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Abstract

Recently Rubinfeld et al. (ICS 2011, pp. 223–238) proposed

a new model of sublinear algorithms called local computation

algorithms. In this model, a computation problem F may

have more than one legal solution and each of them consists

of many bits. The local computation algorithm for F should

answer in an online fashion, for any index i, the ith bit of

some legal solution of F . Further, all the answers given

by the algorithm should be consistent with at least one

solution of F . In this work, we continue the study of

local computation algorithms. In particular, we develop a

technique which under certain conditions can be applied

to construct local computation algorithms that run not

only in polylogarithmic time but also in polylogarithmic

space. Moreover, these local computation algorithms are

easily parallelizable and can answer all parallel queries

consistently. Our main technical tools are pseudorandom

numbers with bounded independence and the theory of

branching processes.

1 Introduction

The classical view of algorithmic analysis, in which the
algorithm reads the entire input, performs a computa-
tion and then writes out the entire output, is less ap-
plicable in the context of computations on massive data
sets. To address this difficulty, several alternative mod-
els of computation have been adopted, including dis-
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tributed computation as well as various sub-linear time
and space models.

Local computation algorithms (LCAs) were pro-
posed in [25] to model the scenario in which inputs to
and outputs from the algorithms are large, such that
writing out the entire output requires an amount of time
that is unacceptable. On the other hand, only small por-
tions of the output are required at any point in time by
any specific user. LCAs support queries to the output
by the user, such that after each query to a specified
location i, the LCA outputs the value of the output
at location i. LCAs were inspired by and intended as
a generalization of several models that appear in the
literature, including local algorithms, locally decodable
codes and local reconstruction algorithms. LCAs whose
time complexity is efficient in terms of the amount of so-
lution requested by the user have been given for various
combinatorial and coding theoretic problems.

One difficulty is that for many computations, more
than one output is considered to be valid, yet the val-
ues returned by the LCA over time must be consistent.
Often, the straightforward solutions ask that the LCA
store intermediate values of the computations in order
to maintain consistency for later computations. Though
standard techniques can be useful for recomputing the
values of random coin tosses in a straightforward man-
ner, some algorithms (e.g., many greedy algorithms)
choose very different solutions based on the order of
input queries. Thus, though the time requirements of
the LCA may be efficient for each query, it is not always
clear how to bound the storage requirements of the LCA
by a function that is sublinear in the size of the query
history. It is this issue that we focus on in this paper.

1.1 Our main results Before stating our main re-
sults, we mention two additional desirable properties
of LCAs. Both of these properties are achieved in our
constructions of LCAs with small storage requirements.
The first is that an LCA should be query oblivious, that
is the outputs of A should not depend on the order of
the queries but only on the input and the random bits
generated on the random tape of A. The second is that
the LCA should be parallelizable, i.e., that it is able to
answer multiple queries simultaneously in a consistent
manner.



All the LCAs given in [26] suffer from one or
more of the following drawbacks: the worst case space
complexity is linear, the LCA is not query oblivious, and
the LCA is not parallelizable. We give new techniques
to construct LCAs for the problems studied in [26] which
run in polylogarithmic time as well as polylogarithmic
space. Moreover, all of the LCAs are query oblivious
and easily parallelizable.

Theorem 1.1. (Main Theorem 1 (informal))
There is an LCA for Hypergraph Coloring that runs
in polylogarithmic time and space. Moreover, the LCA
is query oblivious and parallelizable.

Theorem 1.2. (Main Theorem 2 (informal))
There is an LCA for Maximal Independent Set that
runs in polylogarithmic time and space. Moreover, the
LCA is query oblivious and parallelizable.

We remark that following [26], analogous techniques
can be applied to construct LCAs with all of the
desirable properties for the radio network problem and
k-CNF problems.

1.2 Techniques There are two main technical obsta-
cle in making the LCAs constructed in [26] space effi-
cient, query oblivious and parallelizable. The first is
that LCAs need to remember all the random bits used
in computing previous queries. The second issue is more
subtle – [26] give LCAs based on algorithms which use
very little additional time resources per query as they
simulate greedy algorithms. These LCAs output results
that depend directly on the orders in which queries are
fed into the algorithms.

We address the randomness issue first. The space
inefficient LCAs constructed in [26] for the problems of
concern to us are probabilistic by nature. Consistency
among answers to the queries seems to demand that
the algorithm keeps track of all random bits used so far,
which would incur linear space complexity. A simple but
very useful observation is that all the computations are
local and thus involve a very small number of random
bits. Therefore we may replace the truly random bits
with random variables of limited independence. The
construction of small sample space k-wise independent
random variables of Alon et al. [3] allows us to reduce
the space complexity from linear to polylogarithmic.
This allows us to prove our main theorem on the LCA
for the maximal independent set problem. It is also
an important ingredient in constructing our LCA for
Hypergraph Coloring. We believe such a technique will
be a standard tool in future development of LCAs.

For Hypergraph Coloring, we need to also address
the second issue raised above. The original LCA for Hy-
pergraph Coloring in [26] emulates Alon’s algorithm [2].

Alon’s algorithm runs in three phases. During the first
phase, it colors all vertices in an arbitrary order. Such
an algorithm looks “global” in nature and it is therefore
non-trivial to turn it into an LCA. In [26], they use the
order of vertices being queried as the order of coloring
in Alon’s algorithm, hence the algorithm needs to store
all answers to previous queries and requires linear space
in computation.

We take a different approach to overcome this dif-
ficulty. Observe that there is some “local” dependency
among the colors of vertices – namely, the color of any
vertex depends only on the colors of at most a constant
number, say D, other vertices. The colors of these ver-
tices in turn depend on the colors of their neighboring
vertices, and so on. We can model the hypergraph color-
ing process by a query tree: Suppose the color of vertex
x is now queried. Then the root node of the query tree
is x, the nodes on the first level are the vertices whose
colors the color of x depends on. In general, the colors
of nodes on level i depends on1 the colors of nodes on
level i + 1. Note that the query tree has degree bound
D and moreover, the size of the query tree clearly de-
pends on the order in which vertices are colored, since
the color of a vertex depends only on vertices that are
colored before it. In particular, if x is the kth vertex
to be colored, then the query tree contains at most k
vertices.

An important fact to note is that Alon’s algorithm
works for any order, in particular, it works for a random
order. Therefore we can apply the random order method
of Nguyen and Onak [21]: generate a random number
r ∈ [0, 1], called the rank, and use these ranks to prune
the original query tree into a random query tree T .
Specifically, T is defined recursively: the root of T is
still x. A node z is in T if its parent node y in the
original query tree is in T and r(z) < r(y). Intuitively,
a random query tree is small and indeed it is surprisingly
small [21]: the expected size of T is eD−1

D , a constant!
Therefore, if we color the vertices in the hypergraph

in a random order, the expected number of vertices we
need to color is only a constant. However, such an
“average case” result is insufficient for our LCA purpose:
what we need is a “worst case” result which tells almost
surely how large a random query tree will be. In other
words, we need a concentration result on the sizes of the
random query trees. The previous techniques in [21, 29]
do not seem to work in this setting.

Consider the worst case in which the rank of the
root node x is 1. A key observation is, although there

1In fact, they may depend on the colors of some nodes on levels
lower than i. However, as we care only about query complexity,
we will focus on the worst case that the query relations form a
tree.



are D child nodes of x, only the nodes whose ranks are
close to 1 are important, as the child nodes with smaller
ranks will die out quickly. But in expectation there
will be very few important nodes! This inspires us to
partition the random query tree into D + 1 levels based
on the ranks of the nodes, and analyze the sizes of trees
on each level using the theory of branching processes. In
particular, we apply a quantitative bound on the total
number of off-springs of a Galton-Watson process [23]
to show that, for any m > 0, with probability at least
1 − 1/m2 the size of a random query tree has at most
C(D) logD+1 m vertices, where C(D) is some constant
depending only on D. We conjecture that the upper
bound can be further reduced to C(D) log m.

However, the random order approach raise another
issue: how do we store the ranks of all vertices? Observe
that in constructing a random query tree, the actual
values of the ranks are never used – only the relative
orders between vertices matter. This fact together
with the fact that all computations are local enables us
to replace the rank function with some pseudorandom
ordering among the vertices, see Section 4 for formal
definition and construction. The space complexity of
the pseudorandom ordering is only polylogarithmic,
thus making the total space complexity of the LCA also
polylogarithmic.

1.3 Other related work Locally decodable codes [10]
which given an encoding of a message, provide quick
access to the requested bits of the original message, can
be viewed as LCAs. Known constructions of LDCs are
efficient and use small space [28]. LCAs generalize the
reconstruction models described in [1, 7, 27, 8]. These
models describe scenarios where an input string that has
a certain property, such as monotonicity, is assumed to
be corrupted at a relatively small number of locations.
The reconstruction algorithm gives fast query access to
an uncorrupted version of the string that is close to the
original input. Most of the works mentioned are also
efficient in terms of space.

In [25], it is noted that the model of LCAs is
related to local algorithms, studied in the context of
distributed computing [20, 18, 13, 14, 15, 12, 11]. This
is due to a reduction given by Parnas Ron [24] which
allows one to construct (sequential) LCAs based on
constant round distributed algorithms. Note that this
relationship does not immediately yield space-efficient
local algorithms, nor does it yield sub-linear time LCAs
when used with parallel or distributed algorithms whose
round complexity is O(log n).

Recent exciting developments in sublinear time al-
gorithms for sparse graph and combinatorial optimiza-
tion problems have led to new constant time algo-

rithms for approximating the size of a minimum vertex
cover, maximal matching, maximum matching, mini-
mum dominating set, minimum set cover, packing and
covering problems (cf. [24, 17, 21, 29]). For example, for
Maximal Independent Set, these algorithms construct a
constant-time oracle which for most, but not all, vertices
outputs whether or not the vertex is part of the inde-
pendent set. For the above approximation algorithms,
it is not necessary to get the correct answer for each ver-
tex, but for LCAs, which must work for any sequence of
online inputs, the requirements are more stringent, thus
the techniques are not applicable without modification.

1.4 Organization The rest of the paper is organized
as follows. Some preliminaries and notations that we
use throughout the paper appear in Section 2. We then
prove our main technical result, namely the bound on
the sizes of random query trees in Section 3. In Section 4
we construct pseudorandom orderings with small space.
Once these technical tools are developed, applying them
to designing local computation algorithms are relatively
easy – we omit the details from this conference version
and refer interested readers to [4].

2 Preliminaries

Unless stated otherwise, all logarithms in this paper are
to the base 2. Let n ≥ 1 be a natural number. We use
[n] to denote the set {1, . . . , n}.

All graphs in this paper are undirected graphs. Let
G = (V,E) be a graph. The distance between two
vertices u and v in V (G), denoted by dG(u, v), is the
length of a shortest path between the two vertices.
We write NG(v) = {u ∈ V (G) : (u, v) ∈ E(G)} to
denote the neighboring vertices of v. Furthermore, let
N+

G (v) = N(v) ∪ {v}. Let dG(v) denote the degree of a
vertex v.

2.1 Local computation algorithms We present
our model of local computation algorithms: Let F be a
computational problem and x be an input to F . Let
F (x) = {y | y is a valid solution for input x}. The
search problem is to find any y ∈ F (x).

Definition 2.1. ((t, s, δ)-local algorithms [26])
Let x and F (x) be defined as above. A (t(n), s(n), δ(n))-
local computation algorithm A is a (randomized) al-
gorithm which implements query access to an arbitrary
y ∈ F (x) and satisfies the following: A gets a sequence
of queries i1, . . . , iq for any q > 0 and after each query
ij it must produce an output yij satisfying that the
outputs yi1 , . . . , yiq are substrings of some y ∈ F (x).
The probability of success over all q queries must be at
least 1− δ(n). A has access to a random tape and local



computation memory on which it can perform current
computations as well as store and retrieve information
from previous computations. We assume that the input
x, the local computation tape and any random bits
used are all presented in the RAM word model, i.e.,
A is given the ability to access a word of any of these
in one step. The running time of A on any query is
at most t(n), which is sublinear in n, and the size of
the local computation memory of A is at most s(n).
Unless stated otherwise, we always assume that the
error parameter δ(n) is at most some constant, say,
1/3. We say that A is a strongly local computation
algorithm if both t(n) and s(n) are upper bounded by
logc n for some constant c.

Two important properties of LCAs are as follows:

Definition 2.2. (Query oblivious[26]) We say an
LCA A is query order oblivious ( query oblivious for
short) if the outputs of A do not depend on the order of
the queries but depend only on the input and the random
bits generated on the random tape of A.

Definition 2.3. (Parallelizable[26]) We say an
LCA A is parallelizable if A supports parallel queries,
that is the LCA is able to answer multiple queries si-
multaneously so that all the answers are consistent.

2.2 k-wise independent random variables Let
1 ≤ k ≤ n be an integer. A distribution D : {0, 1}n →
R≥0 is k-wise independent if restricting D to any index
subset S ⊂ [n] of size at most k gives rise to a
uniform distribution. A random variable is said to be
k-wise independent if its distribution function is k-wise
independent. Recall that the support of a distribution
D, denoted supp(D), is the set of points at which
D(x) > 0. We say a discrete distribution D is symmetric
if D(x) = 1/|supp(D)| for every x ∈ supp(D). If
a distribution D : {0, 1}n → R≥0 is symmetric with
|supp(D)| ≤ 2m for some m ≤ n, then we may index the
elements in the support of D by {0, 1}m and call m the
seed length of the random variable whose distribution
is D. We will need the following construction of k-wise
independent random variables over {0, 1}n with small
symmetric sample space.

Theorem 2.1. ([3]) For every 1 ≤ k ≤ n, there exists
a symmetric distribution D : {0, 1}n → R≥0 of support
size at most nb

k
2 c and is k-wise independent. That

is, there is a k-wise independent random variable x =
(x1, . . . , xn) whose seed length is at most O(k log n).
Moreover, for any 1 ≤ i ≤ n, xi can be computed in
space O(k log n).

3 Bounding the size of a random query tree

3.1 The problem and our main result Consider
the following scenario which was first studied by [21] in
the context of constant-time approximation algorithms
for maximal matching and some other problems. We
are given a graph G = (V,E) of bounded degree D. A
real number r(v) ∈ [0, 1] is assigned independently and
uniformly at random to every vertex v in the graph. We
call this random number the rank of v. Each vertex in
the graph G holds an input x(v) ∈ R, where the range
R is some finite set. A randomized Boolean function F
is defined inductively on the vertices in the graph such
that F (v) is a function of the input x(v) at v as well
as the values of F at the neighbors w of v for which
r(w) < r(v). The main question is, in order to compute
F (v0) for any vertex v0 in G, how many queries to the
inputs of the vertices in the graph are needed?

Here, for the purpose of upper bounding the query
complexity, we may assume for simplicity that the graph
G is D-regular and furthermore, G is an infinite D-
regular tree rooted at v0. It is easy to see that making
such modifications to G can never decrease the query
complexity of computing F (v0).

Consider the following question. We are given an
infinite D-regular tree T rooted at v0. Each node w in
T is assigned independently and uniformly at random
a real number r(w) ∈ [0, 1]. For every node w other
than v0 in T , let parent(w) denote the parent node
of w. We grow a (possibly infinite) subtree T of T
rooted at v as follows: a node w is in the subtree T if
and only if parent(w) is in T and r(w) < r(parent(w))
(for simplicity we assume all the ranks are distinct real
numbers). That is, we start from the root v, add all
the children of v whose ranks are smaller than that of v
to T . We keep growing T in this manner where a node
w′ ∈ T is a leaf node in T if the ranks of its D children
are all larger than r(w′). We call the random tree T
constructed in this way a query tree and we denote by
|T | the random variable that corresponds to the size of
T . We would like to know what are the typical values
of |T |.

Following [21, 22], we have that, for any node w that
is at distance t from the root v0, Pr[w ∈ T ]=1/(t+1)!
as such an event happens if and only if the ranks of the
t + 1 nodes along the shortest path from v0 to w is in
monotone decreasing order. It follows from linearity of
expectation that the expected value of |T | is given by
the elegant formula

E[|T |] =
∞∑

t=0

Dt

(t + 1)!
=

eD − 1
D

,

which is a constant depending only on the degree bound
D.



Our main result in this section can be regarded as
showing that in fact |T | is highly concentrated around
its mean:

Theorem 3.1. For any degree bound D ≥ 2, there is a
constant C(D) which depends on D only such that for
all large enough N ,

Pr[|T | > C(D) logD+1 N ] < 1/N2.

3.2 Breaking the query tree into levels A key
idea in the proof is to break the query tree into levels and
then upper bound the sizes of the subtrees on each level
separately. First partition the interval [0, 1] into D + 1
sub-intervals: Ii := (1− i

D+1 , 1− i−1
D+1 ] for i = 1, 2, . . . , D

and ID+1 = [0, 1
D+1 ]. We then decompose the query

tree T into D + 1 levels such that a node v ∈ T is said
to be on level i if r(v) ∈ Ii. For ease of exposition, in
the following we consider the worst case that r(v0) ∈ I1.
Then the vertices of T on level 1 form a tree which we
call T1 = T

(1)
1 rooted at v0. The vertices of T on level

2 will in general form a set of trees {T (1)
2 , . . . , T

(m2)
2 },

where the total number of such trees m2 is at most D
times the number of nodes in T1 (we have only inequality
here because some of the child nodes in T of the nodes
in T1 may fall into levels 2, 3, etc). Finally the nodes
on level D +1 form a forest {T (1)

D+1, . . . , T
(mD+1)
D+1 }. Note

that all these trees {T (j)
i } are generated by the same

stochastic process, as the ranks of all nodes in T are
i.i.d. random variables. The next lemma shows that
each of the subtrees on any level is of size O(log N)
with probability at least 1− 1/N3,

Lemma 3.1. For any 1 ≤ i ≤ D + 1 and any 1 ≤ j ≤
mi, with probability at least 1−1/N3, |T (j)

i | = O(log N).

One can see that Theorem 3.1 follows directly from
Lemma 3.1: Once again we consider the worst case that
r(v0) ∈ I1. By Lemma 3.1, the size of T1 is at most
O(log N) with probability at least 1 − 1/N3. In what
follows, we always condition our argument upon that
this event happens. Notice that the root of any tree on
level 2 must have some node in T1 as its parent node;
it follows that m2, the number of trees on level 2, is at
most D times the size of T1, hence m2 = O(log N). Now
applying Lemma 3.1 to each of the m2 trees on level
2 and assume that the high probability event claimed
in Lemma 3.1 happens in each of the subtree cases,
we get that the total number of nodes at level 2 is
at most O(log2 N). Once again, any tree on level 3
must have some node in either level 1 or level 2 as its
parent node, so the total number of trees on level 3
is also at most D(O(log N) + O(log2 N)) = O(log2 N).

Applying this argument inductively, we get that mi =
O(logi−1 N) for i = 2, 3, . . . , D + 1. Consequently,
the total number of nodes at all D + 1 levels is at
most O(log N) + O(log2 N) + · · · + O(logD+1 N) =
O(logD+1 N), assuming the high probability event in
Lemma 3.1 holds for all the subtrees in all the levels.
By the union bound, this happens with probability at
least 1 − O(logD+1 N)/N3 > 1 − 1/N2, thus proving
Theorem 3.1.

The proof of Lemma 3.1 requires results in branch-
ing processes, in particular the Galton-Watson pro-
cesses.

3.3 Galton-Watson processes Consider a Galton-
Watson process defined by the probability function p :=
{pk; k = 0, 1, 2, . . .}, with pk ≥ 0 and

∑
k pk = 1. Let

f(s) =
∑∞

k=0 pksk be the generating function of p. For
i = 0, 1, . . . , let Zi be the number of off-springs in the
ith generation. Clearly Z0 = 1 and {Zi : i = 0, 1, . . .}
form a Markov chain. Let m := E[Z1] =

∑
k kpk be

the expected number of children of any individual. The
classical result of the Galton-Watson processes is that
the survival probability (namely limn→∞ Pr[Zn > 0]) is
zero if and only if m ≤ 1. Let Z = Z0 + Z1 + · · · be the
sum of all off-springs in all generations of the Galton-
Watson process. The following result of Otter is useful
in bounding the probability that Z is large.

Theorem 3.2. ([23]) Suppose p0 > 0 and that there
is a point a > 0 within the circle of convergence of
f for which af ′(a) = f(a). Let α = a/f(a). Let
t = gcd{r : pr > 0}, where gcd stands for greatest
common divisor. Then

Pr[Z = n]

(3.1)

=

t
(

a
2παf ′′(a)

)1/2

α−nn−3/2 + O(α−nn−5/2), if n ≡ 1 (mod t);

0, if n 6≡ 1 (mod t).

In particular, if the process is non-arithmetic, i.e.
gcd{r : pr > 0} = 1, and a

αf ′′(a) is finite, then

Pr[Z = n] = O(α−nn−3/2),

and consequently Pr[Z ≥ n] = O(α−n).

3.4 Proof of Lemma 3.1 To simplify exposition, we
prove Lemma 3.1 for the case of tree T1. Recall that
T1 is constructed recursively as follows: for every child
node v of v0 in T , we add v to T1 if r(v) < r(v0) and
r(v) ∈ I1. Then for every child node v of v0 in T1, we



add the child node w of v in T to T1 if r(w) < r(v) and
r(w) ∈ I1. We repeat this process until there is no node
that can be added to T1.

Once again, we work with the worst case that
r(v0) = 1. To upper bound the size of T1, we consider
a related random process which also grows a subtree
of T rooted at v0, and denote it by T ′1. The process
that grows T ′1 is the same as that of T1 except for the
following difference: if v ∈ T ′1 and w is a child node of
v in T , then we add w to T ′1 as long as r(w) ∈ I1, but
give up the requirement that r(w) < r(v). Clearly, we
always have T1 ⊆ T ′1 and hence |T ′1| ≥ |T1|.

Note that the random process that generates T ′1 is in
fact a Galton-Watson process, as the rank of each node
in T is independently and uniformly distributed in [0, 1].
Since |I1| = 1/(D + 1), the probability function is

p = {(1− q)D,

(
D

1

)
q(1− q)D−1,

(
D

2

)
q2(1− q)D−2,

. . . ,

(
D

D − 1

)
qD−1(1− q), qD},

where q := 1/(D+1) is the probability that a child node
in T appears in T ′1 when its parent node is in T ′1. Note
that the expected number of children of a node in T ′1 is
Dq = D/(D +1) < 1, so the tree T ′1 is a finite tree with
probability one.

The generating function of p is

f(s) = (1− q + qs)D,

as the probability function {pk} obeys the binomial dis-
tribution pk = b(k, D, q). In addition, the convergence
radius of f is ρ = ∞ since {pk} has only a finite number
of non-zero terms.

Solving the equation af ′(a) = f(a) yields a =
1−q

q(D−1) = D
D−1 . It follows that (since D ≥ 2)

f ′′(a) = q2D(D − 1)
(

1− q +
1− q

D − 1

)D−2

> 0,

hence the coefficient in (3.1) is non-singular.
Let α(D) := a/f(a) = 1/f ′(a), then

1/α(D) = f ′(a)

=
D

D + 1
(

D2

D2 − 1
)D−1

= (1 +
1

D2 − 1
)(D

2−1)/(D+1) D

D + 1

< e1/(D+1) D

D + 1

<

(
(1 +

1
D

)D+1

)1/(D+1)
D

D + 1
= 1,

where in the third and the fourth steps we use the
inequality (see e.g. [19]) that (1+ 1

t )
t < e < (1+ 1

t )
t+1

for any positive integer t. This shows that α(D) is a
constant greater than 1.

Now applying Theorem 3.2 to the Galton-Watson
process which generates T ′1 (note that t = 1 in our case)
gives that, for all large enough n, Pr[|T ′1| = n] ≤ 2−cn

for some constant c. It follows that Pr[|T ′1| ≥ n] ≤∑∞
i=n 2−ci ≤ 2−Ω(n) for all large enough n. Hence for

all large enough N , with probability at least 1− 1/N3,
|T1| ≤ |T ′1| = O(log N). This completes the proof of
Lemma 3.1.

4 Construction of almost k-wise independent
random orderings

An important observation that enables us to make some
of our local algorithms run in polylogarithmic space is
the following. In the construction of a random query
tree T , we do not need to generate a random real num-
ber r(v) ∈ [0, 1] independently for each vertex v ∈ T ;
instead only the relative orderings among the vertices
in T matter. Indeed, when generating a random query
tree, we only compare the ranks between a child node w
and its parent node v to see if r(w) < r(v); the absolute
values of r(w) and r(v) are irrelevant and are used only
to facilitate our analysis in Section 3. Moreover, since
(almost surely) all our computations in the local algo-
rithms involve only a very small number of, say at most
k, vertices, so instead of requiring a random source that
generates total independent random ordering among all
nodes in the graph, any pseudorandom generator that
produces k-wise independent random ordering suffices
for our purpose. We now give the formal definition of
such orderings.

Let m ≥ 1 be an integer. Let D be any set with m
elements. For simplicity and without loss of generality,
we may assume that D = [m]. Let R be a totally
ordered set. An ordering of [m] is an injective function
r : [m] → R. Note that we can project r to an element
in the symmetric permutation group Sm in a natural
way: arrange the elements {r(1), . . . , r(m)} in R in
the monotone increasing order and call the permutation
of [m] corresponding to this ordering the projection of
r onto Sm and denote it by PSmr. In general the
projection PSm is not injective. Let r = {ri}i∈I be any
family of orderings indexed by I. The random ordering
Dr of [m] is a distribution over a family of orderings r.
For any integer 2 ≤ k ≤ m, we say a random ordering
Dr is k-wise independent if for any subset S ⊆ [m]
of size k, the restriction of the projection onto Sm of
Dr over S is uniform over all the k! possible orderings
among the k elements in S. A random ordering Dr

is said to ε-almost k-wise independent if the statistical



distance between Dr is at most ε from some k-wise
independent random ordering. Note that our definitions
of k-wise independent random ordering and almost k-
wise independent random ordering are different from
that of k-wise independent permutation and almost k-
wise independent permutation (see e.g. [9]), where the
latter requires that the function to be a permutation
(i.e., the domain and the range of the function are the
same set). In this section we give a construction of
1

m2 -almost k-wise independent random ordering whose
seed length is O(k log2 m). In our later applications
k = polylogm so the seed length of the almost k-wise
independent random ordering is also polylogarithmic.

Theorem 4.1. Let m ≥ 2 be an integer and let 2 ≤
k ≤ m. Then there is a construction of 1

m2 -almost k-
wise independent random ordering over [m] whose seed
length is O(k log2 m).

Proof. For simplicity we assume that m is a power of
2. Let s = 4 log m. We generate s independent copies
of k-wise independent random variables Z1, . . . , Zs with
each Z`, 1 ≤ ` ≤ s, in {0, 1}m. By Theorem 2.1, the
seed length of each random variable Z` is O(k log m) and
therefore the total space needed to store these random
seeds is O(k log2 m). Let these k-wise independent m-
bit random variables be

Z1 = z1,1, . . . , z1,m;
Z2 = z2,1, . . . , z2,m;

. . . . . .

Zs = zs,1, . . . , zs,m.

Now for every 1 ≤ i ≤ m, we view each
r(i)def= z1,iz2,i · · · zs,i as an integer in {0, 1, . . . , 2s − 1}
written in the s-bit binary representation and use r :
[m] → {0, 1, . . . , 2s − 1} as the ranking function to or-
der the m elements in the set. We next show that, with
probability at least 1−1/m2, r(1), . . . , r(m) are distinct
m integers.

Let 1 ≤ i < j ≤ m be any two distinct indices.
For every 1 ≤ ` ≤ s, since z`,1, . . . , z`,m are k-wise
independent and thus also pair-wise independent, it
follows that Pr[z`,i = z`,j ] = 1/2. Moreover, as all
Z1, . . . , Zs are independent, we therefore have

Pr[r(i) = r(j)] = Pr[z`,i = z`,j for every 1 ≤ ` ≤ s]

=
s∏

`=1

Pr[z`,i = z`,j ]

= (1/2)s

= 1/m4.

Applying a union bound argument over all
(
m
2

)
distinct

pairs of indices gives that with probability at least
1− 1/m2, all these m numbers are distinct.

Since each Z`, 1 ≤ ` ≤ s, is a k-wise independent
random variable in {0, 1}m, therefore for any subset
{i1, . . . , ik} of k indices, (r(i1), . . . , r(ik)) is distributed
uniformly over all 2ks tuples. By symmetry, conditioned
on that r(i1), . . . , r(ik) are all distinct, the restriction
of the ordering induced by the ranking function r to
{i1, . . . , ik} is completely independent. Finally, since
the probability that r(1), . . . , r(m) are not distinct is at
most 1/m2, it follows that the random ordering induced
by r is 1

m2 -almost k-wise independent.
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[19] D. S. Mitrinović. Analytic inequalities. Springer-
Verlag, 1970.

[20] M. Naor and L. Stockmeyer. What can be computed
locally? SIAM Journal on Computing, 24(6):1259–
1277, 1995.

[21] H. N. Nguyen and K. Onak. Constant-time approxima-
tion algorithms via local improvements. In Proc. 49th
Annual IEEE Symposium on Foundations of Computer
Science, pages 327–336, 2008.

[22] K. Onak. New Sublinear Methods in the Struggle
Against Classical Problems. PhD thesis, MIT, 2010.

[23] R. Otter. The multiplicative process. Annals of
mathematical statistics, 20(2):206–224, 1949.

[24] M. Parnas and D. Ron. Approximating the minimum
vertex cover in sublinear time and a connection to
distributed algorithms. Theoretical Computer Science,
381(1–3):183–196, 2007.

[25] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast
local computation algorithms. In Proc. 2nd Symposium
on Innovations in Computer Science, pages 223–238,
2011.

[26] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast
local computation algorithms. Technical report, April
2011. http://arxiv.org/abs/1104.1377.

[27] M. E. Saks and C. Seshadhri. Local monotonic-
ity reconstruction. SIAM Journal on Computing,
39(7):2897–2926, 2010.

[28] S. Yekhanin. Locally decodable codes. In 6th Interna-
tional Computer Science Symposium in Russia, pages
289–290, 2011.

[29] Y. Yoshida, Y. Yamamoto, and H. Ito. An improved
constant-time approximation algorithm for maximum

matchings. In Proc. 41st Annual ACM Symposium on
the Theory of Computing, pages 225–234, 2009.

http://arxiv.org/abs/1104.1377

	Introduction
	Our main results
	Techniques
	Other related work
	Organization

	Preliminaries
	Local computation algorithms
	k-wise independent random variables

	Bounding the size of a random query tree
	The problem and our main result
	Breaking the query tree into levels
	Galton-Watson processes
	Proof of Lemma 3.1

	Construction of almost k-wise independent random orderings

