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Abstract—We study the tandem duplication distance between
binary sequences and their roots. In other words, the quantity of
interest is the number of tandem duplication operations of the
form x = abc → y = abbc, where x and y are sequences and
a, b, and c are their substrings, needed to generate a binary
sequence of length n starting from a square-free sequence from
the set {0, 1, 01, 10, 010, 101}. This problem is a restricted case
of finding the duplication/deduplication distance between two
sequences, defined as the minimum number of duplication and
deduplication operations required to transform one sequence to
the other. We consider both exact and approximate tandem dupli-
cations. For exact duplication, denoting the maximum distance
to the root of a sequence of length n by f(n), we prove that
f(n) = Θ(n). For the case of approximate duplication, where
a β-fraction of symbols may be duplicated incorrectly, we show
that the maximum distance has a sharp transition from linear in
n to logarithmic at β = 1/2. We also study the duplication
distance to the root for the set of sequences arising from a
given root and for special classes of sequences, namely, the De
Bruijn sequences, the Thue-Morse sequence, and the Fibonacci
words. The problem is motivated by genomic tandem duplication
mutations and the smallest number of tandem duplication events
required to generate a given biological sequence.

I. INTRODUCTION

The genome of every organism is subject to mutations
resulting from imperfect genome replication as well as en-
vironmental factors. These mutations include tandem dupli-
cations, which create tandem repeats by duplicating a sub-
string and inserting the copy adjacent to the original (e.g.,
ACGT → ACGCGT ); and point mutations or substitutions,
which substitute one base in the sequence by another (e.g.,
ACGT → ATGT ). Gaining a better understanding of mu-
tations that modify genomes –thereby creating the variety
needed for natural selection– is helpful in many fields includ-
ing phylogenomics, systems biology, medicine, and bioinfor-
matics.

One aspect of this task is the study of how genomic
sequences are generated through mutations. In this paper, we
focus on tandem duplication mutations and tandem repeats,
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which form about 3% of the human genome [1], and study
the minimum number of mutation events that can create a
given sequence. More specifically, we define distance mea-
sures between pairs of sequences based on the number of
exact or approximate tandem duplications that are needed
to transform one sequence to the other. We then study the
distances between sequences of length n ∈ N and their roots,
i.e., the shortest sequences from which they can be obtained
via these operations.

Formally, a (tandem) repeat of length h in a sequence is
two identical adjacent blocks, each consisting of h consecutive
elements. For example, the sequence 1213413451 contains the
repeat 134134 of length 3. A repeat of length h may be created
through a (tandem) duplication of length h, e.g., 1213451

d−→
1213413451, where d−→ denotes a duplication operation. On
the other hand, a repeat may be removed through a (tandem)
deduplication of length h, i.e., by removing one of the two
adjacent identical blocks, e.g., 1213413451

dd−→ 1213451.
The duplication/deduplication distance between two se-

quences x and y is the smallest number of duplications and
deduplications that can turn x into y (to denote sequences we
use bold symbols). We set the distance to infinity if the task
is not possible, for example, if x = 1 and y = 0.

For two sequences x and y , if y can be obtained from x
through duplications, we say that x is an ancestor of y and
that y is a descendant of x. An ancestor x of y is a root of
y if it is square-free, i.e., it does not contain a repeat. The
set of roots of y is denoted roots(y). If x is a root of y , we
write x ∈ roots(y), and if y has a unique root x, we write
x = root(y). We define the duplication distance between two
sequences as the minimum number of duplications required to
convert the shorter sequence to the longer one. This distance is
finite if and only if one sequence is an ancestor of the other.
This paper is focused on finding bounds on the duplication
distance of sequences to their roots. From an evolutionary
point of view, the duplication distance between a sequence
and its root is of interest since it corresponds to a likely path
through which a root may have evolved into a sequence present
in the genome of an organism.

Our attention here is limited to binary sequences for the sake
of simplicity, since for the binary alphabet, the root of every se-
quence is unique and belongs to the set {0, 1, 01, 10, 010, 101}.
Specifically, the roots of 0n and 1n, n ∈ N, are 0 and 1,
respectively. For every other binary sequence s of length n,
the root of s is the sequence in the set {01, 10, 010, 101} that
starts and ends with the same symbols as s. For example, the
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root of s = 1001011 is 101 since

101
d−→ 10101

d−→ 101011
d−→ 1001011 = s.

A run in a sequence is a maximal substring consisting of
one or more copies of a single symbol. Through duplication,
we can generate every binary sequence from its root by first
creating the correct number of runs of appropriate symbols.
For example, since s = 1001011 has 5 runs, the first being
a run of the symbol 1, we first generate 10101 through
duplication. It is not difficult to see that this is always possible.
The next step is then to extend each run so that it has the
appropriate length.

In the proofs in the paper, it is often helpful to think of
the distance to the root in terms of converting a sequence to
its root via a sequence of deduplications, e.g. the sequence s
above can be deduplicated to its root as

s = 1001011
dd−→ 101011

dd−→ 10101
dd−→ 101 = root(s).

We note that a celebrated result by Thue from 1906 [2]
states that for alphabets of size ≥ 3, there is an infinite square-
free sequence. Thus, in contrast to the binary alphabet, the set
of roots for such alphabets is infinite since each substring of
Thue’s sequence is square-free.

For a binary sequence s, let f(s) denote the duplication
distance between s and its root and let f(n) be the maximum
of f(s) for all sequences s of length n. Table I, which was
obtained through computer search, shows the values of f(n)
for 1 ≤ n ≤ 32.

In this paper, we provide bounds on f(s) and on f(n). We
also consider a variation of the duplication distance, referred to
as the approximate-duplication distance, where the duplication
process is imprecise and so the inserted block is not necessarily
an exact copy. Specifically, the β-approximate-duplication
distance between two sequences x and y is the smallest
number of duplications that can turn the shorter sequence
into the longer one, where each duplication may produce a
block that differs from the original in at most a β-fraction of
positions and the new block may be inserted before or after
the original block. The minimum distance between s and any
of its roots is denoted by fβ(s) and the maximum of fβ(s)
over all sequences s of length n is denoted by fβ(n). We
provide bounds on fβ(n) and in particular show that there is
a sharp transition in the behavior of fβ at β = 1/2.

Since each binary sequence has a unique root in the set
{0, 1, 01, 10, 010, 101}, the set of sequences can be partitioned
based on their roots. In the paper, we also study the duplication
distance to the root for sequences based on the part they belong
to, that is, we consider fσ (n) for σ ∈ {0, 1, 01, 10, 010, 101},
where fσ (n) = max{f(s) : root(s) = σ , |s| = n}.

We study the above problems in the context of the bi-
nary alphabet to make them more tractable. It is important
however to point out some of the differences between the
binary case studied here and the instances of the duplica-
tion distance problem arising in biological contexts. First,
in DNA sequences, the size of the alphabet is 4 compared
to 2. Second, while here we study the distance to the root,
in phylogenomic applications, distance to a given ancestor,

for example the common ancestor of two species, may be
desired. More generally, we may be interested in finding the
duplication/deduplication distance between any two genomic
sequences. It is also worth noting that tandem duplications are
not the only type of duplication mutations. For example, for
duplications caused by transposons, the duplicated sequence
may be inserted far from the original sequence. Despite these
differences, however, in addition to being of interest in its own
right, the study of the binary case provides intuition into and
acts as a first step towards the study of the problem in a more
general setting.

The rest of the paper is structured as follows. In the next
two subsections, we summarize the results of the paper and
describe the related work. Then, in Section II, we prove the
bounds on f(n) and discuss some variants, as well as special
classes of sequences. In Sections III and IV, we study the
approximate-duplication distance to the root and the duplica-
tion distance for different roots, respectively. In Section V, we
discuss the duplication distance for a special class of sequence
generation systems called Lindenmayer Systems. Finally, we
conclude the paper in Section VI and present several open
problems and possible future directions.

A. Results

In this subsection, we present the main results of the paper.
The proofs, unless they are very short, are postponed to later
sections.

Suppose the root of s is σ ∈ {0, 1, 01, 10, 010, 101}. It is
easy to see that

log2

|s|
|σ |
≤ f(s) ≤ |s|.

While the above lower bound is tight in the sense that there
exist σ and s that satisfy it with equality, e.g., s = 02k and
σ = 0, we show there is a positive constant c such that for
most sequences of length n, the duplication distance to the root
is bounded below by cn. We also improve the upper bound.

Theorem 1. The limit limn→∞ f(n)/n exists and

0.045 ≤ lim
n→∞

f(n)

n
≤ 2

5
·

Furthermore, for sufficiently large n, f(s) ≥ 0.045n for all
but an exponentially small fraction of sequences s of length n;
and f(n) ≤ 2n/5 + 15.

We refer to lim f(n)
n as the binary duplication constant.

Although the linear lower bound on the duplication distance
to the root holds for almost all sequences, finding a specific
family of sequences that satisfy it appears to be difficult. The
next lemma and its corollary give the best known construction
for a family with large distance to the root, namely, this family
achieves distance Ω(n/ log n).

Lemma 2. Consider a sequence s and a positive integer
k ≥ 4, and let Nk(s) denote the number of distinct k-mers
(sequences of length k) occurring in s. We have

f(s) ≥ Nk(s)

k − 1
·
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TABLE I
f(n) FOR 1 ≤ n ≤ 32.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f(n) 0 1 2 2 3 4 4 5 6 6 7 7 8 8 9 9
n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

f(n) 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15

Proof. For two sequences x = tuuv and y = tuv , we have
Nk(y) ≥ Nk(x) − (k − 1), since the only case in which a
k-mer occurs in x but not in y is when the only instance of
that k-mer intersects both copies of u in x. There are at most
k−1 k-substrings of x that intersect both copies of u. Finally,
no root contains a k-mer for k ≥ 4.

A binary De Bruijn sequence [3] of order k is a binary
sequence of length n = 2k that when viewed cyclically
contains every possible binary sequence of length k as a
substring exactly once. For example, 0011 and 00010111 are
De Bruijn sequences of order 2 and order 3, respectively. A
binary De Bruijn sequence of order k and length n = 2k

has precisely n − k + 1 distinct k-mers. Hence, we have the
following corollary.

Corollary 3. For any binary De Bruijn sequence s of order
k (which has length n = 2k), we have

f(s) ≥ n− log2 n

log2 n
·

It is worth noting that using the same technique as the proof
of f(n) = Ω(n) in Theorem 1, and the fact that there are
at least 2n/2/n De Bruijn sequences of length n when n is
a power of two,1 one can show that the largest duplication
distance for De Bruijn sequences grows linearly in their length.

A question arising from observing that f(n) = Θ(n) is
that how does allowing mismatches in the duplication process
affect the distance to the root. In particular, for what values of
β, is fβ(n) linear in n and for what values is it logarithmic?
The next theorem establishes that there is a sharp transition at
β = 1/2.

Theorem 4. If β < 1/2, then there exists a constant c =
c(β) > 0 such that

fβ(n) ≥ cn.

Furthermore, if β > 1/2, for any constant C >
⌈

2β+1
2β−1

⌉2

and
sufficiently large n,

fβ(n) ≤ C lnn.

Finally, we establish that the limit of f(n)
n is the same if we

consider only sequences with root 10 or only sequences with
root 101.

Theorem 5. The limits limn
f10(n)
n and limn

f101(n)
n exist and

are equal to limn
f(n)
n .

1If De Bruijn sequences are defined cyclically as opposed to linearly, there
are exactly 2n/2

n
De Bruijn sequences of length n

B. Related Work
Tandem duplications and repeats in sequences have been

studied from a variety of points of view. One of the most
relevant to this work is the study of estimating the tandem
duplication history of a given sequence, i.e., a sequence of
duplication events that may have generated the sequence, see
e.g., [4], [5], [6]. While the aforementioned works study the
problem from an algorithmic point of view, in this paper, we
are focused on extremal distance values for binary sequences.
Furthermore, [5], [6] have a more restrictive duplication model
than that of the present paper.

Another aspect, the study of the ability of duplication
mutations to generate diversity, has been recently investigated
from an information-theoretic point of view [7], [8]. In par-
ticular, [7] models sequences generated from a starting “seed”
through different types of duplications as sequence systems
and studies their capacity and expressiveness. The notion
of capacity quantifies the ability of the systems to generate
diverse families of sequences, and expressiveness is concerned
with determining whether every sequence can be generated
as a substring of another sequence, if not independently. The
results in [7], [8] include lower bounds on the capacity of
tandem duplications and establishing that certain systems have
nonzero capacity. The aforementioned works focus on the
possibility of generating sequences and do not consider the
number of duplication steps it takes to do so for any given
sequence, which is the subject of the current paper.

Finally, we mention that the stochastic behavior of certain
duplication systems has been studied in [9], [10], and error-
correcting codes for combating duplication errors have been
introduced in [11].

II. BOUNDS ON f(n)

Theorem 1. The limit limn→∞ f(n)/n exists and

0.045 ≤ lim
n→∞

f(n)

n
≤ 2

5
·

Furthermore, for sufficiently large n, f(s) ≥ 0.045n for all
but an exponentially small fraction of sequences s of length n;
and f(n) ≤ 2n/5 + 15.

The lower bound of Theorem 1 is proved with the help
of Theorem 6, and its upper bound uses Theorem 9. These
theorems are stated next.

Theorem 6. For 0 < α < 1, consider the set of the b2nαc
sequences of length n with the smallest duplication distance
to the root and let Fα be the maximum duplication distance
to the root for a sequence in this set. Then

6n

Fα∑
f=1

(
n+ f

f

)(
2n+ f

f

)(
2n+ f + 2

f

)
2f ≥ 2nα−1. (1)
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Before stating the proof, we present some background,
definitions, and a useful claim, as well as a simpler but weaker
result.

Recall that if the sequence s = s1s2 · · · sm contains a
repeat, then omitting one of the two blocks of this repeat
to obtain a new sequence is called a deduplication. We also
refer to the resulting sequence s′ as a deduplication of s, and
write s dd−→ s′. A deduplication process for a binary sequence
s is a sequence of sequences s = s0

dd−→ s1
dd−→ s2

dd−→ · · · dd−→
sf = root(s), where each si+1 is a deduplication of si and
the final sequence sf is the (square-free) root of s. The length
of the deduplication process above is f , that is, the number of
deduplications in it. A deduplication of s is an (i, h)-step if i
is the starting position of (the first block) of a repeat of length
h and one of the blocks of this repeat is omitted. For example,
if s = 12313413451, a (4, 3)-step produces s′ = 12313451.
A deduplication process of length f of a sequence s can
be described by a sequence of pairs (it, ht)

f
t=1, where step

number t is an (it, ht)-step. It is not difficult to check that
knowing the final sequence in the process, and knowing all
the pairs (it, ht) of deduplications in the process, in order, we
can reconstruct the original sequence s.

From the preceding discussion, each binary sequence s can
be encoded as the pair

(
σ , (it, ht)

f(s)
t=1

)
, where σ is the root

of s and (it, ht)
f(s)
t=1 a deduplication process of s. Since there

are only 6 possibilities for σ , and less than n2 possibilities
for each pair (it, ht), if F = f(n), then

6

F∑
f=1

(
n2
)f ≥ 2n, (2)

which implies that F = f(n) = Ω(n/ log n).
In the aforementioned encoding, several deduplication pro-

cesses may map to the same sequence. We improve upon (2)
by defining deduplication processes of a special form that re-
move some of the redundancy, and by doing so, we obtain (1),
which will lead to the linear lower bound of Theorem 1.

Definition 7. A deduplication process s = s0
dd−→ s1

dd−→
s2

dd−→ · · · dd−→ sf = root(s) of a sequence s, in which
the steps are (i1, h1), (i2, h2), . . . , (if , hf ), is normal if the
following condition holds: For any 1 ≤ t < f , if it+1 < it
then it+1 + 2ht+1 ≥ it.

The following claim shows that if we limit ourselves to
normal deduplication processes, we can still encode every
binary sequence with processes of the same length.

Claim 8. For any deduplication process s = s0
dd−→ s1

dd−→
s2

dd−→ · · · dd−→ sf = root(s) of length f of a sequence s,
there is a normal deduplication process s = s0

dd−→ s′1
dd−→

s′2
dd−→ · · · dd−→ s′f = sf of the same length, with the same

final sequence.

Proof. Among all deduplication processes of length f starting
with s and ending with sf , consider the one minimizing the
number of pairs (it, ht), (iq, hq) with 1 ≤ t < q ≤ f , and iq <
it. We claim that this process is normal. Indeed, otherwise

there is some t, 1 ≤ t < f so that it+1 < it and it+1 +
2ht+1 < it. But in this case we can switch the steps (it, ht)
and (it+1, ht+1), performing the step (it+1, ht+1) just before
(it, ht). This will clearly leave all sequences s0, s1, . . . , sf ,
besides st, the same, and in particular s0 = s and sf =
root(s) stay the same. This contradicts the minimality in the
choice of the process, establishing the claim.

We now turn to the proof of Theorem 6.

Proof of Theorem 6. Let Uα denote the set of b2nαc se-
quences that have the smallest duplication distances to their
roots among binary sequences of length n and recall that Fα =
max{f(s) : s ∈ Uα}. By Claim 8, for each of the sequences
s of Uα, there is a normal deduplication process s = s0

dd−→
s1

dd−→ s2
dd−→ · · · dd−→ sf of length f ≤ Fα. Let the steps of

this process be (i1, h1), (i2, h2), . . . , (if , hf ). As before, it
is clear that knowing the final sequence sf and all the pairs
(it, ht), we can reconstruct s. There are 6 possibilities for
sf . As each step (it, ht) reduces the length of the sequence
by ht, it follows that

∑f
i=1 ht < n and therefore there are at

most
(
n+f
f

)
possibilities for the sequence (h1, h2, h3, . . . , hf ).

In order to record the sequence (i1, i2, . . . , if ) it suffices to
record i1 and all the differences it − it+1 for all 1 ≤ t < n.
There are less than n possibilities for i1, and there are at
most 2f possibilities for deciding about the set of all indices
t for which the difference it− it+1 is positive. As the process
is normal, for each such positive difference, we know that
it+1 + 2ht+1 ≥ it, that is it − it+1 ≤ 2ht+1. It follows that
the sum of all positive differences,

∑
t:it−it+1>0(it − it+1), is

at most 2
∑
t ht < 2n, and hence the number of choices for

these differences is at most
(

2n+f
f

)
.

Since if ≤ 3, we have i1 − if ≥ 1− 3 = −2. So∑
t:it−it+1≤0

(it − it+1) = (i1 − if )−
∑

t:it−it+1>0

(it − it+1) > −2− 2n.

Therefore, the number of choices for all non-positive dif-
ferences it − it+1 is at most

(
2n+f+2

f

)
. Putting all of these

together, and noting that |Uα| ≥ 2nα−1, implies the assertion
of Theorem 6.

Since
(
p
q

)
≤ 2pH(q/p) for positive integers 0 < q < p [12,

p. 309], Theorem 6 implies that

3

(
2 +

Fα
n

)
H

(
Fα/n

2 + Fα/n

)
+
Fα
n
≥ α+ o(1),

where H is the binary entropy function, H(x) = −x log2 x−
(1 − x) log2(1 − x). The expression on the left side of the
inequality is strictly increasing in Fα

n , and it is less than 0.99
if we substitute Fα

n by 0.045. If we let α = 0.99, it follows
that for sufficiently large n, we have Fα

n ≥ 0.045, thereby
establishing the lower bound in Theorem 1.

To prove the upper bound in Theorem 1, we prove the
following theorem.

Theorem 9. The limit limn→∞ f(n)/n exists and for all n,
f(n) ≤ 2

5n+ 15.

Proof. Note that for any positive integers n and m, f(n +
m) ≤ f(n) + f(m) + 2. Indeed, given a sequences of length
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for 3 ≤ m < n ≤ 32.

n+m we can deduplicate separately its first n bits and its last
m bits, getting a concatenation of two square-free sequences
(of total length at most 6). It then suffices to check that each
such concatenation can be deduplicated to its root through at
most 2 additional deduplication steps. Therefore, the function
g(n) = f(n) + 2 is subadditive:

g(n+m) = f(n+m)+2 ≤ f(n)+f(m)+4 = g(n)+g(m).

Now, by Fekete’s Lemma [13], g(n)/n tends to a limit (which
is the infimum over n of g(n)/n), and it is clear that the limit
of f(n)/n is the same as that of g(n)/n. We term this limit
the binary duplication constant.

This proof of the existence of limn→∞ f(n)/n provides
a simple way to derive an upper bound for the limit by
computing f(n) precisely for some small n. In particular, from
Table I, we find limn→∞ f(n)/n ≤ (f(32) + 2)/32 = 17/32.
We can improve upon this result as follows.

For positive integers n,m, let f(n,m) be the smallest num-
ber k such that every sequence of length n can be converted
to a sequences of length at most m via k deduplication steps.
A sequence of length n can be converted to its root by first
repeatedly converting its a-substrings to substrings of length
at most b via f(a, b) deduplication steps. Thus for integers
a > b > 0, we have

f(n) ≤ f(a, b)

a− b
n+ max

i<a
f(i) (3)

With the help of a computer we find the values of f(n,m)
for 3 ≤ m < n ≤ 32. An illustration is given in Figure 1.
In particular we have f(32,12)

20 = 8
20 = 2

5 from Figure 1 and
maxi<32 f(i) = 15 from Table I, implying f(n) ≤ 2

5n +
15.

Weaker upper bounds on f(n) can be obtained without
resorting to computation in the following ways. First, to
deduplicate a sequence to its root, we first can deduplicate each
block of t consecutive identical bits to a single bit by dlog2 te

deduplications and then finish in less than log2 n additional
steps. This shows that for large n , f(n) ≤ 2

3n + o(n) (the
extremal case for this argument is the one in which each block
is of size 3). Second, it is known that every binary sequence
of length at least 19 contains a repeat of length at least 2 [14],
implying that f(n) ≤ 1

2n+ o(n).
We note that since the lower bound in Theorem 1 holds for

almost all sequences, the duplication distance to the root for
a random binary string is “large” with high probability. How-
ever, establishing more precise results about the duplication
distance to the root for a random sequence, and in particular,
its distribution, appears to be a challenging problem.

Parallel duplication: One can also define the parallel
duplication distance to the root by allowing non-overlapping
duplications to occur simultaneously, with f ′(n) being the
maximum parallel duplication distance to the root of a se-
quence of length n. Similar to the normal duplication distance
it is helpful to think in terms of deduplications. Since each
parallel deduplication step decreases the length of a sequence
by at most a factor of 2, f ′(n) > log2 n − 2 (and in fact
f ′(s) ≥ log2 n− 2 for every sequence of length n). It is not
difficult to see that f ′(n) < 2 log2 n by first deduplicating,
in parallel, all blocks of identical elements in the sequence
to blocks of size 1, and then by deduplicating the resulting
alternating sequence to its root.

Partial deduplication: The definition of f(n,m) gives
rise to the following question: For a fixed 0 < α ≤ 1, what
is limn

f(n,bαnc)
1−α , if it exists? At first glance, one may expect

limn
f(n,bαnc)

1−α to be decreasing in α since if α is large, one
may think it is easier to find enough long repeats to reduce the
length of the sequence quickly by a factor of 1−α. However,
we show that limn

f(n,bαnc)
n(1−α) = limn

f(n)
n .

Let γ = limn
f(n)
n . For ε > 0, there exists k such that for

all n > k, f(n) ≤ (γ + ε)n. Thus

f(n, bαnc) ≤ f(n− bαnc+ 3) ≤ (γ + ε)((1− α)n+ 4).
(4)

On the other hand, let δ = lim infn
f(n,bαnc)

(1−α)n . For ε > 0, there
exists k such f(k, bαkc) ≤ (δ + ε)(1− α)k. Hence,

f(n) ≤ f(k, bαkc)
k − bαkc

n+ k ≤ (δ + ε)n+ k. (5)

The result follows by dividing (4) by (1 − α)n and taking a
lim supn and by dividing (5) by n and taking a limn.

III. APPROXIMATE-DUPLICATION DISTANCE

Recall that fβ(n) is the least k such that every sequence
of length n can be converted to a square-free sequence in k
approximate deduplication steps, with at most a β fraction of
mismatches in each step. In this section, we provide bounds
on fβ(n) for β < 1/2 and β > 1/2. We first however present
some useful definitions.

For 0 ≤ β < 1, a β-repeat of length h in a binary sequence
consists of two consecutive blocks in the sequence, each of
length h, such that the Hamming distance between them is at
most βh. If uvv′w is a binary sequence, and vv′ is a β-
repeat, then a β-deduplication produces uvw or uv′w . Note
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that in this case the set of roots of s is not necessarily unique,
but the length of any root is at most 3, even if β = 0.

The next theorem establishes a sharp phase transition in the
behavior of fβ(n) at β = 1/2. Its proof relies on Theorem 10,
which guarantees the existence of β-repeats under certain
conditions. In what follows, for an integer m, we use [m]
to denote {1, . . . ,m}.

Theorem 4. If β < 1/2, then there exists a constant c =
c(β) > 0 such that

fβ(n) ≥ cn.

Furthermore, if β > 1/2, for any constant C >
⌈

2β+1
2β−1

⌉2

and
sufficiently large n,

fβ(n) ≤ C lnn.

Proof. The proof for β < 1/2 is similar to the proof of the
lower bound in Theorem 1. In this case however, to make the
deduplication process reversible, for every deduplication we
need to record whether it is of the form uvv′w

dd−→uvw
or of the form uv′vw

dd−→uvw , and we must also encode
the sequence v′. In the tth deduplication step, we have |v | =
|v′| = ht. Note that v′ is in the Hamming sphere of radius βht
around v . Hence, since β < 1/2, there are at most 2htH(β)

options for v′ [15, Lemma 4.7]. Thus

6n

Fβ∑
f=1

(
n+ f

f

)(
2n+ f

f

)(
2n+ f + 2

f

)
2nH(β)22f ≥ 2n,

where Fβ = fβ(n) and we have used
∑
t ht ≤ n. The desired

result then follows since H(β) < 1.

Suppose β > 1/2. Let K =
⌈

2β+1
2β−1

⌉2

and ε = C−K. Note
that ε > 0. By appropriately choosing C1, we can have fβ(i) ≤(
K + ε

2

)
ln i+C1 for all i < M , where M is sufficiently large

and in particular M > K. Assuming that this holds also for
all i < n, where n ≥ M , we show that it holds for i = n.
From Theorem 10, every binary sequence s of length n has a
β-repeat of length `bn/Kc for some ` ∈

[√
K
]
, implying

fβ(s) ≤ fβ
(
n− `

⌊ n
K

⌋)
+ 1

≤
(
K +

ε

2

)
ln
(
n−

⌊ n
K

⌋)
+ 1 + C1

≤
(
K +

ε

2

)
lnn−

(
K + ε

2

)
(n−K)

Kn
+ 1 + C1

≤
(
K +

ε

2

)
lnn+ C1

≤ C lnn,

where the last two steps hold for sufficiently large n. Hence,
fβ(n) ≤ C lnn.

Theorem 10. If β > 1
2 , then for any integer k ≥ 2β+1

2β−1 , any
binary sequence of length n contains a β-repeat of length
`bn/k2c for some ` ∈ [k].

Proof. Let k be a positive integer to be determined later and
put K = k2. Furthermore, let s′ = s1 · · · sK be a partition of

the first KB symbols of s into blocks of length B =
⌊
n
K

⌋
.

We now consider as a code [12] the k + 1 binary vectors

ti = si · · · si+K−k−1, (1 ≤ i ≤ k + 1),

each of length m = (K − k)B. By Plotkin’s bound [12,
p. 41], the minimum Hamming distance of this code is at
most

(
1
2 + 1

2k

)
m. Thus there exist ti and tj with i < j with

Hamming distance at most
(

1
2 + 1

2k

)
m.

Put h = (j − i)B and let m′ = hbm/hc be the largest
integer which is at most m and is divisible by h. Let t′i and
t′j consist of the first m′ bits of ti and tj , respectively. The
Hamming distance between t′i and t′j is clearly still at most(

1
2 + 1

2k

)
m. But

(
1
2 + 1

2k

)
m ≤

(
1
2 + 1

k−1

)
m′ since(

1

2
+

1

2k

)
m =

(
1

2
+

1

2k

)
m

m′
m′

(∗)
≤
(

1

2
+

1

2k

)
k

k − 1
m′

=

(
1

2
+

1

k − 1

)
m′,

where (∗) can be proved as follows. By the definition of m′,
we have m −m′ < h. Additionally, h ≤ kB since 1 ≤ i <
j ≤ k + 1. So,

m−m′

B
< k,

which since B divides m,m′, implies m−m′
B ≤ k − 1 and,

in turn, m′ ≥ m − (k − 1)B = (k − 1)
2
B. Hence m

m′ ≤
k(k−1)B
(k−1)2B = k

k−1 .
Split t′i and t′j into blocks of length h each: t′i =

z1z2 · · · zp, t′j = z2z3 · · · zpzp+1, where p = m′/h. The
Hamming distance between t′i and t′j is the sum of the Ham-
ming distances between zq and zq+1 as q ranges from 1 to p.
Thus, by averaging, there exists an index r so that the Ham-
ming distance between zr and zr+1 is at most

(
1
2 + 1

k−1

)
h.

Putting k ≥ 2β+1
2β−1 so that 1

2 + 1
k−1 ≤ β ensures that zrzr+1

is β-repeat of length h = (j − i)B = (j − i)bn/Kc.

Let a βh-repeat be a repeat of length h with at most hβh
mismatches, i.e., the two blocks are at Hamming distance
at most hβh. In the preceding theorems and their proofs, in
principal, we do not need the maximum number of permitted
mismatches to be a linear function of the length of the repeat,
so we can apply the same techniques to βh-repeats with
nonlinear relationships:

Theorem 11. Let βah = 1
2 + 1

ha , where 0 < a < 1 is a
constant, and let fa(n) be the smallest number f such that
any binary sequence of length n can be deduplicated to a root
in f steps by deduplicating βah-repeats. There exist positive
constants c2, c3 such that

fa(n) ≤ c2n2a/(1+a) + c3. (6)

Proof. By making appropriate changes to the proof of Theo-
rem 10, one can show that for k =

⌈
2na/(1+a)

⌉
, every binary

sequence of sufficiently long length n contains a βah-repeat of
length h = `bn/k2c, for some ` ∈ [k]. To do so, we need to
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Fig. 2. f10(n) and f101(n) for 1 ≤ n ≤ 32.

prove
(

1
2 + 1

k−1

)
h ≤ βahh for all h of the form h = `bn/k2c,

` ∈ [k]. This holds since with the aforementioned value of k,

βa`bn/k2c =
1

2
+

1

(`bn/k2c)a
≥ 1

2
+

1

(kbn/k2c)a
≥ 1

2
+

1

k − 1
,

for all ` ∈ [k] and sufficiently large n.
We can now prove (6) by induction. Clearly, for any M ,

there exist constants c2, c3 such that fa(i) ≤ c2i2a/(1+a) + c3
for all i ≤M . Choose M to be sufficiently large as to satisfy
the requirements of the rest of the proof. Fix n > M and
assume that fa(i) ≤ c2i

2a/(1+a) + c3 for all i < n. Since
in every sequence of length n, there exists a βah-repeat with
h = `bn/k2c, for some ` ∈ [k] and k =

⌈
2na/(1+a)

⌉
, it holds

that

fa(n) ≤ 1 + c2
(
n− `bn/k2c

)2a/(1+a)
+ c3

≤ 1 + c2

(
n− 1

5
n

1−a
1+a

)2a/(1+a)

+ c3

= 1 + c2n
2a/(1+a)

(
1− 1

5
n−

2a
1+a

)2a/(1+a)

+ c3

≤ 1 + c2n
2a/(1+a)

(
1− 2a

5(1 + a)
n−

2a
1+a

)
+ c3

= c2n
2a/(1+a) +

(
1− 2ac2

5(1 + a)

)
+ c3

≤ c2n2a/(1+a) + c3,

where the inequalities hold for sufficiently large n. The third
inequality follows from Bernoulli’s inequality and the the
last one follows from the fact that we can choose c2 to be
arbitrarily large.

IV. DUPLICATION DISTANCES FOR DIFFERENT ROOTS

In this section, we study fσ for σ ∈ {0, 1, 01, 10, 010, 101}.
It is easy to see that f0(n) = f1(n) = dlog2 ne. Clearly f10 =
f01 and f101 = f010. So we limit our attention to roots σ = 10
and σ = 101. Plots for f10(n) and f101(n), obtained through
computer search, are given in Figure 2.

Theorem 5. The limits limn
f10(n)
n and limn

f101(n)
n exist and

are equal to limn
f(n)
n .

Proof. The general approach in this proof is similar to that of
the proof of Fekete’s lemma in [13]. We prove the theorem
for limn

f10(n)
n . The proof for f101(n)

n is similar.
Let γ = lim infn

f10(n)
n and let k ≥ 3 be such that f10(k)+

5 + 2 log2 k ≤ k(γ + ε) for ε > 0. Let s be a sequence of
length n. Starting from the beginning of s, partition it into
substrings that are the shortest possible while having length
at least k and different symbols at the beginning and the end
(so that their root is either 10 or 01). Name these substrings
s1, . . . , sm+1, where |si| ≥ k for i ≤ m and 1 ≤ |sm+1| ≤ k.
Let si,j denote the jth element of si. We deduplicate s to its
root by first deduplicating its substrings si to their roots.

For each substring si of the partition, except the last one, we
consider the following cases and deduplicate si as indicated,
where without loss of generality we assume si starts with 1
and ends with 0:
• |si| = k: Deduplicate this substring to 10 in f10(k) steps.
• |si| > k and si,k−1 = 1: In this case, si = 1x11,1∗0,

where x ∈ {0, 1}k−3, for clarity a comma is placed after
the kth element of si, and a∗ denotes that the symbol
a appears 0 or more times. We reduce the length of the
last run of 1s in si by |si| − k in dlog2(|si| − k + 1)e
deduplication steps to obtain 1x10. Then deduplicate the
result to 10 in f10(k) steps.

• |si| > k and si,k−1 = 0: In this case, si = 1x01,1∗0,
where x ∈ {0, 1}k−3 and where a comma is placed
after the kth element of si. We reduce the length of the
last run of 1s in si by |si| − k − 1 in dlog2(|si| − k)e
deduplication steps to obtain ŝi = 1x01, 0 and note that
ŝi has length k + 1 and ends with 010. Now either ŝi
has a run of length at least 2 or not. If it does, we reduce
the length of this run by 1 to obtain a sequence of length
k, which we then convert to 10 in f10(k) deduplication
steps. If not, then ŝi is an alternating sequence of the
form 101010 · · · 10 which can be deduplicated to 10 in
no more than

⌈
log2

k+1
2

⌉
steps.

The resulting sequence has length at most 2m + k and can
be deduplicated to its root in at most as many steps. We thus
have

f(n) ≤ mf10(k) +

m∑
i=1

dlog2(|si| − k + 1)e

+m

⌈
log2

k + 1

2

⌉
+ 3m+ k

≤ mf10(k) +

m∑
i=1

log2|si|+m log2 k + 5m+ k

≤ n

k
f10(k) +

2n

k
log2 k + 5

n

k
+ k,

where for the last step we have used the fact that
m∑
i=1

log2|si| ≤ m log2(n/m) ≤ n

k
log2 k

which holds since
∑m
i=1|si| ≤ n, d

dmm log2
n
m > 0 and m ≤

n
k . It follows that

f(n)

n
≤ f10(k)

k
+

2 log2 k

k
+

5

k
+
k

n
≤ γ + ε+

k

n
.
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Taking lim of both sides and noting that ε > 0 is arbitrary
proves that limn

f(n)
n ≤ lim infn

f10(n)
n . On the other hand, it

is clear that lim supn
f10(n)
n ≤ limn

f(n)
n . Hence, limn

f(n)
n =

limn
f10(n)
n . Similar arguments hold for f101(n).

V. DUPLICATION DISTANCE FOR L-SYSTEMS

L-systems, or Lindenmayer systems, are sequence rewriting
systems developed by Lindenmayer in 1968 [16]. He used
them in the context of biology to model the growth process
of plant development. He introduced context-free as well as
context-sensitive L-systems. Here we will discuss distance
to the root for sequences arising in context-free L-systems,
also known as 0L-systems. The main result of this section is
showing that for a large class of non-trivial sequences arising
in 0L-systems, distance to the root is logarithmic in their
lengths.

A 0L-system comprises three components:

• Alphabet (Σ): An alphabet of symbols used to construct
sequences.

• Axiom sequence or initiator (ω): The starting sequence
from which a 0L-system is constructed.

• Production rule (h): A rule that constructs new sequences
by expanding each symbol in a given sequence into a
sequence of symbols. The production rule is represented
by the function h : Σ∗ → Σ∗, which for any two
sequences a and b ∈ Σ∗ satisfies

h(ab) = h(a)h(b)

where h(a)h(b) represents the concatenation of h(a)
and h(b). The production rule h can be deterministic
or stochastic. Here we consider only deterministic rules.
Such 0L-systems with deterministic h are denoted as
D0L-systems [17].

Example 12 (Fibonacci words). Consider Σ = {0, 1}, ω = 0,
and

h(0) = 01, h(1) = 0.

For this D0L-system, the first 5 sequences are as follows:

h0(ω) = 0

h1(ω) = 01

h2(ω) = 010

h3(ω) = 01001

h4(ω) = 01001010

h5(ω) = 0100101001001

This can also be represented by the following tree:

0

1

0

1

0

0

10

0

1

0

10

0

1

0

0

10

These sequences are called Fibonacci words as they satisfy

hn(ω) = hn−1(ω)hn−2(ω) ∀ n ≥ 2.

Example 13 (Thue-Morse Sequence). Let Σ = {0, 1}, ω = 0,
and

h(0) = 01, h(1) = 10.

For this D0L-system the tree of sequence generation is given
below:

0

1

0

1

01

0

10

1

0

10

1

01

0

1

0

10

1

01

0

1

01

0

10
The sequence generated by this D0L-system are called

Thue-Morse sequences. Alternatively, the Thue-Morse se-
quences can be defined recursively by starting with t0 = 0
and forming ti+1 by concatenating ti and its complement ti.

We show that binary D0L-systems, which have production
rules of the form h(0) = u and h(1) = v , with u,v ∈ {0, 1}∗
have a logarithmic distance to their roots.

Lemma 14. For any binary D0L-system with initiator ω and
production rule h, provided that |hr(ω)| → ∞ as r →∞, we
have

f(hr(ω)) = Θ(log2|hr(ω)|), as r →∞.

Proof. For any sequence t, since f(t) ≥ log2 |t|, we have
f(hr(ω)) ≥ log2|hr(ω)|. It remains to show that f(hr(ω)) =
O(log2|hr(ω)|). We start by proving the following claim.

Claim. For any binary D0L-system with initiator ω and
production rule h, we have

f(hr(ω)) ≤ f
(
hr−1(ω)

)
+ c ≤ f(ω) + rc, (7)

where c = maxz∈{0,1,01,10,010,101} f(h(z)).

To prove the claim, let x = hr−1(ω) and y = hr(ω) and
consider the sequence of deduplications that turns x into its
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root z ∈ {0, 1, 01, 10, 010, 101}. We can deduplicate y in a
similar manner to h(z): For each step in the deduplication
process of x that deduplicates a substring a1 · · · aka1 · · · ak
to a1 · · · ak, we deduplicate h(a1) · · ·h(ak)h(a1) · · ·h(ak) to
h(a1) · · ·h(ak) in the deduplication process of y , resulting
eventually in h(z). This completes the proof of the claim.

We now turn to proving f(hr(ω)) = O(log2|hr(ω)|). We
will show in the Appendix that |hr(ω)| grows as O(1), Θ(r),
or 2Θ(r) as r → ∞, and that if it grows as Θ(r), then either
the number of 0s or the number of 1s in hr(ω) is constant. If
|hr(ω)| = O(1), then there is nothing to prove. If |hr(ω)| =
2Θ(r), then r = O(log2|hr(ω)|) and the desired result follows
from (7). Finally, for |hr(ω)| = Θ(r), since the number of 0s
or the number of 1s in hr(ω) is constant, again f(hr(ω)) =
O(log2|hr(ω)|).

The previous lemma shows that the duplication distances
to the root for both of Fibonacci words and Thue-Morse se-
quences are logarithmic in sequence length. This is particularly
interesting in the case of the Thue-Morse sequence. Despite
the fact that the Thue-Morse sequence grows by taking the
complement, it contains enough repeats to allow a logarithmic
distance. Note also that the Thue-Morse sequence is used to
generate ternary square-free sequences.

In the next lemma, we give better bounds than those that
can be obtained from Lemma 14 or (7) for Thue-Morse and
Fibonacci sequences.

Lemma 15. Let tr and ur denote the rth Thue-Morse and
Fibonacci words, respectively. For r ≥ 2, we have

f(tr) ≤ 2r,

f(ur) ≤ r.

Proof. We first prove the upper bound for tr. For r ≥ 3, we
have

f(tr) = f
(
tr−1tr−1

)
= f

(
tr−2tr−2tr−2tr−2

)
≤ 1 + f

(
tr−2tr−2tr−2

)
= 1 + f

(
tr−3tr−3tr−3tr−3tr−3tr−3

)
≤ 3 + f

(
tr−3tr−3tr−3tr−3

)
≤ 4 + f

(
tr−3tr−3

)
= 4 + f(tr−2).

If r ≥ 3 is even, then f(tr) ≤ 4 r−2
2 +f(t2) = 2(r − 2)+1 =

2r − 3; and if r ≥ 3 is odd, then f(tr) ≤ 4 r−1
2 + f(t1) =

2(r − 1). This completes the proof of the first claim.
We now turn to f(ur). The rth Fibonacci word can be

obtained via the following recursion: ur = ur−1ur−2 for
r ≥ 2 and u0 = 0, u1 = 01. If r ≥ 5, then

ur = ur−1ur−2

= ur−2ur−3ur−3ur−4

= ur−2ur−3ur−4ur−5ur−4

= u2
r−2ur−5ur−4.

Hence, f(ur) ≤ 1 + f(ur−2ur−5ur−4). Noting that
ur−2ur−5ur−4 = ur−3ur−4ur−5ur−4 = u2

r−3ur−4, we
write

f(ur) ≤ 1 + f(ur−2ur−5ur−4)

= 1 + f
(
u2
r−3ur−4

)
≤ 2 + f(ur−3ur−4)

= 2 + f(ur−2).

Now, if r ≥ 5 is even, then f(ur) ≤ (r − 4) +f(u4) ≤ r−2
since f(u4) = f(01001010) ≤ 2; and if r ≥ 5 is odd, then
f(ur) ≤ (r − 3) + f(u3) ≤ r − 1 as f(u3) = f(01001) ≤
2.

VI. CONCLUSION

In this section, we review the results of the paper and de-
scribe some open problems related to the duplication distance
to the root.

We showed in Theorem 1 that 0.045 ≤ lim f(n)
n ≤ 0.4, but

the precise value of the binary duplication constant, lim f(n)
n ,

is unknown. As an intermediate step, finding bounds tighter
than the ones given in Theorem 1 is of interest. Furthermore,
although the lower bound f(s) ≥ 0.045n is valid for all but
an exponentially small fraction of sequences of length n, we
have not been able to find an explicit family of sequences
whose distance is linear in n. A related problem to identifying
sequences with large duplication distance is improving bounds
on f(s) that depend on the structure of s, such as the bound
given in Lemma 2, relating f(s) to the number Nk(s) of
distinct k-mers of s as f(s) ≥ Nk(s)

k−1 . Additionally, the
limiting distribution of f(s) for a randomly chosen sequence
s of length n is not known (although f(s) is at least 0.045n
with high probability).

We showed in our study of approximate duplication that
at β = 1/2, fβ(n) transitions from a linear dependence on
n to a logarithmic one. The behavior at β = 1/2 however is
unknown. Furthermore, we can alter the setting of approximate
duplication by decoupling duplications and substitutions, i.e.,
we generate the sequence through exact duplications and
substitutions, possibly with limitations on the number of
substitutions. We can then study the same problems as the
ones we have in this paper as well as new problems, e.g., the
minimum number substitutions required to generate a given
sequence via a logarithmic number of duplication steps.

In the paper, we also studied distance for different roots
and showed that the limit behavior is the same. In particular,
limn

f10(n)
n = limn

f101(n)
n = limn

f(n)
n . We also showed that

for a large class of sequences in L-systems, distance to the
root is logarithmic in their lengths.

A different strand of problems are algorithmic in nature,
including designing an algorithm that can efficiently find or
approximate the duplication distance to the root and pro-
vide a duplication process of the appropriate length. The
computational complexity of these tasks is also not known.
Similar questions may be asked for approximate duplication,
or duplication along with substitution. These problems are
important because of their potential application in determining
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the sequence of duplications and point mutations that may have
resulted in a particular segment of an organism’s DNA.
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APPENDIX

As part of the proof of Lemma 14, we prove that |hr(ω)|
grows as O(1), Θ(r), or 2Θ(r) as r →∞, and that if it grows
as Θ(r), then either the number of 0s or the number of 1s in
hr(ω) is constant.

Let the number of 0s in h(0), h(1), and ω be denoted by
a, b, and |ω |0, respectively, and the number of 1s in these
same sequences be denoted as c, d, and |ω |1, respectively.

Furthermore, let H =

(
a b
c d

)
. We denote the rth power of

H as Hr. With this notation, the numbers of 0s and 1s in
hr(ω) equal the first and the second elements of

Hr

(
|ω |0
|ω |1

)
,

and the length of hr(ω) is the sum of these elements. For
instance, for Fibonacci sequences (Example 12), where h(0) =

01, h(1) = 0, and ω = 0, we have H =

(
1 1
1 0

)
. In particular,

H4

(
1
0

)
=

(
5
3

)
, which agrees with h4(ω) = 01001010.

We do a case by case analysis. Note that in all cases in
which |hr(ω)| does not vanish, we have |hr(ω)| = 2O(r).

1) b = c = 0: We have

Hr =

(
ar 0
0 dr

)
and so |hr(ω)| = ar|ω |0 + dr|ω |1, which vanishes,
grows as Θ(1), or as 2Θ(r).

2) b, c > 0:
a) a = d = 0: We have

H2 =

(
bc 0
0 bc

)
.

So |hr(ω)| = (bc)r/2(|ω |0 + |ω |1) for even r.
Noting that |hr(ω)| is non-decreasing, we find that
it grows as Θ(1) or 2Θ(r), depending on whether
bc = 1 or not.

b) a > 0 or d > 0: We show that |hr(ω)| = 2Θ(r).
Without loss of generality assume a, b, c > 0. Since
|hr(ω)| is elementwise increasing in H , it suffices

to consider the case of H =

(
1 1
1 0

)
. Then H4 =(

5 3
3 2

)
and so |hr(ω)| ≥ 5r/4|ω |0 + 2r/4|ω |1

when r is a multiple of 4. Again, since |hr(ω)| is
non-decreasing, we find that it grows as 2Θ(r).

3) b = 0, c > 0: Note that by symmetry, this case also
covers b > 0, c = 0. It is straightforward to see

Hr =

(
ar 0

c
∑r−1
i=0 a

idr−1−i dr

)
a) |ω |0 = 0: This implies that |ω |1 > 0. If d =

0, then |hr(ω)| vanishes. For d = 1 and d > 1,
we have |hr(ω)| = Θ(1) and |hr(ω)| = 2Θ(r),
respectively.

b) |ω |0 > 0:
i) a = 0: The matrix Hr becomes

Hr =

(
0 0

cdr−1 dr

)
.

The categorization is similar to Case 3a.
ii) a = 1: The matrix Hr becomes

Hr =

(
1 0

c
∑r−1
i=0 d

r−1−i dr

)
.

Now for d = 0, Hr =

(
1 0
c 0

)
, implying that

|hr(ω)| = Θ(1).

If d = 1, then Hr =

(
1 0
cr 1

)
, resulting in the

only case in which |hr(ω)| = Θ(r). Note that
as required, the number of 0s in hr(ω) = |ω |0
is constant.
If d > 1, then |hr(ω)| = 2Θ(r).

iii) a > 1: We have |hr(ω)| ≥ |ω |0ar = 2Θ(r).
This analysis completes the proof.
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[2] A. Thue, “Über unendliche zeichenreihen,” Norske Vid. Selsk. Skr. I.
Mat. Nat. Kl., Christiana, 1906.

[3] N. G. De Bruijn, “A combinatorial problem,” Proceedings of the
Section of Sciences of the Koninklijke Nederlandse Akademie van Weten-
schappen te Amsterdam, vol. 49, no. 7, pp. 758–764, 1946, available:
http://repository.tue.nl/415282b7-6c10-4b9f-9624-4437629cc621.

[4] G. Benson and L. Dong, “Reconstructing the duplication history of a
tandem repeat,” in ISMB, 1999, pp. 44–53.

[5] M. Tang, M. Waterman, and S. Yooseph, “Zinc finger gene clusters and
tandem gene duplication,” Journal of Computational Biology, vol. 9,
no. 2, pp. 429–446, 2002.

[6] O. Gascuel, D. Bertrand, and O. Elemento, Mathematics of Evolution
and Phylogeny, O. Gascuel, Ed. Oxford: Oxford University Press, 2005.

[7] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-
duplication systems,” IEEE Trans. Information Theory, vol. 62, no. 2, pp.
811–824 (conference version appeared in Proc. of IEEE Int. Symp. on
Information Theory (ISIT), Honolulu, HI, June–July 2014), Feb. 2016.

[8] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of
genomic tandem duplication,” in Proc. IEEE Int. Symp. Information
Theory, Hong Kong, China, Jun. 2015.

[9] O. Elishco, F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of
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