
Induced subgraphs with distinct sizes

Noga Alon∗ A.V. Kostochka†

April 1, 2008

Abstract

We show that for every 0 < ε < 1/2, there is an n0 = n0(ε) such that if n > n0 then
every n-vertex graph G of size at least ε

(
n
2

)
and at most (1 − ε)

(
n
2

)
contains induced

k-vertex subgraphs with at least 10−7k different sizes, for every k ≤ εn
3 .

This is best possible, up to a constant factor. This is also a step towards a conjecture
by Erdős, Faudree and Sós on the number of distinct pairs (|V (H)|, |E(H)|) of induced
subgraphs of Ramsey graphs.
AMS Subject Classification: 05C35, 05D40
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1 Introduction

For a graph G = (V,E), let hom(G) denote the maximum number of vertices in a clique

or an independent set in G. An n-vertex graph is c-Ramsey, if hom(G) ≤ c log n. Erdős,

Faudree and Sós (see [6], [7]) raised the following conjecture.

Conjecture 1 For every positive constant c, there is a positive constant b = b(c) so that if

G is a c-Ramsey graph on n vertices, then the number of distinct pairs (|V (H)|, |E(H)|), as

H ranges over all induced subgraphs of G, is at least bn5/2.
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As Erdős [7] mentions, they knew the lower bound Ω(n3/2) for the number of such ordered

pairs in any graph as above. In particular, the bound Ω(n3/2) follows from a result of Erdős,

Goldberg, Pach, and Spencer [8] (see Theorem 3 below) and a simple switching argument

(see (2) below). It also is a corollary of a recent result by Bukh and Sudakov [5] on vertices

of different degrees in induced subgraphs of c-Ramsey graphs. Here we improve this bound

to Ω(n2).

For a graph G = (V,E) we denote the number of vertices of G by v(G) = |V |, and the

number of edges, also called the size of G, by e(G) = |E|. If G has n vertices and e edges,

the density of G is the quantity a(G) = e
(
n
2

)−1
. For disjoint subsets W and U of V (G), let

eG(W,U) (or simply e(W,U) when we know the graph G) denote the number of edges (in

G) connecting W with U . If W = {w}, then e(W,U) will be also denoted by d(w,U). Let

φ(k,G) denote the number of distinct sizes of k-vertex induced subgraphs of G. Our main

result is the following.

Theorem 2 For every 0 < ε < 1/2 there is an n0(ε) so that the following holds. Let n > n0

and let G be an n-vertex graph with ε < a(G) < 1− ε. Then, for every k with k ≤ εn
3

,

φ(k,G) ≥ 10−7k. (1)

This bound is tight up to the constant factors 1/3 and 10−7, as shown, for example, by

the complete bipartite graph Kεn,(1−ε)n. It also implies that for any fixed ε > 0, under the

assumptions of the theorem,
∑n

k=1 φ(k,G) = Ω(n2).

Erdős and Szemerédi [9] proved that for every positive constant c, there is some ε =

ε(c) > 0 such that if G is an n-vertex c-Ramsey graph, then ε < a(G) < 1 − ε. Therefore,

our result implies that any such graph has at least b(c)n2 distinct pairs (|V (H)|, |E(H)|), as

H ranges over all induced subgraphs of G.

2 Preliminaries and tools

The sign G′ ≤ G will always mean that G′ is an induced subgraph of G. Throughout the

paper ε denotes a fixed positive constant, and we assume, whenever this is needed, that n is

sufficiently large as a function of ε. We make no attempt to optimize the absolute constants

in our estimates. To simplify the presentation, we omit all floor and ceiling signs whenever

these are not crucial.

For a graph G and a positive integer k, let

ψ(k,G) = max{e(G′)− e(G′′) : G′, G′′ ≤ G and v(G′) = v(G′′) = k}
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and φ(k,G) = |{e(G′) : G′ ≤ G and v(G′) = k}| .

Let e1 < e2 < . . . < eφ(k,G) be all distinct sizes of k-vertex induced subgraphs of G.

For every k-vertex G′ ≤ G, if we delete a vertex from G′ and add another vertex from

V (G)−V (G′), then the number of edges in the subgraph changes by at most k−1. Therefore,

for every 2 ≤ i ≤ φ(k,G), ei − ei−1 ≤ k − 1, and in particular, φ(k,G) ≥ ψ(k,G)

k − 1
. (2)

Erdős, Goldberg, Pach, and Spencer [8] (see also [4] for a proof with an explicit estimate)

derived the following bound on ψ(k,G).

Theorem 3 ([8], [4]) For any n-vertex graph G with e edges, where n < e ≤ n(n− 1)/4,

ψ(n/2, G) > 10−4
√
en. (3)

The following simple observation will be used repeatedly.

Observation 4 Let 2 ≤ k1 < k2 ≤ n and let G be an n-vertex graph. For every 0 < a < 1,

if there exists a k2-vertex G2 ≤ G with a(G2) ≤ a, then there exists a k1-vertex G1 ≤ G

with a(G1) ≤ a. Similarly, if there is a k2-vertex G2 ≤ G with a(G2) ≥ a, then there is a

k1-vertex G1 ≤ G such that a(G1) ≥ a.

The proof follows from the fact that for k1 < k2 and any k2-vertex graph G2,(
k2

2

) ∑
G1≤G2 : |V (G1)|=k1

e(G1) =

(
k1

2

)(
k2

k1

)
e(G2). (4)

We need the following consequence of Theorem 3 (and Observation 4).

Corollary 5 For any positive 0 < ε < 1 and k and n satisfying 5/ε < k < n/2, and for any

graph G on n vertices with density satisfying ε < a(G) < 1− ε, ψ(k,G) ≥ 10−4k3/2ε1/2.

Proof. Put a = a(G). By Observation 4 there are 2k-vertex induced subgraphs G1, G2 ≤ G

so that a(G1) ≥ a and a(G2) ≤ a. Since one can transform G1 to G2 by repeatedly swapping

vertices, and as any swap changes the number of edges by less than 2k, there is a 2k-vertex

induced subgraph G3 ≤ G satisfying |e(G3)− a
(

2k
2

)
| ≤ k. Thus

|a(G3)− a| ≤ k(
2k
2

) =
1

2k − 1
<
ε

2
,
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and hence ε
2

(
2k
2

)
≤ e(G3) ≤ (1− ε

2
)
(

2k
2

)
. By Theorem 3 (and symmetry, which enables us to

replace G3 by its complement in case it has more than 1
2

(
2k
2

)
edges),

ψ(k,G) ≥ ψ(k,G3) ≥ 10−4

√
ε

2

(
2k

2

)
2k > 10−4ε1/2k3/2,

as needed. �

For the next assertion we need to introduce a couple of notions. Let G be a graph and

a = a(G). For W ⊂ V (G), let the deviation of W be the quantity devG(W ) = e(G(W )) −
a
(|W |

2

)
. Similarly, for disjoint W1,W2 ⊂ V (G), let devG(W1,W2) = eG(W1,W2))−a|W1||W2|.

Furthermore, let DevG(k) = max{|devG(G′)| : G′ ≤ G and |V (G′)| = k}. When the graph

G is known from the context, we sometimes will omit the subscript G. Clearly, for every G,

DevG(k) ≤ ψ(k,G) ≤ 2DevG(k). (5)

Lemma 6 Let G be an n-vertex graph, and let 10 ≤ k ≤ n/3 and s < k. Then Dev(s) ≤
24Dev(k).

Proof. Recall that by (4) and the definition of the deviation, for each k1 > k,

Dev(k1)

Dev(k)
≤
(
k1

2

)/(k
2

)
. (6)

Let x = Dev(k) ( > 0). Assume to the contrary that for some s < k, Dev(s) = y > 24x.

Let W0 be an s-element subset of V (G) with |dev(W0)| = y. By symmetry, we may assume

that dev(W0) > 0. Since k < n/3, we can choose in V (G) −W0 disjoint k-element subsets

W1 and W2. By the definition of Dev(k), dev(W1) ≥ −x. Since k < |W0 ∪W1| ≤ 2k − 1, by

(6), dev(W0 ∪W1) ≤ Dev(2k − 1) ≤ 4x. It follows that

dev(W0,W1) = dev(W0 ∪W1)− dev(W0)− dev(W1) ≤ 4x− y − (−x) < 5x− y.

Similarly, dev(W0,W2) < 5x− y and hence dev(W0,W1 ∪W2) < 10x− 2y.

Again by (6), we have

dev(W1 ∪W2) ≤ x

(
2k

2

)/(k
2

)
= 4x

(
1 +

1

2(k − 1)

)
and

dev(W0 ∪W1 ∪W2) ≥ −x
(

3k − 1

2

)/(k
2

)
= −9x

(
1 +

2

k(k − 1)

)
. (7)

On the other hand,

dev(W0 ∪W1 ∪W2) = dev(W1 ∪W2) + dev(W0,W1 ∪W2) + dev(W0)
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≤ 4x

(
1 +

1

2(k − 1)

)
+ 10x− 2y + y = 14x+

2x

k − 1
− y < −x(10− 2/(k − 1)).

Since k ≥ 10, this contradicts (7). �

Lemma 7 Let G be an n-vertex graph, 20 < k ≤ n/3, and let G′ be any k-vertex induced

subgraph of G. Let S+ be the set of vertices of G′ of degree at least (k−1)a(G)+500ψ(k,G)/k

in G′, and let S− be the set of all vertices of G′ of degree at most (k−1)a(G)−500ψ(k,G)/k

in G′. Then max{|S−|, |S+|} ≤ 0.1k.

Proof. We prove the bound for |S−|, the proof for |S+| is essentially identical. Let a = a(G),

ψ = ψ(k,G), and W = V (G′). Suppose for a contradiction that |S−| ≥ 0.1k. Let s = 0.1k

and let S be any subset of S− with cardinality s.

Since
∑

v∈S dG(v,W ) = 2e(G(S)) + e(S,W − S) and the expected value of 2e(G(S)) +

e(S,W−S) over disjoint s-element S and (k−s)-element W−S in G is a
((
k
2

)
−
(
k−s

2

)
+
(
s
2

))
,

in terms of deviation, the conditions of the lemma say that dev(S,W − S) + 2dev(S) ≤
−500sψ/k ≤ −50ψ. By Lemma 6, and (5), dev(S) ≥ −24ψ and dev(W − S) ≤ 24ψ. It

follows that

dev(W ) = dev(W −S)−dev(S)+(2dev(S)+dev(S,W −S)) ≤ 24ψ−(−24ψ)−50ψ = −2ψ,

a contradiction to (5). �

A simple modification of the last argument gives the following.

Lemma 8 Let G be an n-vertex graph, 20 < k ≤ n/3, and let G′ be any k-vertex induced

subgraph of G, W = V (G′). Let A+ be the set of all vertices v in V (G) − V (G′) satisfying

d(v,W ) ≥ ka(G) + 500ψ(k,G)/k and let A− be the set of all vertices v ∈ V (G) − V (G′)

satisfying d(v,W ) ≤ ka(G)− 500ψ(k,G)/k. Then max{|A−|, |A+|} ≤ 0.1k.

Proof. We prove the bound for |A+|, the proof for |A−| is identical. Let a = a(G),

ψ = ψ(k,G), and W = V (G′). Suppose for a contradiction that |A+| ≥ 0.1k. Let s = 0.1k

and let A be any subset of A+ of cardinality s.

In terms of deviation, the conditions of the lemma say that dev(S,W ) ≥ 500sψ/k ≥ 50ψ.

By Lemma 6, and (5), dev(S) ≥ −24ψ. Since k ≥ 10, by (6), dev(S ∪W ) ≤ ψ(1.1k)2/k(k−
1) < 1.4ψ. Thus

dev(W ) = dev(W ∪ S)− dev(S)− dev(W,S) ≤ 1.4ψ − (−24ψ)− 50ψ < −24ψ,

a contradiction to the definition of ψ. �

The last two lemmas imply the following.
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Corollary 9 Let G be a graph on n vertices with density a = a(G) and let 20 < k ≤ n/3.

Define

m = 500
ψ(k,G)

k
. (8)

For a subset W of cardinality k of V (G), call a vertex v ∈ V (G) W -typical if

|d(v,W )− a(k − 1)| ≤ m+ 1.

Then, all but at most 0.2k vertices inside W are W -typical, and all but at most 0.2k vertices

outside W are W -typical.

3 The main result

In this section, we prove Theorem 2. The main part of the proof is the case of large values of

k; to handle small values of k we apply the following recent result of Axenovich and Balogh

[3].

Theorem 10 ([3]) For every fixed k there exists an n0 = n0(k) so that if n > n0 and G is

an n vertex graph satisfying φ(G) ≤ k/2, then hom(G) ≥ n− k
2

+ 1.

Proof of Theorem 2. Let n, ε, k and G satisfy the conditions of the theorem. Note

that we may assume that k > 107, since otherwise there is nothing to prove. Suppose, first,

that k ≤ 5/ε, and suppose also that n is sufficiently large as a function of ε to allow the

application of Theorem 10, and that it is also larger than, say, 10/ε2(> 2k/ε). In this case, if

φ(k,G) < 10−7k (or even if it is smaller than k/2), then, by Theorem 10, G contains either a

clique or an independent set of size at least n− k/2 + 1 > (1− ε/4)n. This implies that the

density of G does not lie in [ε, 1 − ε], contradicting the assumption. Thus we may assume

that k > 5/ε.

Put a = a(G), ψ = ψ(k,G) and φ = φ(k,G). By symmetry we may assume that

1/2 ≤ a < 1− ε. (9)

Let e1 < e2 < . . . < eφ be the distinct sizes of all k-vertex induced subgraphs of G, and for

i = 1, 2, . . . , φ − 1, let the ith gap be the number gi = ei+1 − ei and let ti = 0.1gi

2m+3
. We will

say that a gap gi is big if gi ≥ g for g = 100m = 107 ψ
k
, where, say, m = 105 ψ

k
. We will prove

that the average gap is at most g (thus proving the theorem, since the average gap is exactly

ψ/(φ− 1)). To prove this, we will show that

if gi is a big gap, then ti < i and for j = 1, . . . , ti, the gap gi−j is at most 2m+ 3, (10)
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so that the average of gaps gi, gi−1, gi−2, . . . , gi−ti is at most

gi + ti(2m+ 3)

ti + 1
≤ 2m+ 3

0.1
+ 2m+ 3 ≤ 40m < g.

Here we used the fact that since k > 5/ε, by Corollary 5 we have ψ ≥ 10−4k and hence

m ≥ 10.

So, let gi be a big gap and let G′ be a k-vertex graph G′ ≤ G having ei edges. Let

W ′
0 = V (G′). We claim that G has at least εn/3 ≥ k vertices with degree at most (1−2ε/3)n.

Indeed, otherwise, the number of edges of G is at least

(1− ε/3)n(1− 2ε/3)n

2
> (1− ε)

(
n

2

)
,

contradicting the fact that a(G) < 1− ε.
We will now show that after a series of switchings of typical vertices inside and outside

of G′, the obtained graph will have a vertex of a small degree whose swapping with a typical

outside vertex still leads to a subgraph with at most ei edges. That would mean that the

resulting graph has ”few” edges.

By Corollary 9, all vertices of G but at most 0.4k are W ′
0-typical. Thus there is at least

one W ′
0-typical vertex w0 of degree at most (1− 2ε/3)n ≤ n− 2k. Let w0 be such a vertex.

If it lies in W ′
0, define W0 = W ′

0. Else, let W0 be a set obtained from W ′
0 by adding w0 to it

and by removing some arbitrarily chosen W ′
0-typical vertex that lies in W ′

0. Note that

|e(G(W ′
0))− e(G(W0))| ≤ 2m+ 3. (11)

This is trivial if W ′
0 = W0, and otherwise, follows from the fact that the two vertices swapped

while transforming W ′
0 to W0 are W ′

0-typical.

We now define a sequence of sets W0,W1,W2, . . . ,W0.1gi+2m+3, where each Wj+1 is ob-

tained from Wj by omitting a Wj-typical neighbor vj of w0 in Wj, and adding a Wj-typical

non-neighbor uj of w0 in V (G)−Wj. To see that we can find an appropriate uj, recall that

w0 has at least 2εn/3 ≥ 2k non-neighbors, at most k of them are in Wj and, by Corollary 9,

at most 0.2k of the ones that lie outside Wj are not Wj-typical. To find a candidate for vj,

observe that w0 was W0-typical and hence had at least a(k− 1)−m− 1 neighbors in W0, of

which at least

xj := a(k − 1)−m− 1− j − 0.2k ≥ a(k − 1)−m− 1− 0.1gi − (2m+ 3)− 0.2k

are still in Wj and are Wj-typical. By (9), a ≥ 1/2. By the definition of m, and (2),

m = 10−2g ≤ 10−2gi ≤ 10−2(k − 1). Together, this gives

xj ≥ 0.5(k − 1)− 10−2(k − 1)− 1− 0.1k − 2 · 10−2(k − 1)− 3− 0.2k > 0.1k,
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and we can choose vj as desired.

By the definition of typical vertices it also follows that for all j, |e(G(Wj+1))−e(G(Wj))| ≤
2m + 3. Since the gap gi is bigger than 2m + 3, it follows by this fact and by (11) that

e(Gj) ≤ ei for all j.

The degree of w0 in the induced subgraph on the final set, W0.1gi+2m+3, is at most ak −
0.1gi −m − 1 and at least ak −m − 1 − 0.1gi − 2m − 3 = ak − 0.1gi − 3m − 4, and thus

swapping it with any W0.1gi+2m+3-typical vertex outside W0.1gi+2m+3 increases the number of

edges by at least 0.1gi and by at most 0.1gi + 4m+ 5 < gi. Thus, the number of edges even

after such a swap must be at most ei. This implies that the number of edges before this last

potential swap is at most ei − 0.1gi. By (11), and since |e(G(Wj+1))− e(G(Wj))| ≤ 2m+ 3

for every j, each gap between consecutive sizes of k-vertex subgraphs of G in the interval

[ei − 0.1gi, ei] is at most 2m+ 3. Thus (10) follows, completing the proof. �

4 The random graph

As mentioned in the introduction, the motivation for the present paper came partly from

attempts to study Conjecture 1. As the obvious candidate for a Ramsey graph is the random

graph G = G(n, 1/2), we briefly discuss, in this section, the typical behavior of φ(k,G) for

the random graph. As usual, we say that G satisfies a property asymptotically almost surely

(a.a.s., for short), if the probability it satisfies the property tends to 1 as n tends to infinity.

It is not too difficult to show that the random graph G = G(n, 1/2) satisfies the conclusion

of the conjecture a.a.s. Moreover, we can show that a.a.s., for every k < 10−3n, the set of

sizes of induced k-vertex subgraphs of G contains a full interval of length Ω(k3/2). (The

assumption that k < 10−3n can be relaxed.)

Theorem 11 Let G = G(n, 1/2) be the random graph on n labelled vertices. Then, a.a.s.,

for every k < 10−3n, the set of sizes of k-vertex induced subgraphs of G contains an interval

of length at least 10−5k3/2.

Proof. Note, first, that a.a.s. the random graph contains every graph on at most 1.99 log2 n

vertices as an induced subgraph (this appears, for example, as exercise 1 in [2], Chapter 8.)

Thus, it suffices to deal with k > 1.99 log2 n.

Let c = 10−5. We will show that for every k satisfying 10−4n ≤ k ≤ 10−3n, the prob-

ability P (n, k) that the set of sizes of the induced k-vertex subgraphs of G = G(n, 1/2)

does not contain an interval of length ck3/2 satisfies P (n, k) ≤ e−Ω(
√
n). Thus, the sum∑

10−4n<k<10−3n P (n, k) will also be at most e−Ω(
√
n). To prove that

∑
10−5n<k<10−4n P (n, k) =
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e−Ω(
√
n), consider the subgraph of G consisting of 10 vertex disjoint copies of the random

graph G(n/10, 1/2): it will follow that the probability that for some fixed k between 10−5n

and 10−4n, the set of sizes of the induced k-vertex subgraphs of G does not contain an inter-

val of length ck3/2 is at most P (n/10, k)10 and is thus also smaller than e−Ω(
√
n). Continuing

in this manner it will follow that a.a.s. the desired intervals exist for every k.

Suppose, thus, that 10−4n ≤ k ≤ 10−3n. Split the set of vertices of G into three disjoint

sets V1, V2 and V3, where |V1| = 2k − 4
√
k − 2 and |V2| = |V3| = (n − |V1|)/2. We first

expose the edges of G on V1. The density of this subgraph is between, say, 1/4 and 3/4 with

probability 1− e−Ω(n2) and we can thus assume this is indeed the case. By Corollary 5, this

implies that ψ(k − 2
√
k − 1, G(V1)) ≥ 10−4k3/2

√
1/4 > 10−5k3/2. This implies that we can

fix a sequence W1,W2, . . . ,Ws of k-subsets of V1, so that e(G(Wi)) = ei, e1 < e2 < . . . < es,

ei+1− ei < k− 2
√
k− 1 < k, and es− e1 ≥ c1k

3/2. Clearly, s ≤ ψ(k− 2
√
k− 1, G(V1)) < k2.

We now expose the edges between V1 and V2. Fix an integer d ∈ [(k − 2
√
k − 1)/2 −

0.5
√
k, (k − 2

√
k − 1)/2 + 0.5

√
k]. For every fixed Wi and every fixed vertex v ∈ V2, the

probability that d(v,Wi) = d is at least 0.01√
k

. The events for a fixed Wi and distinct ver-

tices v ∈ V2 are mutually independent, and as the expected number of vertices in V2 with

d(v,Wi) = d is at least |V2|
100
√
k
, the probability there are at least |V2|

200
√
k
> 2
√
k such vertices

is bigger than 1 − e−Ω(n), by the Chernoff bound (c.f., e.g., [2]). As the number of sets Wi

is only polynomial in k, it follows that with probability at least 1 − e−Ω(n), for each of our

s sets Wi and for each degree d as above, there are at least 2
√
k vertices v ∈ V2 satisfying

d(v,Wi) = d.

For each fixed i, we can now attach to the setWi a set Ui,j ⊂ V2 of 2
√
k vertices in about 2k

ways as follows. We let Ui,1 consist of 2
√
k vertices v with d(v,Wi) = (k−2

√
k−1)/2−0.5

√
k,

and for j = 1, . . . , 2k − 1, obtain Ui,j+1 from Ui,j by swapping a vertex v with d(v,Wi) = d

with one satisfying d(v,Wi) = d + 1, until we reach a set consisting only of vertices v for

which d(v,Wi) = (k − 2
√
k − 1)/2 + 0.5

√
k. This gives, from Wi, a set of about 2k subsets

Wi∪Ui,j ⊂ V1∪V2, each of size k−1, so that the number of edges in G(Wi) plus the number

of edges between Ui,j and Wi ranges over all possibilities of the interval of length 2k centered

at ei + (2
√
k)(k − 2

√
k − 1)/2.

We now expose the edges inside V2. Note that as the sets Uj corresponding to the same

Wi are obtained from each other by swapping a single vertex, the probability that the number

of edges in G(Uj) will differ from that in G(Uj+1) by more than, say,
√
k/2, is e−Ω(

√
k). Thus

we may assume that this is not the case for all Wi and all j. Altogether, as the intervals for

the various sets Wi overlap, we now get a new family of sets Xi, (1 ≤ i ≤ t) of cardinality

k − 1 each, where each Xi is a subset of V1 ∪ V2, e(G(X1)) < e(G(X2)) < . . . < e(G(Xt)),
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e(G(Xi+1))− e(G(Xi)) <
√
k/2 for all i, and e(G(Xt))− e(G(X1)) ≥ c1k

3/2.

Finally, we expose the edges between V3 and V2. As before, with probability at least

1−e−Ω(
√
n), for every fixed sets Xi and for every integer d in the range [(k−1)/2−0.5

√
k, (k−

1)/2 + 0.5
√
k] there will be at least one vertex v ∈ V3 so that d(v,Xi) = d. This will enable

us to attach to each set Xi a single additional vertex v ∈ V3 of any desired degree in the

above range, providing sets Yj of cardinality k so that the values e(G(Yj)) range over all

possible integers in an interval of length at least ck3/2. This completes the proof. �

5 Concluding remarks

1. The result of Theorem 11 can be easily extended to G(n, p) for any fixed 0 < p < 1. It

is tight, up to a constant factor, as an easy application of the Chernoff bound shows

that a.a.s. ψ(G(n, 1/2)) = O(n3/2).

2. It could be checked that practically repeating the proof of Theorem 2, one can get the

following weighted version of it: For every 0 < ε < 1/2 there is an n0(ε) so that the

following holds. Let n > n0 and let G be an n-vertex graph with ε < a(G) < 1 − ε.
Let k ≤ εn

3
. Suppose that each vertex v ∈ V (G) has a weight ω(v) ∈ [0, ψ(k,G)

k
]. For a

subgraph G′ of G, let the weight be defined as ω(G′) = e(G′) +
∑

v∈V (G′) ω(v). Then G

has induced k-vertex subgraphs of at least 10−8k distinct weights.

3. Jozsef Balogh and Wojciech Samotij pointed out that the proof of Theorem 2 yields

a bit more than what is claimed. Namely, when we prove (10), we actually derive

that the differences between consecutive sizes in the interval [ei− 0.1gi, ei] are at most

2m + 3. Recall that if a gap ej+1 − ej is not big, then it is at most 100m. Thus, the

proof yields that one can find 10−8k distinct sizes of induced k-vertex subgraphs of G

such that the difference between consecutive sizes is at least m.

4. In view of Conjecture 1, it will be interesting to find a way to apply the assumption

that a graph G is c-Ramsey in order to improve the lower estimate for φ(k,G). The

only property we used in the proof of the main result is the fact that the density of

any such graph is bounded away from 0 and 1, and this is obviously not enough. The

results in [3] and the ones in [1] show that even the assumption that for an n vertex

graph G, hom(G) is only a bit smaller than n already leads to some consequences that

do not hold for general graphs with density bounded away from zero and one, but it

seems that the solution of the conjecture will require some new ideas.
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5. In [1] it is shown that for ε < 10−21, if G is an n-vertex graph and hom(G) ≤ (1−4ε)n2,

then the number of ordered five-tuples (v(H),∆(H), α(H), ω(H), i(H)), as H ranges

over all induced subgraphs of G, is at least εn2, where v(H),∆(H), α(H), ω(H), i(H)

denote the order of H, its maximum degree, its independence number, its clique number

and the number of its isolated vertices, respectively.

Acknowledgement. We thank the referees as well as J. Balogh and W. Samotij for
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