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Abstract

We prove that any collection of n discs in which each one intersects at most k others, can be
colored with at most O(log3 k) colors so that for each point p in the union of all discs there is at
least one disc in the collection containing p whose color differs from that of all other members
of the collection that contain p. This is motivated by a problem on frequency assignments in
cellular networks, and improves the best previously known upper bound of O(log n) when k is
much smaller than n.

1 Introduction

A coloring of a family S of n regions of some fixed type (such as discs, pseudo-discs, axis-parallel
rectangles, etc.), is called conflict-free (CF for short) if for each point p ∈ ∪b∈Sb there is at least
one region b ∈ S that contains p in its interior, whose color is unique among all regions in S that
contain p in their interior (in this case we say that p is being ‘served’ by that color).

The study of such colorings, which originated in [3] and [9], was motivated by the problem
of frequency assignment in cellular networks. Specifically, cellular networks are heterogeneous
networks with two different types of nodes: base-stations (that act as servers) and clients. The
base-stations are interconnected by an external fixed backbone network. Clients are connected
only to base stations; connections between clients and base-stations are implemented by radio
links. Fixed frequencies are assigned to base-stations to enable links to clients. Clients, on the
other hand, continuously scan frequencies in search of a base-station with good reception. The
fundamental problem of frequency assignment in cellular networks is to assign frequencies to base-
stations so that every client is served by some base-station, in the sense that it lies within the range
of the station and no other station within its reception range has the same frequency. The goal is
to minimize the number of assigned frequencies since the frequency spectrum is limited and costly.

Suppose we are given a set of n antennas (base-stations). The location of each antenna and its
radius of transmission is fixed and is given (as a disc in the plane). Even et al. [3] have shown
that one can find an assignment of frequencies to the antennas with a total of at most O(log n)
frequencies such that each antenna is assigned one of the frequencies and the resulting assignment
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is free of conflicts, in the sense that, for each point p in the plane, there exists at least one antenna
a, whose disc of transmission contains p so that a’s frequency is different from those of all other
antennas that can reach p. Furthermore, it was shown that this bound is worst-case optimal.

Thus, Even et al. have shown that any family of n discs in the plane has a CF-coloring
with O(log n) colors and that this bound is tight in the worst case. Furthermore, such a coloring
can be found in polynomial time. Other variants and extensions of these coloring problems have
drawn the attention of researchers and have been the focus of several recent papers (see, e.g.,
[3, 4, 5, 6, 8, 9, 10]). In this paper we study conflict-free colorings of n discs such that each disc
intersects at most k other discs (we assume that k � n). The lower bound of Ω(log n) for CF-
colorings of n discs, given in [3] is such that every disc intersects all other discs. In view of the
motivation of frequency assignment, it is natural to assume that in a realistic setting, the number
of discs that are intersected by some given disc is bounded by some parameter k which is much
smaller than the total number of the given discs. In this case the only known lower bound for the
number of colors needed in any CF-coloring is Ω(log k). In this paper, we provide an upper bound
of O(log3 k) on the number of colors needed for CF-coloring such discs. This improves the known
upper bound of O(log n), whenever k is much smaller than n.

2 Coloring shallow discs

Let D be a set of discs. For a point p ∈
⋃

d∈D d, put d(p) = {d ∈ D|p ∈ d}. For a given integer
k, put H≤k(D) = (D,E≤k(D)), where E≤k(D) = {d(p) | |d(p)| ≤ k and p ∈

⋃
d∈D d}. We refer to

d(p) as the depth (or level) of p. Let χ : D −→ {1, ..., i} be a coloring of D. For a point p ∈
⋃

d∈D d,
we say that d(p) is conflict-free if there exists at least one disc s ∈ d(p) with a unique color (i.e.,
no other disc in d(p) gets the same color as s). χ is called a conflict-free coloring if every point
p ∈

⋃
d∈D d, d(p) is conflict-free.

Theorem 2.1. Let D be a set of n planar discs and let k > 1 be an integer. Assume that no disc in
D intersects more than k other discs in D. Then D can be conflict-free colored with only O(log3 k)
colors.

Before proceeding to the proof of Theorem 2.1, we need a few technical lemmas:

Lemma 2.2. Let D be a finite set of n planar discs. Then |E≤k(D)| = O(kn).

Proof. Let A(D) denote the arrangement of the bounding circles of the discs in D. We may assume
that D is in general position, in the sense that no three distinct circles pass through a common
point. This can be enforced by a slight perturbation of the discs, which does not decrease |E≤k(D)|.
Let S≤k(D) be the set of vertices of the arrangement A(D) that lie in the interior of at most k
discs of D. By the analysis of Clarkson and Shor [2], we have |S≤k(D)| = O

(
k2U(n

k )
)
, where U(n)

is the maximum complexity of the union of any n discs (i.e., the maximum possible number of
vertices of an arrangement of n discs that are at level 0). Let F≤k denote the set of all cells in
A(D) with level at most k (i.e., the set of connected components of the complement of the union
of the bounding circles that are contained in at most k discs). Obviously |E≤k(D)| ≤ |F≤k(D)|.
We charge a cell f ∈ F≤k(D) to one of the vertices on the boundary ∂f , if ∂f has vertices. Thus,
the only cells unaccounted for by this charging scheme are the cells that have no vertices on their
boundary. However, it is easy to check that the number of such cells is only O(n), as we can charge
such a cell to the disc d whose bounding circle forms its outer boundary. It is easily seen that in
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this charging scheme, a vertex is charged at most four times, since it can belong to the boundary
of at most four cells. Note also that every charged vertex is contained in at most k discs of D
and therefore belongs to S≤k(D). Thus |E≤k(D)| ≤ |F≤k(D)| ≤ 4 · S≤k(D) + n = O(k2U(n

k ) + n).
By the result of [7], U(n) ≤ 6n − 12. Thus |E≤k(D)| ≤ O(nk). This completes the proof of the
lemma.

Lemma 2.3. Let D be a set of n planar discs, and let ` > 1 be an integer. Then D can be colored
with O(`2) colors such that all hyperedges in E≤`(D) are conflict-free.

Proof. Lemma 2.2 implies that there exists a constant c such that for any finite collection of discs
D there exists a disc d ∈ D which belongs to at most c`2 hyperedges in E≤`(D). Indeed, the sum∑

s∈D deg(s) ≤ ` |E≤`(D)| = O(`2n), where deg(s) (degree of s) is the number of hyperedges of
E≤`(D) that contain s. Thus, the average degree is at most c`2 for some constant c, and therefore
there must exist a disc with degree at most c`2. We show that c`2 +1 colors suffice for our coloring.
We proceed by induction on the number n of discs in D. Let d ∈ D be a disc that belongs to at
most c`2 hyperedges of E≤`(D). By the induction hypothesis, the set D \ {d} can be colored with
at most c`2 + 1 colors such that all hyperedges in E≤`(D \ {d}) are conflict-free. For each of these
sets S ∈ E≤`(D \ {d}) there is at least one color c(S) that is unique in S. If we assign d a color
distinct from c(S), then the set S ∪ {d} is also conflict-free. Since d belongs to at most c`2 sets in
E≤`(D), we can color d with a color distinct from all the unique colors found in E≤`(D \ {d}) such
that the coloring of E≤`(D) is conflict-free. This completes the proof of the lemma.

Lemma 2.4. Let D be a set of discs such that every disc intersects at most k other ones. Then
there is a constant A such that D can be colored with two colors (red and blue) and such that for
every face f ∈ A(D) with depth at least A ln k, there are at least |d(f)|

3 red discs containing f and
at least |d(f)|

3 blue discs containing f , where d(f) is the set of all discs containing the face f .

Proof. Consider a random coloring of the discs in D, where each disc d ∈ D is colored independently
red or blue with equal probability. For a face f of the arrangement A(D) with |d(f)| ≥ A ln k, let
Af denote the “bad” event that either less than |d(f)|

3 of the discs in d(f) or more than 2|d(f)|
3 of

them are colored blue. By the Chernoff inequality (see, e.g., [1]) we have:

Pr[Af ] ≤ 2e−
|d(f)|

72 ≤ 2e−
A ln k

72

We claim that for every face f , the event Af is mutually independent of all but at most O(k3)
other events. Indeed Af is independent of all events As for which d(s)∩ d(f) = ∅. By assumption,
|d(f)| ≤ k +1. Observe also that a disc that contains f , can contain at most k2 other faces, simply
because the arrangement of k discs consists of at most k2 faces. Hence, the claim follows.

Let A be a constant such that:
e · 2e−

A ln k
72 · 2k3 < 1

By the Lovasz’ Local Lemma, (see, e.g., [1]) we have:

Pr[
∧

|d(f)|≥A ln k

Āf ] > 0

In particular, this means that there exists a coloring for which every face f with |d(f)| ≥ A ln k has
at least |d(f)|

3 red discs containing f and at least |d(f)|
3 blue discs containing it, as asserted. This

completes the proof of the lemma.
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Proof of Theorem 2.1: Consider a coloring of D by two colors as in Lemma 2.4. Let B1 denote
the set of discs in D colored blue. We will color the discs of B1 with O(ln2 k) colors such that
E≤2A ln k(B1) is conflict-free, and recursively color the discs in D \ B1 with colors disjoint from
those used to color B1. This is done again by splitting the discs into a set of red discs and a set
B2 of blue discs with the properties guaranteed by Lemma 2.4. We repeat this process until every
face of the arrangement A(D′) (of the set D′ of all remaining discs) has depth at most A ln k. At
that time, we color D′ with O(ln2 k) colors as described in Lemma 2.3. We claim that this coloring
scheme uses only O(ln3 k) colors and is indeed conflict-free. To see that this coloring scheme is
a valid conflict-free coloring, consider a point p ∈

⋃
d∈D d. Let i be the largest index for which

d(p) ∩ Bi 6= ∅. If i does not exist (namely, d(p) ∩ Bi = ∅ ∀i) then by Lemma 2.4 |d(p)| ≤ A ln k.
However, this means that d(p) ∈ E≤A ln k and thus d(p) is conflict-free by the coloring of the last
step. If |d(p) ∩Bi| ≤ 2A ln k then by the way we colored Bi, d(p) is conflict-free. Assume then,
that |d(p) ∩Bi| > 2A ln k. Let x denote the number of discs containing p at step i. By the property
of the coloring of step i, we have that x ≥ 3A ln k. This means that after removing Bi, the face
containing p is also contained in at least A ln k other discs. Hence, p must also belong to a disc
of Bi+1, a contradiction to the maximality of i. To argue about the number of colors used by
the above procedure, note that in each prune step, we reduce the depth of every face with depth
i ≥ A ln k by a factor of at least 2

3 . We started with a set of discs such that the maximal depth is
k +1. After the first step, the maximal depth is 2

3k and for each step we used O(ln2 k) colors so, in
total we have that the maximum number of colors f(k, r), needed for CF-coloring a family of discs
with maximum depth r such that each disc intersects at most k others satisfies the recursion:

f(k, r) ≤ O(ln2 k) + f(k,
2
3
r).

This gives f(k, r) = O(ln2 k log r). Since, in our case r ≤ k + 1, we obtain the asserted upper
bound. This completes the proof of the theorem. �

3 Discussion

• Theorem 2.1 works almost verbatim for any family of regions (not necessarily convex) with
linear union complexity. Thus, for example, our result applies to families of pseudo-discs (i.e.,
a family of simple Jordan regions, each pair of whose boundaries intersect at most twice),
since pseudo-discs have linear union complexity (see, e.g., [7]).

• The proof of Theorem 2.1 is non-constructive since it uses the Lovasz’ Local Lemma. However,
we can use the known algorithmic versions of the Local Lemma (c.f., e.g., [1], Chapter 5) to
obtain a constructive proof of Theorem 2.11.

• As mentioned in the Introduction, the only lower bound we have for the problem studied here
is Ω(log k) which is obvious from taking the lower bound construction of [3] with k discs. It
would be interesting to close the gap between this lower bound and the upper bound O(log3 k)
obtained in this paper.

• Another interesting open problem is to obtain a CF-coloring of discs with maximum depth
k + 1 (i.e., no point is covered by more than k + 1 discs) with only polylogarithmic (in k)
many colors. Obviously, the assumption of this paper that a disc can intersect at most k

1In the constructive version we get a weaker constant in the O(ln3 k) bound.
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others is much stronger and implies maximum depth k+1. However, the converse is not true.
Assuming only bounded depth does not imply the former. In bounded depth, we still might
have discs intersecting many (possibly all) other discs.
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