi,j(A) for i = 1, . . . , n and j = 1, . . . , n.

At any step of the algorithm we denote by ri the number of elements in Ri and denote by Ft
the set of indices of rows of St that contain at least four non-zero entries. Notice that F0 is initially

constructed in O(m) time. To assist in counting the number of steps of the algorithm we set

ct =
∑
i∈Ft

(ri − 3).

Observe that initially c0 < m.

We now describe a single step. As long as Ft is not empty, let i denote the first element of Ft.

Hence, ri = |Ri| ≥ 4. Let u and v be two other distinct indices for which si,u 6= 0 and si,v 6= 0.

We can locate u and v in constant time by looking at the first three entries of Ri (we have to look

at three entries since one of the first two entries might represent the diagonal element si,i). Let

X denote the 3 × 3 principal sub-matrix of St obtained from rows {i, u, v} and columns {i, u, v}.
The matrix St+1 is constructed from St as follows. The four elements si,u, si,v, su,i, sv,i of X are

replaced with zero. In other words, st+1
i,u = st+1

i,v = st+1
u,i = st+1

v,i = 0. The other 5 elements of X

remain the same. Two new rows are added and two new columns are added. The non-zero entries
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St =
v

u

i


M1 M2

M3

sv,v sv,u sv,i
su,v su,u su,i
si,v si,u si,i



St+1 = v

u

i

n+2t+1

n+2t+2



M1 M2 0

M3

sv,v sv,u 0

su,v su,u 0

0 0 si,i

0 sv,i
0 su,i
1 0

0
0 0 −1

si,v si,u 0

0 1

−1 0


Figure 1: A single step of the algorithm

in row n+ 2t+ 1 are st+1
n+2t+1,i = −1 and st+1

n+2t+1,n+2t+2 = 1. The non-zero entries in row n+ 2t+ 2

are st+1
n+2t+2,u = sti,u, st+1

n+2t+2,v = sti,v, and st+1
n+2t+2,n+2t+1 = −1. The non-zero entries in column

n+ 2t+ 1 are st+1
i,n+2t+1 = 1 and st+1

n+2t+2,n+2t+1 = −1. The non-zero entries in column n+ 2t+ 2 are

st+1
u,n+2t+2 = stu,i, s

t+1
v,n+2t+2 = stv,i, and st+1

n+2t+1,n+2t+2 = 1. This construction is visualized in Figure

1, where we assume, for the sake of clarity that i = n+ 2t, u = n+ 2t− 1, v = n+ 2t− 2, and hence

X is the bottom right 3× 3 sub-matrix of St.

Modifying the row lists Ru, Rv, Ri to reflect the changes between St and St+1 takes constant

time as there are at most two removals of elements that are directly pointed (here we use the cross-

referencing pointers) and one insertion at the end of each list. Creating the new lists Rn+2t+1, Rn+2t+2

requires constant time as well. Notice that the number of elements in Ri decreased by 1, since both

si,u and si,v became zero in St+1 and they were not zero in St, and since si,n+2t+1 is a new non-zero

element which equals 1 in St+1. Thus, ri decreased by 1. If we now have ri ≤ 3, we delete i from the

head of Ft to obtain Ft+1. Otherwise, Ft+1 = Ft remains intact. Notice also that ru did not change

since su,i in St was “moved” to su,n+2t+2 in St+1. Similarly, rv did not change. The value of rn+2t+1

is initialized to 2 and the value of rn+2t+2 is initialized to 3. It follows that ct+1 < ct proving that

the algorithm has less than m steps until it terminates. It remains to prove the following lemma:

Lemma 2.2 det(St+1) = det(St), rank(St+1) = rank(St) + 2, and Mi,j(St+1) = Mi,j(St) for i =

1, . . . , n and j = 1, . . . , n.

Proof: Consider first the matrix S′ obtained from St by adding two rows and two columns all of

which are zero except for the lower 2 × 2 part, as depicted in Figure 2. Clearly, det(S′) = det(St),

rank(S′) = rank(St)+2, and the claimed minors are not affected. It remains to show that det(S′) =

det(St+1), rank(S′) = rank(St+1), and Mi,j(S
′) = Mi,j(St+1) for i = 1, . . . , n and j = 1, . . . , n.
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S′ = v

u

i

n+2t+1

n+2t+2



M1 M2 0

M3

sv,v sv,u sv,i
su,v su,u su,i
si,v si,u si,i

0 0

0 0

0 0

0
0 0 0

0 0 0

0 1

−1 0


Figure 2: The matrix S′

Let R(j) denote the jth row of S′ and let C(j) denote the jth column of S′. The following

sequence of elementary operations does not change the determinants, the claimed minors, nor the

rank, as they all involve multiplying one of the two newly added rows or columns by a scalar and

add it to some original row or column. Furthermore, these operations transform S′ to St+1.

R(v) = R(v) + sv,iR(n+ 2t+ 1)

R(u) = R(u) + su,iR(n+ 2t+ 1)

C(v) = C(v)− si,vC(n+ 2t+ 1)

C(u) = C(u)− si,uC(n+ 2t+ 1)

R(i) = R(i)−R(n+ 2t+ 2)

C(i) = C(i)− C(n+ 2t+ 2).

2.2 Linear algebra

Let Ax = b be a system of linear equations, where A ∈ Fn×n, b ∈ Fn and xT = (x1, . . . , xn). Unless

otherwise stated, A is assumed to be non-singular. Our goal is to find the unique solution of the

system, which is denoted by cT = (c1, . . . , cn).

Let B = [A|b] be the n× (n+ 1) matrix obtained by adding b as the rightmost column of A. For

i = 1, . . . , n+1, let Bi be the matrix obtained from B by removing column i (hence Bn+1 = A). The

following is an immediate consequence of Cramer’s rule [10] and the fact that permuting columns

only changes the sign of the determinant.

Fact 2.3 ci = ±det(Bi)det(A)−1.

Lemma 2.4 Let Q = BTB. Then det(Bi)
2 = Mi(Q). Also, det(A)2 = Mn+1(Q).

Proof: BT
i Bi is precisely the matrix obtained from Q by removing row and column i. Likewise,

ATA is obtained from Q by removing the last row and the last column.

It follows from Fact 2.3 and from Lemma 2.4 that by computing the minors M1(Q), . . . ,Mn+1(Q),

we obtain c21, . . . , c
2
n. But we are interested in c1, . . . , cn, not in their squares. For this purpose, we
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use the following interpolation argument. Let a ∈ Fn be the sum of the columns of A. Consider

the linear system Ay = (a + b). Notice that (c1, . . . , cn) is a solution of Ax = b if and only if

(c1 + 1, . . . , cn + 1) is a solution of Ay = (a + b). So, by the same argument, we can compute the

squares of the coordinates of the solution of Ay = (a+b) which are (c1 +1)2, . . . , (cn+1)2. To obtain

ci we notice that if the field has characteristic 2, then c2i already uniquely defines ci. For other fields,

we notice that ci = ((c1 + 1)2 − c2i − 1)2−1.

To summarize, we have shown that solving the system Ax = b amounts to computing all the

principal minors M1(Q), . . . ,Mn+1(Q) of the matrix Q = BTB where B = [A|b]. Computing all

these principal minors quickly turns out to be a non-trivial task. For this purpose, we need to state

and prove a few additional linear algebraic claims.

Although we are interested in solving systems Ax = b where A is a square non-singular matrix,

we will need, in the course of our algorithm, to consider a more general setting. Let Rx = h be a

system of linear equations where R ∈ Fn+p,n, b ∈ Fn+p, and assume that the system has a unique

solution (in particular, rank(R) = n). As before, let B = [R|h] be the matrix obtained by adding h

as the last column of R. Notice that the dimensions of B are (n+ p)× (n+ 1). For i = 1, . . . , n+ 1,

let Bi be the matrix obtained from B by removing column i. We would like to generalize the above

observation regarding the minors Mi(B
TB) and the squares of the solutions of the system. It is

not difficult to show that such a generalization holds for fields which satisfy rank(RTR) = rank(R)

(such as the reals or the rationals). However, we require a generalization that applies to all fields.

Lemma 2.5 Let D be a diagonal matrix of order n + p, with elements taken from a field F′ ⊃ F,

and so that rank(RTDR) = rank(R) = n. Let Q = BTDB. Then c2i = Mi(Q)Mn+1(Q)−1.

Proof: We first prove thatMn+1(Q) 6= 0. Indeed, since rank(R) = n we have that rank(RTDR) = n

and hence RTDR is an n× n non-singular matrix. Since B = [R|h] we have that RTDR is just the

matrix obtained from Q = BTDB by removing the bottom row and rightmost column. As RTDR

is non-singular, its determinant Mn+1(Q) is nonzero.

For the rest of the proof, assume, without loss of generality, that the first n rows of R are linearly

independent, and let A denote the n× n nonsingular sub-matrix of R corresponding to these rows.

Let B′ = [A|h′] where h′ is the truncation of h to the first n coordinates. Similarly, define B′i to be

the matrix obtained from B′ by removing column i, and let Q′ = B′TB′. We already know from

Fact 2.3 and from Lemma 2.4 that c2i = Mi(Q
′)Mn+1(Q

′)−1 and that det(B′i)
2 = Mi(Q

′). We will

show that there is a scalar f 6= 0 so that Mi(Q) = fMi(Q
′), thereby obtaining the claimed result.

Notice that if we show such a scalar f exists, then it must be nonzero since Mn+1(Q) 6= 0.

For a subset J of n row indices of B, let B(J) denote the corresponding n×(n+1) sub-matrix, and

let Bi(J) denote the corresponding n× n matrix where column i is removed. Now the following two

cases may occur. Either B(J) does not have rank n, in which case det(Bi(J)) = 0 for all i, or else the

rows of B(J) span the same n-dimensional subspace as B′ does (notice that B′ = B({1, . . . , n})). In

particular, for each J there exists a constant fJ so that det(Bi(J)) = fJ ·det(B′i) for all i = 1, . . . , n+1.

Let DJ denote the n×n diagonal matrix obtained from D by selecting only the rows and columns

corresponding to J . Define f =
∑

J f
2
Jdet(DJ). By the Cauchy-Binet formula (see, e.g., [10]),

Mi(Q) = det(BT
i DBi) =

∑
J

det(Bi(J))2det(DJ) =
∑
J

f2Jdet(B
′
i)
2det(DJ) = f ·det(B′i)2 = fMi(Q

′) .
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Recall that in R and Q we always have rank(RTR) = rank(R), so in these cases the diagonal

matrix D in Lemma 2.5 is simply irrelevant (in other words, just take D = I). Over C we can

work with the conjugate transpose R∗ instead of RT . Now, since rank(R∗R) = rank(R) the result

remains the same, except that we now obtain |ci|2 instead of c2i , and we can use the interpolation

trick to recover ci. But for arbitrary fields, how do we make sure that such a D exists, and how do

we compute one efficiently?

Existence is trivial; since rank(R) = n there are n rows of R that are linearly independent, so let

J denote the subset of indices corresponding to these rows, and let D be the diagonal matrix with

1 in the diagonal positions corresponding to J and zero otherwise.

Although to establish Lemma 2.5 we just require that D has the property that rank(RTDR) =

rank(R), our algorithm will require RTDR to have a much stronger property, which we now define.

Gaussian elimination of symmetric matrices can be performed on rows and columns simultane-

ously, as long as there is no pivoting. In step i of the elimination, we already have that the top i× i
block is a diagonal matrix. Assuming the entry in location (i, i) (the pivot) is nonzero, we eliminate

all the elements below it and to its right (simultaneously, as the matrix is symmetric). If the element

in location (i, i) is zero, one has to perform pivoting, namely, permute row (and column) i with some

other row (and column) j > i so as to obtain a nonzero entry in location (i, i).

We say that a symmetric matrix C is pivoting-free if no pivoting occurs during the elimination

process. In particular, C is non-singular. Notice also that if C is pivoting-free, then the elimination

process produces a decomposition C = LKLT where L is a unit lower triangular matrix and D is a

diagonal matrix. Notice that, over R (resp. C), any symmetric (resp. Hermitian) positive definite

matrix is pivoting-free. (in this case the decomposition is known as the Cholesky decomposition).

Hence, in this sense, pivoting-freeness is the analogue of symmetric positive-definite matrices for

arbitrary fields.

In R (C), for any matrix A with full column rank n we have that ATA (resp. A∗A) is symmetric

(resp. Hermitian) positive definite, and thus pivoting-free. This, however, is not true for general

fields. For example, over Fp it may be that already (ATA)(1, 1) = 0 while A is non-singular.

Our goal is to choose the diagonal matrix D so that RTDR is pivoting-free with high probability.

This can be proved in several ways, but we prefer the following proof.

Lemma 2.6 Let R ∈ Fn+p,n have rank(R) = n. There is an O(n + p) time algorithm that, with

probability 1 − 1/n2, constructs a diagonal matrix D of order n + p so that RTDR is pivoting-free.

If F has q ≤ n4 elements, then the diagonal entries of D are chosen at random from an extension

field F′ having at least n4 elements. Otherwise, the diagonal entries of D are chosen at random from

some subset of n4 elements of F.

Proof: Consider the symbolic diagonal matrix D = diag(x1, . . . , xn+p). Let C = RTDR be an

n× n matrix over F[x1, . . . , xn+p] and let Ci be the top i× i block of C. We claim that det(Ci) 6= 0.

Indeed, if Ri denotes the first i columns of R then Ci = RTi DRi. By the Cauchy-Binet formula,

det(Ci) =
∑

J det(Ri(J))2det(DJ) where J ranges over all i-subsets of indices from {1, . . . , n + p}
and Ri(J) (resp. DJ) is the i × i sub-matrix of Ri (resp. D) corresponding to these indices. Since

det(DJ) is just the monomial corresponding to the product of the variables with index in J , and all
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these monomials are distinct, it suffices to prove that there exists J so that det(Ri(J)) 6= 0. Indeed,

R has full column rank n, so Ri has full column rank i. Hence, there must be at least one i × i
sub-matrix of Ri that is non-singular. Since J ranges over all such matrices, the claim follows.

Having proved that det(Ci) 6= 0, we proceed as follows. Each det(Ci) is a nonzero polynomial

of degree i, and in particular, the product P (x1, . . . , xn+p) = πni=1det(Ci) is a polynomial of degree

less than n2. By the results of Schwartz [19] and Zippel [28], if S ⊂ F has at least λn2 elements,

then a random assignment of elements of S to the variables yields a nonzero value with probability

at least 1 − 1/λ. We will use λ = n2. If F is finite and has only q ≤ n4 elements, we can use an

extension field F′ ⊃ F with at least n4 elements. In order to construct an extension field F′ with

qr ≥ n4 elements (notice that here r = O(log n)) we just need to construct an irreducible polynomial

of degree r over F. A probabilistic Las Vegas algorithm that performs this task in Õ(r2 + r log q)

time (here Õ indicates an implicit polylogarithmic factor in r) is given in [20]. Thus, the time to

construct F′ is not larger than the O(n+ p) time required to randomly generate D.

Now, assuming a successful random assignment, we now have that C = RTDR is an n×n matrix

over F (or F′, if we used an extension field). Furthermore, det(Ci) 6= 0 for all i = 1, . . . , n. We perform

the Gaussian elimination of C, and since Gaussian elimination does not cause the determinant of

any top i× i matrix to vanish (since elimination only involves elementary operations), we know that

at step i of the elimination process, the current top i × i matrix still has nonzero determinant. On

the other hand, this top i× i sub-matrix is diagonal, so we must have that the entry (i, i) is nonzero.

Hence C is pivoting-free.

Suppose that a square matrix Q of order n can be presented in the form Q = LKLT where L is

unit lower triangular, and K is a diagonal matrix. We present an efficient procedure for computing

the minors Mt(Q), . . . ,Mn(Q), starting from some index t. Let Qi be the matrix obtained from Q

by removing row and column i (so that Mi(Q) = det(Qi)). Let Li be the matrix obtained from L

by removing row i. Let Ki be the diagonal matrix obtained from K by removing row i and column

i. Observe that Qi = LiKL
T
i . For j = 1, . . . , n, let Li,j be obtained from Li by removing column j,

and notice that Li,j is square of order n− 1. By the Cauchy-Binet formula we have:

Fact 2.7

Mi(Q) = det(Qi) = det(LiKL
T
i ) =

n∑
j=1

det(Li,j)
2det(Kj) .

We can use the fact that L is a unit triangular matrix and K is a diagonal matrix to speed up

the computation of the determinants of Li,j and Kj .

Lemma 2.8 If j < i then det(Li,j) = 0. Consequently Mi(Q) =
∑n

j=i det(Li,j)
2det(Kj). For a

given t ≤ n, all of the values det(Li,j) for j ≥ i ≥ t can be computed in O(mL + (n − t)ω) time,

where mL is the number of non-zero entries of L. In particular, Mt(Q),Mt+1(Q), . . . ,Mn(Q) can all

be computed in O(mL + (n− t)ω) time.

Proof: We shall denote by `u,v the entry of L in row u and column v. Since L is unit triangular,

we have `u,u = 1 for u = 1, . . . , n. We also assume that L is represented in a sparse form using, say,

row lists.
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Consider first the case of det(Li,j) when j < i. Consider the top j rows of Li,j . These are

j vectors in Fn−1, that may have non-zeros only in their first j − 1 coordinates. Hence, they are

linearly dependent. Consequently, det(Li,j) = 0.

We fix t, and show how to compute all the values det(Li,j) for t ≤ i ≤ j ≤ n. For this purpose

we need to recall some additional facts from linear algebra. Let L[t] denote the matrix obtained

from L by taking the lower right (n+ 1− t)× (n+ 1− t) block. Hence, if t = 1, then L[t] = L and

if t = n, then L[t] is the singleton `n,n = 1. Next, recall that the cofactor Ci,j(L) of L is defined

as (−1)i+jdet(Li,j). As L and L[t] are triangular matrices, there is a clear connection between the

cofactors of L and the cofactors of L[t], which we denote by Ci,j(L[t]). We have, for all t ≤ i ≤ j ≤ n,

Ci,j(L) = Ci−t+1,j−t+1(L[t])Πt−1
u=1`u,u = Ci−t+1,j−t+1(L[t]) .

In particular, we have that for all t ≤ i ≤ j ≤ n,

det(Li,j) = (−1)i+jCi−t+1,j−t+1(L[t]) .

So, to determine all det(Li,j) we have to compute all the cofactors of L[t]. We need the following

well-known fact (see, e.g., [10]).

Fact 2.9 If X is a non-singular matrix then adj(X) = det(X)X−1, where adj(X) is the classical

adjoint of X; namely adj(X)T is the cofactor matrix of X.

Since in our case det(L[t]) = 1, we only need to show how to compute L[t]−1 quickly. We need the

following result of Bunch and Hopcroft [3].

Lemma 2.10 If X is a non-singular matrix of order x, then X−1 can be computed in O(xω) time.

Recall that L[t] is a non-singular matrix of order n+ 1− t. Also, trivially, it can be constructed from

the row lists of L in O(mL) time, where mL is the number of nonzero entries of L. Hence, L[t]−1

can be computed in O(mL + (n− t)ω) time. To finish the proof we need to also compute the values

det(Kj). Since K is a diagonal matrix of order n, we have that det(Kj) is just the product of all

the diagonal entries of K except for the one in location (j, j). Thus we can trivially compute all the

det(Kj) in O(n) ≤ O(mL) time. We have thus shown that the overall running time of the algorithm

for computing Mt(Q),Mt+1(Q), . . . ,Mn(Q) requires O(mL + (n− t)ω) time.

The expression O((n− t)ω) in Lemma 2.8 seems rather large at first glance. However, as we shall

see in Section 3, a crucial point is that we will only apply Lemma 2.8 for values of t that are very

large. For example, we will mostly use that n− t = O(
√
n). Another point is that in our applications

of Lemma 2.8 the diagonal matrix K will mostly contain a zero in its bottom diagonal entry. This

means that in Lemma 2.8, only det(Kn) is nonzero. This simplifies the expression for computing

Mi(Q) in the statement of the lemma, when applied in our setting. However, it does not seem to help

in improving the running time in Lemma 2.8. Furthermore, Lemma 2.8 as stated may be applicable

in other cases where K is a non-singular matrix.
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2.3 Separator trees

We say that a graph G = (V,E) has a (k, α)-separation, if V can be partitioned into three parts,

X,Y, Z such that |X ∪ Z| ≤ α|V |, |Y ∪ Z| ≤ α|V |, |Z| ≤ k, and no edge has endpoints in both

X and Y . Hence, X and Y are separated by Z. We say that the partition (X,Y, Z) exhibits a

(k, α)-separation, and that Z is a (k, α)-separator.

Lipton and Tarjan [14] proved that a planar graph with n vertices has an (O(
√
n), 2/3)-separation

and that such a separation can be found in O(n) time.

When the existence of an (f(n), α)-separation can be proved for each n-vertex graph belonging

to a hereditary family (closed under taking subgraphs), one can recursively continue separating each

of the separated parts X and Y until the separated pieces are small enough. This yields a weak

separator tree 3. Notice that being planar, having bounded genus g, as well as being H-minor free

for any fixed graph H, are all examples of nontrivial hereditary families. More formally, we say that

a graph G = (V,E) with n vertices has an (f(n), α)-weak separator tree if there exists a full rooted

binary tree T such that the following holds:

(i) Each node t ∈ T is associated with some Vt ⊂ V .

(ii) V = ∪t∈TVt. , If t 6= t′ then Vt ∩ Vt′ = ∅.
(iii) For an internal node t ∈ T and its children t1 and t2, let Ti be the subtree rooted at ti. Let

X = ∪s∈T1Vs, Y = ∪s∈T2Vs and Z = Vt. Then (X,Y, Z) exhibits an (f(|X|+ |Y |+ |Z|), α)-separation

of the subgraph of G induced by X ∪ Y ∪ Z.

(iv) If t is a leaf, then |Vt| = O(1).

By using divide and conquer, the result of Lipton and Tarjan mentioned above can be stated

as follows, and even extended to bounded genus graphs by the result of Gilbert, Hutchinson, and

Tarjan [6].

Lemma 2.11 Let g be a fixed nonnegative integer. Given an embedding of a graph G with n vertices

on a surface with genus g, an (O(
√
n), 2/3)-weak separator tree for G can be constructed in O(n log n)

time.

We note that a linear time algorithm that embeds a graph with fixed genus g in a surface of genus

g was obtained by Mohar [15]. The embedding is purely combinatorial and is given by a rotation

system (a cyclic permutation πv of edges incident with v, representing their circular order around v

on the surface).

Alon, Seymour, and Thomas [1] extended the result of Lipton and Tarjan to H-minor free graphs.

However, the running time of their algorithm is O(n1.5) for every fixed H. Later, Reed and Wood [18]

exhibited a more flexible algorithm which runs faster, at the expense of producing a larger separator.

Lemma 2.12 Let ε ∈ [0, 1/2] be fixed and let H be a fixed graph. There is an algorithm with running

time O(n1+ε) that, given an n-vertex graph G, either reports that G has an H-minor, or outputs an

(O(n(2−ε)/3), 2/3)-separation. In particular, if ε ∈ (0, 1/2], then an (O(n(2−ε)/3), 2/3)-weak separator

tree for G can be constructed in O(n1+ε) time.

3In a strong separator tree the recursion is applied to X ∪Z and Y ∪Z, while in a weak separator tree the recursion

is applied only to X and Y .
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We note that in a very recent result, Kawarabayashi and Reed [12] sketch an algorithm that finds

an (O(
√
n), 2/3)-separation in O(n1+ε) time, for any fixed ε > 0.

2.4 Sparsification through weak separator trees

As shown in [26], each step in the sparsification algorithm of Theorem 2.1 corresponds to an operation

on GA, the underlying graph of A. Indeed, we can label GA so that it encodes the matrix A itself,

not only its underlying structure. Let ai,j denote an entry of A. We label vertex i of GA with ai,i
and label an edge ij with the two labels ai,j and aj,i. More conveniently, we can orient ij in two

directions such that (i, j) is labeled ai,j and (j, i) is labeled aj,i. Given this labeling, each step of

the sparsification algorithm can be thought of as an operation which transforms the current labeled

underlying graph to the next one. This operation (on unlabeled graphs) is known as vertex splitting

[25]. The next paragraph defines it formally.

Suppose that i is a vertex of GA and u, v are two neighbors of i. Modify GA by adding two new

vertices n + 1 and n + 2. Add new edges {i, n + 1}, {n + 1, n + 2}, {n + 2, u} and {n + 2, v}, and

delete the original edges {i, u} and {i, v}. Label the new vertices n+ 1 and n+ 2 with 0. We label

(i, n + 1) with 1, label (n + 1, i) with −1, label (n + 1, n + 2) with 1, label (n + 2, n + 1) with −1,

label (n + 2, u) with ai,u, label (u, n + 2) with au,i, label (n + 2, v) with ai,v, label (v, n + 2) with

av,i. This operation is termed labeled vertex-splitting in [26]. As shown there, it is straightforward to

verify that each step in the sparsification algorithm corresponds to a single labeled vertex splitting

operation. Hence, in the notations of Theorem 2.1, the underlying graph GA′ is obtained from the

underlying graph GA by a sequence of t = O(m) labeled vertex splittings.

As is well-known, if GA is a planar graph (or a bounded genus graph), then the vertex splitting

operation can be chosen to preserve planarity (or the genus). One simply chooses the above neighbors

u, v of i to be consecutive vertices in the clockwise ordering of the neighbors of i in the plane (or

on the surface embedding). Thus, the resulting GA′ is also planar (resp. of the same genus). This

naive topological argument no longer holds if we only know that GA belongs to a hereditary family

of graphs that has (f(n), α)-weak separator trees (for example, the family of H-minor free graphs for

a fixed H). Nevertheless, in [27] it is proved that one can perform a sequence of vertex splittings on

a given graph belonging to a δ-sparse hereditary family with a separator of sublinear size, so that the

resulting graph will also have a weak separator tree with the same parameters (up to a constant).

A hereditary family of graphs F is δ-sparse if for all sufficiently large n, any G ∈ F with n vertices

has at most δn edges. Notice that planar graphs, bounded genus graphs, and H-minor free graphs

(for fixed H) are all examples of δ-sparse families for a suitable choice of δ. The following result is

proved in [27]. It is important to note that although the result in [27] is stated only for H-minor

free graphs (since this is what was needed there), its proof only uses the fact that the graphs belong

to a δ-sparse hereditary family for which there is an algorithm that finds good separators. Hence we

prefer to state it in this more general form.

Lemma 2.13 Let F be a δ-sparse hereditary family of graphs for which there exists an algorithm

A that given an n-vertex graph in F , generates an (O(nβ), 2/3)-separation in O(nγ) time. Then,

given an n-vertex graph G ∈ F , there is a vertex-split graph G′ of G of maximum degree at most

3 such that G′ has an (O(nβ), α)-weak separator tree where α < 1 is a constant that only depends
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on the family F . Furthermore, a corresponding weak separator tree for G′ can be constructed in

O(n log n+ nγ) time.

In the statement of the lemma in [27], the graph G′ is only required to have bounded maximum

degree k (not necessarily maximum degree 3). However, notice that if one splits a vertex v of degree

k several times until it has degree 3, then the sequence of splits corresponds to a tree on O(k) vertices

rooted at v. Thus, if the graph with maximum degree k had an (O(nβ), α)-weak separator tree then,

as k is bounded, the resulting graph with maximum degree 3 has an (O(nβ), α′)-weak separator tree

as well. So, we prefer to state Lemma 2.13 in the “degree 3” form. Another important thing to note

is that Lemma 2.13 applies to weak separator trees. It does not work for strong separator trees.

Finally, notice that for H-minor free graphs we can simply use A to be the algorithm of Reed and

Wood stated in Lemma 2.12 with γ = (1 + ε) and β = (2− ε)/3.

Combining Theorem 2.1 and Lemma 2.13 we obtain the following corollary.

Corollary 2.14 Let F be a δ-sparse hereditary family of graphs for which there exists an algorithm

A that given an n-vertex graph in F , generates an (O(nβ), 2/3)-separation in O(nγ) time. Then,

given an a matrix A ∈ Fn×n with GA ∈ F , another matrix A′ ∈ Fn+2t,n+2t can can be constructed

and which has the following properties. For all i = 1, . . . , n and j = 1, . . . , n, Mi,j(A) = Mi,j(A
′).

Furthermore, t = O(n) and each row and column of A′ has at most three nonzero entries. The graph

GA′ has an (O(nβ), α)-weak separator tree where α < 1 is a constant that only depends on the family

F . The time to construct A′ and the corresponding weak separator tree of GA′ is O(n log n+ nγ).

2.5 Nested dissection

We briefly describe the generalized nested dissection method, developed by Lipton, Rose and Tarjan

[13]. We follow the variant developed by Gilbert and Tarjan [8], as it applies to weak separator trees.

Suppose that G = (V,E) is a graph with n vertices, and T is a weak separator tree of G. Recall

that each node x ∈ T is associated with a subset Vx ⊂ V . A T -elimination order of the vertices

of G is a bijective labeling from V to {1, . . . , n} so that if y is a child of x in T , then the vertices

in Vy receive smaller labels than the vertices in Vx. Notice that the vertices of Vroot(T ) receive the

largest labels. Given T , it is straightforward to compute a T -elimination order in linear time by

performing, say, a postorder traversal of the tree. So, from now on we assume that V = {1, . . . , n}
and we identify a vertex with its label in the elimination order.

Let C be a pivoting-free matrix and let TC be a weak separator tree of GC (and note that we now

assume that row i of C is also the label in the TC-elimination order of GC). Orient the edges of GC
from the lower ordered endpoint to the higher ordered endpoint. In particular, notice that vertex n

has out-degree 0. When performing the elimination of C, some entries that were zero in C become

nonzero during the elimination process. Such an entry is called a fill-in. So, let G∗C denote the fill-in

graph after elimination. There is an edge (u, v) in G∗C if (u, v) ∈ GC or if (u, v) is a fill-in. It is easy

to see (cf. [8]) that fill-ins cannot cross separators. Namely, if (u, v) is an edge of G∗C then the node

of TC containing v is an ancestor of the node of TC containing u. Hence, if TC is an (O(nβ), α)-weak

separator tree, then the out-degree of any vertex in G∗C is O(nβ). Another important observation

of Gilbert and Tarjan (see Theorem 4 in [8]) is that if the maximum degree of GC is bounded (that
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is, each row and column of C has a bounded number of nonzero entries), then the total number of

edges of G∗C is O(n log n).

During the elimination process, when we reach step i and consider entry (i, i), we only need to

eliminate the nonzero entries below it (and to its right; but these are the same since the matrix is

symmetric). In other words, the number of arithmetic operations required for step i is at most the

square of the out-degree of i in G∗C (notice that this is the naive approach to Gaussian elimination).

Hence, doing naive elimination, the total operation count is O(
∑n

i=1 d
∗(i)2) where d∗(i) is the out-

degree of i in G∗C . Since
∑n

i=1 d
∗(i) = O(n log n), this already yields an O(n1+β log n) operation

count, even when using the naive method. A slightly more careful analysis given in [8] shows that

the total naive operation count is only O(n1+β). By plugging in the fast Gaussian elimination method

of [3], instead of the naive method, Lipton, Rose, and Tarjan observed that the total operation count

reduces to O(nωβ). To summarize, the result of Gilbert and Tarjan is stated in the following lemma.

Lemma 2.15 Let C be a pivoting-free matrix of order n with a bounded number of nonzero entries

in each row and column, and assume that an (O(nβ), α)-weak separator tree for GC is given, where

β ≥ 1/2. Then, a unit lower triangular matrix L and a diagonal matrix K can be constructed in

O(nωβ) time so that C = LKLT .

We need a minor modification of the above result. Let w ∈ Fn+1 be any vector. Let Q be the

(n+ 1)× (n+ 1) matrix obtained from C by adding w as a last row and wT as a last column. Notice

that Q is not necessarily pivoting-free, but since C is pivoting-free, the only location where we may

encounter a diagonal zero during the elimination process is (n + 1, n + 1) (but this, in turn, means

that the whole last row and column at this final elimination stage is zero, so we are done). Clearly,

if TC is an (O(nβ), α)-weak separator tree for GC , then it is also an (O(nβ), α)-weak separator tree

for GQ since we may assign vertex n + 1 to the root separator. Also notice that GQ only has at

most n edges more than GC , so it also has O(n) edges as well. Also observe that the out-degree of

any vertex in G∗Q is at most one larger than its out-degree in G∗C (since it may now have an edge to

n+ 1). The new vertex, n+ 1, has out-degree 0. We therefore have:

Lemma 2.16 Let C be a pivoting-free matrix of order n with a bounded number of nonzero entries

in each row and column, and assume that an (O(nβ), α)-weak separator tree for GC is given, where

β ≥ 1/2. Let w ∈ Fn+1 be any vector. Let Q be the (n + 1) × (n + 1) matrix obtained from C by

adding w as a last row and wT as a last column. Then, a unit lower triangular matrix L and a

diagonal matrix K can be constructed in O(nωβ) time so that Q = LKLT .

Observe that if rank(Q) = rank(C) = n, then Q is not pivoting-free and hence K must have a

unique zero in its diagonal, in position (n+ 1, n+ 1).

3 Proof of the main result

We state and prove our main result in its more general setting, for which Theorem 1.1 is a special

case.
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Theorem 3.1 Let F be a δ-sparse hereditary family of graphs for which there exists an algorithm A
that given an n-vertex graph in F , generates an (O(nβ), 2/3)-separation in O(nγ) time. Then, given

a system of linear equations Ax = b where A ∈ Fn×n is non-singular, b ∈ Fn, and GA ∈ F , there

is an algorithm that finds the unique solution of the system in O(nωβ + nγ + n log n) time. For the

fields R,Q,C the algorithm is deterministic. For arbitrary fields (and, in particular, for finite fields)

it is a randomized Las Vegas algorithm.

The proof of Theorem 1.1 follows immediately from the more general Theorem 3.1. For planar

graphs and bounded genus graphs we simply use β = 1/2 and γ = 1, following the aforementioned

results of Lipton and Tarjan [14] and Gilbert, Hutchinson and Tarjan [6]. This gives a runtime of

O(nω/2 + n log n) for these graphs (which is O(nω/2) if ω > 2). For the class of H-minor free graphs

(where H is any fixed graph), we use the result of Reed and Wood, stated as Lemma 2.12, with

ε = (2ω − 3)/(3 + ω) that implies using β = 3/(3 + ω) and γ = 3ω/(3 + ω) in Theorem 3.1. Hence,

the runtime obtained is this case is O(n3ω/(3+ω)).

The algorithm that proves Theorem 3.1 consists of two parts, which we denote by ALG1 and

ALG2. The goal of the first part is to reduce the problem to a sparse setting that is suitable for

solving a linear system recursively.

3.1 Algorithm ALG1

This algorithm is given as input a linear system Ax = b where A ∈ Fn×n is non-singular, and b ∈ Fn.

The matrix is represented via the labeled list representation of GA, and it is assumed that GA ∈ F .

The goal of ALG1 is to compute the unique solution cT = (c1, . . . , cn) of the system.

To achieve this goal, we first apply Corollary 2.14 to obtain a matrix A′ ∈ Fn+2t,n+2t and an

(O(nβ), α)-weak separator tree for GA′ as in the statement of the corollary. The running time

required for these constructions is O(nγ + n log n).

We also construct a vector b′ ∈ Fn+2t which is identical to b in the first n coordinates, and which

is zero in the remaining 2t coordinates. Since t = O(n), it takes only O(n) time to construct b′.

We call ALG2 and provide it as input the system A′x = b′ together with the separator tree for

GA′ . Notice that since det(A′) = det(A) this system also has a unique solution. ALG2 returns the

unique solution (c′1, . . . , c
′
n+2t) of the system A′x = b′. Now, ALG1 returns the first n coordinates

(c′1, . . . , c
′
n) as its answer.

The overall running time of ALG1 (using ALG2 as a “black box” and not counting the running

time of ALG2) is O(nγ + n log n). To prove the correctness of ALG1 (assuming the correctness of

ALG2) we need to establish the following lemma.

Lemma 3.2 Let (c1, . . . , cn) be the unique solution of Ax = b and let (c′1, . . . , c
′
n+2t) be the unique

solution of the system A′x = b′. Then ci = c′i for i = 1, . . . , n.

Proof: Let B = [A|b] and let B′ = [A′|b′]. Let Bi and B′i be, respectively, the matrices obtained

from B and B′ by removing column i. Since det(A) = det(A′) it suffices, by Cramer’s rule, to prove

that det(Bi) = det(B′i) for i = 1, . . . , n. One way to obtain det(Bi) is by expansion of the determinant
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by the last column of Bi. Hence,

det(Bi) =

n∑
j=1

(−1)n+jbjMj,i(A) .

Similarly, we can obtain det(B′i) by expansion of the determinant by the last column of B′i.

det(B′i) =
n+2t∑
j=1

(−1)n+2t+jb′jMj,i(A
′) .

But b′j = bj for j = 1, . . . , n and b′j = 0 for j = n + 1, . . . , n + 2t. Also, by Corollary 2.14, we have

that Mj,i(A
′) = Mj,i(A) for i = 1, . . . , n and j = 1, . . . n. Hence, for i = 1, . . . , n we have

det(B′i) =

n∑
j=1

(−1)n+2t+jbjMj,i(A) =

n∑
j=1

(−1)n+jbjMj,i(A) = det(Bi) .

3.2 Algorithm ALG2

Algorithm ALG2 is a divide-and-conquer algorithm. To describe its input in general we need to

define the underlying graph GR of a rectangular matrix R with n + p rows and n columns. This is

simply defined as the underlying graph of the matrix obtained from R by padding R with p zero

columns to the right. In other words, some vertices of GR may only represent rows, and do not have

a corresponding column.

Throughout all its recursive calls, Algorithm ALG2 will need to invoke Lemma 2.6 several times,

in fact, up to O(n) times, each time with different column dimension n` and row dimension n` + p`
of a suitable matrix R`, where we will always have n` + p` ≤ O(n). Instead of randomly generating

a diagonal matrix D` each time separately, it is more convenient to generate only one O(n)× O(n)

matrix D, and use as D` the top n` + p` block of D. Since Lemma 2.6 guarantees that D` will

make RT` D`R` pivoting-free with probability at least 1−O(1/n2), we have by the union bound that

D has the property that all the corresponding D`’s throughout all the invocations will make the

corresponding products RT` D`R` pivoting-free with probability at least 1 − O(1/n). So, from here

until the end of this subsection we assume that pivoting-freeness holds for all invocations.

Recall also that if F is one of R,Q,C, then D is not required (that is, D = I) and there is no

randomization involved.

The input to ALG2 is a linear system Rx = h where R ∈ Fn1+p1,n1 and h ∈ Fn1+p1 . Furthermore,

it is assumed that the system has a unique solution (in particular, rank(R) = n1), that each row and

column of R has at most three nonzero entries, and that p1 ≤ n1. An additional input to ALG2 is

an (O(nβ1 ), α)-weak separator tree for GR, which we denote by TR. Observe also the GR is a graph

with maximum degree at most 3. Let Z denote the set of vertices of GR associated with the root of

TR, and let N(Z) denote the neighbors of Z in GR. We assume, without loss of generality, that the

vertices of Z ∪ N(Z) are the bottom indices of R, as if this is not the case, we can just switch the

order of the linked lists representing GR to ensure this fact.
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The goal of ALG2 is to compute the unique solution for the system Rx = h. Notice that the

initial call to ALG2 from ALG1 satisfies these requirements with p1 = 0, R = A′, and n1 = n+ 2t.

To achieve its goal, ALG2 operates as follows. Recall that C = RTDn1+p1R is assumed to be

pivoting-free. Since R has at most 3 nonzero entries in each row or column, C has at most 7 nonzero

entries in each row or column, and, furthermore, C is constructed in O(n1) time.

Another important observation (see also [16] for the same observation) is that GC is the square of

the graph GR (a vertex of GC has as its neighbors all the vertices within distance at most 2 in GR).

This observation shows that we can construct an (O(nβ1 ), α)-weak separator tree for GC , denoted

by TC , in linear time, from the separator tree TR of GR. It will be precisely the same tree, but

the vertices of GC assigned to a node of x ∈ TC will be different from the vertices assigned to the

same node in TR. Let Vx(R) be the set of vertices assigned to node x in TR. We define Vx(C) as

follows. For the root vertex, take Vroot(C) = Z ∪N(Z). Notice that since GR has maximum degree

3, |Z ∪N(Z)| ≤ 4|Z| and notice that Z ∪N(Z) is now a separator of GC , as required. Now, mark all

the vertices of Vroot(C) as taken. For a general node x ∈ TC , also take Vx(C) to be the yet un-taken

vertices of Vx(R) ∪N(Vx(R)), and so on.

In addition to constructing C, we also “construct” Q = BTDB where B = [R|h]. The only

difference between Q which is a square symmetric matrix of order n+ 1, and C = RTDR, which is

square symmetric of order n, is that Q has an additional vector w as a last row and last column.

The extra time required to construct w is clearly O(n1 + p1).

We may now apply the algorithm of Lemma 2.16 to C and w. As guaranteed by the lemma,

we construct, in O(nωβ1 ) time, matrices L and K so that Q = LKLT . By Lemma 2.8, we may now

compute all the minors Mi(Q) for i ∈ Z∪N(Z), since they (together with the index n1+p1+1 which

corresponds to the last row w) are the bottom indices of Q. The time required is O(|Z ∪N(Z)|ω).

Since |Z| = O(nβ1 ) and since |N(Z)| ≤ 3|Z|, this is only O(nωβ1 ) time.

By Lemma 2.5, we can use these computed minors to obtain c2i for all i ∈ Z ∪ N(Z). To

obtain ci we use the interpolation argument, as described after Lemma 2.4, working with the system

Rx = a + h where a is the sum of the columns of R. Recall that this returns the squares (c1 + 1)2

for all i ∈ Z ∪N(Z) and that ci is obtained by ci = ((c1 + 1)2 − c2i − 1)2−1 for i ∈ Z ∪N(Z) (recall

also that if the field has characteristic 2, then c2i already uniquely defines ci and there is no need

to apply interpolation). We have thus shown how to compute, in O(nωβ1 ) time, the values ci for all

i ∈ Z ∪N(Z).

But we are interested in the complete solution of Rx = h, not just the solution for the variables

that correspond to the root separator Z and its neighbors N(Z). Here is where recursion comes

into play. Let us simplify the system Rx = h by replacing the unknowns xi for i ∈ Z ∪N(Z) with

their actual computed values. This possibly causes some equations to be eliminated (equations that

involve only variables of Z ∪N(Z)), and some equations may become shorter. Since R is represented

in sparse form, the simplified system R′x = h′ is computed in O(n1 + p1) = O(n1) time.

The crucial argument is that we can now partition the simplified system into two sub-systems,

each having a unique solution, and apply ALG2 recursively to each subsystem. Let (X,Y, Z) be the

separation defined by the root of TR. Indeed, let R1x = h1 be the system that corresponds, after

simplification, only to equations that contain variables of X \ N(Z). Let R2x = h2 be the set of

equations that corresponds, after simplification, only to equations that contain variables of Y \N(Z).
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Notice that R1 has precisely n1,1 = |X \ N(Z)| columns, but may have more rows, possibly even

|X| rows. Hence R1 has n1,1 + p1,1 rows where p1,1 ≤ |N(Z)| = O(nβ1 ). Similarly, R2 has n1,2 + p1,2
rows and n1,2 columns where n1,2 = |Y \N(Z)| and p1,2 = O(nβ1 ). Also, since Rx = h had a unique

solution, we also have that Rix = hi each have a unique solution. Obtaining the separator trees for

R1 and R2 is trivial. These are just the two subtrees rooted by the children of the root of TR (in

fact, we even gain a bit since vertices of N(Z) are also eliminated from the sets that correspond to

nodes in these two subtrees). The recursion is hence on systems of total column sum n1,1 +n1,2 ≤ n1
and n1,i ≤ αn1, and total row sum n1,1 + n1,2 + p1,1 + p1,2 ≤ |X|+ |Y | ≤ n1. The standard analysis

of the total running time of all recursive calls is, therefore, O(nωβ1 + n1 log n1), as required.

The total running time of ALG2, starting from the initial invocation from ALG1, is, therefore,

O(nωβ + n log n), as required. This completes the proof of Theorem 3.1, as the overall running time

of all three parts is O(nωβ + nγ + n log n).

4 Concluding remarks

The running times in Theorem 1.1, and, in its more general form of Theorem 3.1, are stated in terms

of the matrix multiplication exponent, ω. The algorithm from [4] which yields ω < 2.376, is only

theoretical, and it presently has no practical implementation for reasonable values of n. However,

it is important to note that our main result, as well as the original nested dissection method, have

practical implementations even if we use the naive matrix multiplication with ω = 3. In this case,

the running times of our algorithm, for the case of planar graphs, bounded-genus graphs, and also

H-minor-free graphs all become O(n1.5). If we use ω = 3 (naive matrix multiplication), then all

ingredients of our algorithm become practically implementable. In fact, for reasonable sizes of n

(starting from several hundreds) one can use Strassen’s algorithm for fast matrix multiplication [23],

which has an easy implementation, and for which ω < 2.81.

As mentioned in the introduction, when the matrix A and the vector b have bounded integer

entries, and the system is to be solved over Q, we can state our running times in terms of bit

complexity. The standard approach in this case is to perform all operations over some large finite

field Fp where p is a prime which is larger than any (absolute value of a) determinant that we may

encounter in our algorithm. This will cause all the (absolute) determinants and all the minors that

are computed by our algorithm to have the same value in Fp as they would have over the integers.

Since n × n matrices with bounded integer entries cannot have determinants that are larger than

nO(n), it suffices to choose p = nO(n). Since in Fp, each arithmetic operation requires O(log p) time,

this amounts, in our case, to Õ(n) time (bit complexity) for each arithmetic operation. Hence, in the

bounded integer case, the bit-complexity of Theorem 1.1 for planar graphs and bounded-genus graphs

becomes Õ(n1+ω/2). For H-minor free graphs, we notice that Lemma 2.13 is purely combinatorial,

and is applied only once in ALG1. Hence, we can use it with β = 1/2 and γ = 1.5, where A is the

algorithm from [1]. The overall bit complexity of Theorem 1.1 when applied to H-minor free graphs

then becomes Õ(n1+ω/2 + n1.5) = Õ(n1+ω/2).

Finally, the very recent result of Kawarabayashi and Reed [12] mentioned after Lemma 2.12,

when used instead of Lemma 2.12, yields in Theorem 1.1 a running time of O(nω/2) also in the fixed

excluded minor case, as long as ω > 2 + ε for any fixed ε > 0.
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