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Abstract

The separation dimension π(G) of a hypergraph G is the smallest natural number k
for which the vertices of G can be embedded in Rk so that any pair of disjoint edges in
G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the
cardinality of a smallest family F of total orders of V (G), such that for any two disjoint
edges of G, there exists at least one total order in F in which all the vertices in one edge
precede those in the other.

Separation dimension is a monotone parameter; adding more edges cannot reduce the
separation dimension of a hypergraph. In this article we discuss the influence of separation
dimension and edge-density of a graph on one another. On one hand, we show that the
maximum separation dimension of a k-degenerate graph on n vertices is O (k lg lgn) and
that there exists a family of 2-degenerate graphs with separation dimension Ω (lg lg n). On
the other hand, we show that graphs with bounded separation dimension cannot be very
dense. Quantitatively, we prove that n-vertex graphs with separation dimension s have
at most 3(4 lg n)s−2 · n edges. We do not believe that this bound is optimal and give a
question and a remark on the optimal bound.

Keywords: separation dimension, edge density, degeneracy.

1 Introduction
Let σ : U → [n] be a permutation of elements of an n-set U and let ≺σ denote the associated
total order. For two disjoint subsets A,B of U , we say A ≺σ B when every element of A
precedes every element of B in σ, i.e., σ(a) < σ(b), ∀(a, b) ∈ A × B. We say that σ separates
A and B if either A ≺σ B or B ≺σ A. For two subsets A,B of U , we say A �σ B when
A \B ≺σ A ∩B ≺σ B \ A.
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Definition 1.1. A family F of permutations of V (H) is pairwise suitable for a hypergraph H
if, for every two disjoint edges e, f ∈ E(H), there exists a permutation σ ∈ F which separates
e and f . The cardinality of a smallest family of permutations that is pairwise suitable for H is
the separation dimension of H and is denoted by π(H).

A family F = {σ1, . . . , σk} of permutations of a set V can be seen as an embedding of V
into Rk with the i-th coordinate of v ∈ V being σi(v). Similarly, given any embedding of V
in Rk, we can construct k permutations by projecting the points onto each of the k axes and
then reading them along each axis, breaking any ties arbitrarily. From this, it is easy to see
that π(H) is the smallest natural number k so that the vertices of H can be embedded into Rk

such that any two disjoint edges of H can be separated by a hyperplane normal to one of the
axes. This motivates us to call such an embedding a separating embedding of H and π(H) the
separation dimension of H.

The notion of separation dimension was introduced by the authors in [2]1 and further studied
in [1, 4]. Apart from its naturalness, a major motivation to study this notion of separation is
its interesting connection with a certain well studied geometric representation of graphs. The
boxicity of a graph G is the minimum natural number k for which G can be represented as an
intersection graph of axis-parallel boxes in Rk. The separation dimension of a hypergraph H is
equal to the boxicity of the intersection graph of the edge set of H, i.e., the line graph of H [4].

1.1 Related notions

Families of permutations which satisfy some type of “separation” properties have been long
studied in combinatorics. One of the early examples is the work of Ben Dushnik in 1950 where
he introduced the notion of k-suitability [6]. A family F of permutations of [n] is k-suitable if,
for every (k− 1)-set A ⊆ [n] and for every b ∈ [n] \A, there exists a σ ∈ F such that A ≺σ {b}.
Let N(n, k) denote the cardinality of a smallest family of permutations that is k-suitable for
[n]. In 1972, Spencer [15] proved that lg lg n ≤ N(n, 3) ≤ N(n, k) ≤ k2k lg lg n. Fishburn
and Trotter, in 1992, defined the dimension of a hypergraph on the vertex set [n] to be the
minimum size of a family F of permutations of [n] such that every edge of the hypergraph is
an intersection of initial segments of F [8]. It is easy to see that an edge e is an intersection
of initial segments of F if and only if for every v ∈ [n] \ e, there exists a permutation σ ∈ F
such that e ≺σ {v}. It is interesting to note that, according to this definition, N(n, k) is the
dimension of the complete (k − 1)-uniform hypergraph on n vertices. The quantity N(n, 3),
which is thus the dimension of the n-vertex complete graph, and which is also the (poset)
dimension of the inclusion poset of 1 and 2 sized subsets of [n] is a parameter that appears in
many combinatorial problems, including the one we study here. Very tight estimates which can
determine the exact value of N(n, 3) for almost all n were given by Hoşten and Morris in 1999
by finding a nice equivalence of this problem to a variant of the Dedekind problem [12].

Füredi, in 1996, studied the notion of 3-mixing family of permutations [10]. A family F of
permutations of [n] is called 3-mixing if for every 3-set {a, b, c} ⊆ [n] and a designated element
a in that set, one of the permutations in F places the element a between b and c. It is clear
that a is between b and c in a permutation σ if and only if {a, b} �σ {a, c} or {a, c} �σ {a, b}.
Such families of permutations with small sizes have found applications in showing upper bounds
for many combinatorial parameters including poset dimension [13], product dimension [9] and
boxicity [5].

1 Some of our initial results on this topic including some of the results reported here are available as a
preprint in arXiv [3].
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1.2 Our results

The separation dimension of Kn, the complete graph on n vertices is Θ (lg n) [4]. It is easy to
see that separation dimension is a monotone property, i.e., π(G′) ≤ π(G) if G′ is a subgraph
of G. So it is interesting to check whether the separation dimension of sparse graph families
can be much lower than lg n. Here, by a sparse family of graphs, we mean a family of graphs
in which the number of edges is linear in the number of vertices.

Sparsity of a graph family, as we consider it here, is equivalent to the restriction that the
graphs in the family have bounded average degree. It is easy to see that globally sparse graphs
with a small dense subgraph can have large separation dimension. For example if we consider
an n vertex graph which is a disjoint union of a complete graph on b

√
nc vertices and remaining

isolated vertices, it has at most n/2 edges, but has a separation dimension in Ω (lg n) due to
the clique. Hence sparsity is needed across all subgraphs in order to hope for a better upper
bound on separation dimension. One common way of ensuring local sparsity of a graph family
is to demand that the degeneracy of the graphs in the family be bounded.

Definition 1.2 (Degeneracy). For a non-negative integer k, a graph G is k-degenerate if the
vertices of G can be linearly ordered in such a way that every vertex is succeeded by at most k
of its neighbours. The least number k such that G is k-degenerate is called the degeneracy of
G and any such enumeration is referred to as a degeneracy order of V (G).

For example, trees and forests are 1-degenerate and planar graphs are 5-degenerate. Series-
parallel and outerplanar graphs are 2-degenerate. Graphs of treewidth t are t-degenerate. It is
easy to verify that if the maximum average degree over all subgraphs of a graph G is d, then
G is bdc-degenerate. A bdc-degeneracy order of G can be obtained by recursively picking out
a minimum degree vertex from G. It is also easy to see that any subgraph of a k-degenerate
graph has average degree at most 2k.

In this paper we establish the following upper bound on the separation dimension of k-
degenerate graphs and thereby give an affirmative answer to our question under a restricted
but necessary condition of sparsity.

Theorem 1.3. For a k-degenerate graph G on n vertices,

π(G) ≤ 2k (N(n, 3) + 3) ,

where N(n, 3) is the minimum cardinality of a family of permutations that is 3-suitable for [n].

Remark. By the bound N(n, 3) ≤ lg lg n + 1
2

lg lg lg n + 1
2

lg π + 1 + o(1) obtainable from the
equivalence established by Hoşten and Morris [12], it follows that

π(G) ≤ k (2 lg lg n+ lg lg lg n+ lg π + 8 + o(1)) .

We prove Theorem 1.3 by decomposing G into 2k star forests and using 3-suitable permu-
tations of the stars in every forest and the leaves in every such star simultaneously. The proof
is given in Section 2.2. We show that the lg lg n factor in Theorem 1.3 cannot be improved in
general by estimating the separation dimension of a fully subdivided clique.

Definition 1.4 (Fully subdivided graphs). A graph G′ is called a subdivision of a graph G if
G′ is obtained from G by replacing a subset of edges of G with independent paths between
their ends such that none of these new paths has an inner vertex on another path or in G. A
subdivision of G where every edge of G is replaced by a k-length path is denoted as G1/k. The
graph G1/2 is called fully subdivided G.
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Notice that G1/2 is the comparability graph of the incidence poset of G. It is easy to see
that G1/2 is a 2-degenerate graph for any graph G. A 2-degeneracy order can be obtained by
picking out all the vertices introduced by the subdivision first.

Theorem 1.5. Let K1/2
n denote the graph obtained by fully subdividing Kn. Then, 1

2
f(n) ≤

π(K
1/2
n ) ≤ g(n), where both f(n) and g(n) are lg lg(n− 1) +

(
1
2

+ o(1)
)

lg lg lg(n− 1).

We establish the lower bound by first using the Erdős-Szekeres Theorem to extract a large
enough set of vertices of the underlying Kn that are ordered essentially the same by every
permutation in the selected family and then showing that separating the edges incident on
those vertices can be modelled as a problem of finding a realiser for a canonical open interval
order (cf. Definition 2.6 in Section 2.4) of the same size. The details are given in Section 2.4.
The upper bound follows from the next result.

Theorem 1.6. For a graph G with chromatic number χ(G),

π(G1/2) ≤ lg lg(χ(G)− 1) +

(
1

2
+ o(1)

)
lg lg lg(χ(G)− 1).

We establish this by associating with every graph G an interval order whose dimension (cf.
Definition 2.4 in Section 2.3) is at least π(G1/2) and whose height is less than the chromatic
number of G. The result then follows from an estimate on the dimension of interval orders due
to Füredi, Hajnal, Rödl and Trotter [11]. The details are given in Section 2.3. It follows from
the previous result on π(K

1/2
n ) that the above upper bound is at most a 2-factor off.

Even though the study ofK1/2
n reveals that local sparsity alone cannot ensure boundedness of

separation dimension, many sparse graph families with further structure indeed have a bounded
separation dimension. A useful result in this direction is that π(G) ∈ O (χa(G)), where χa(G)
denotes the acyclic chromatic number of the graph G [4]. Hence any graph family with bounded
acyclic chromatic number will have bounded separation dimension too2. This includes many
sparse families of graphs like bounded degree graphs, bounded treewidth graphs, graphs with
bounded Euler genus, graphs with no Kη+1 minor and so on. It follows from results in the
literature on the acyclic chromatic number that the separation dimension of a graph G is in
O(d4/3), O(t), O(g4/7) and O(η2 lg η), where d is the maximum degree, t is the treewidth, g
is the Euler genus and η is the Hadwiger number (the size of the largest complete minor) of
G. Some of these families were studied separately in an attempt to improve the above bounds
and make them as tight as possible. For example, trees and outerplanar graphs have maximum
separation dimension 2; series-parallel and planar graphs have maximum separation dimension
3 [4]; and the maximum separation dimension of degree d-bounded graphs is at most 29 lg? dd
and at least dd/2e [1].

Interestingly and a bit frustratingly, most of these strong sparsity conditions discussed above
(maximum degree, treewidth, Euler genus, or Hadwiger number) are not necessary for a graph
family to have bounded separation dimension. Hence all these results beg for an investigation
into the extremal and structural properties of the family of graphs with bounded separation
dimension - like how dense can the family be, is its acyclic chromatic number bounded and so
on. We do not even know whether this family has bounded chromatic number.

It follows easily from the characterisation of graphs with separation dimension at most 1
in [4] that they are 2-degenerate. It is not difficult to see that if a graph G has separation
dimension at most 2, then it is planar. Indeed, the natural embedding of G into R2 determined
by the family of two permutations which is pairwise-suitable for G has the property that two

2Notice that bipartite graphs, K1/2
n as we see here for instance, can have unbounded separation dimension

and hence separation dimension cannot be bounded above by a function of chromatic number alone.
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disjoint edges do not cross. We can modify this representation, for instance, using a set of
rationally independent real numbers as the ordinates, to ensure that two edges of G which
share a common vertex intersect only at their common end-point. This gives a planar drawing
of G. Thus graphs with separation dimension at most 2 are planar and hence 5-degenerate.
This prompts us to ask the following question.

Open problem 1.7. Does there exist a function f : N → R such that every graph with
separation dimension s is f(s)-degenerate?

We do not know the answer to the above problem yet. We can show that graphs with
bounded separation dimension cannot be very dense. In Section 2.5, we prove

Theorem 1.8. Every n-vertex graph with separation dimension s has at most 3(4 lg n)s−2n
edges.

In Section 2.5, we also prove

Theorem 1.9. For the d-dimensional hypercube Qd,

π(K
1/2
d ) ≤ π(Qd) ≤ N(d, 3).

Since the degeneracy of Qd is d and N(d, 3) is lg lg d+ (1/2 + o(1)) lg lg lg d, we can see that
if the answer to Open problem 1.7 if affirmative, then f is at least doubly exponential.

2 Proofs

2.1 Notational note

All graphs considered in this article are finite, simple and undirected. The vertex set and edge
set of a graph G are denoted respectively by V (G) and E(G). For any finite positive integer
n, we shall use [n] to denote the set {1, . . . , n}. We use the one-line notation for permutations,
i.e., a permutation σ : [n]→ [n] is denoted by (σ(1), . . . , σ(n)). The logarithm of any positive
real number x to the base 2 is denoted by lg(x), while lg?(x) denotes the iterated logarithm
of x to the base 2, i.e. the number of times the logarithm function (to the base 2) should be
applied so that the result is less than or equal to 1.

2.2 Upper bound: k-degenerate graphs

For any non-negative integer n, a star Sn is a rooted tree on n+ 1 nodes with one root and n
leaves connected to the root. A star forest is a disjoint union of stars.

Definition 2.1. The arboricity of a graph G, denoted by A(G), is the minimum number of
spanning forests whose union covers all the edges of G. The star arboricity of a graph G,
denoted by S(G), is the minimum number of spanning star forests whose union covers all the
edges of G.

Clearly, S(G) ≥ A(G) from definition. Furthermore, since any tree can be covered by two
star forests, S(G) ≤ 2A(G).

For the sake of completeness, we give a proof for the following already-known lemma on
star arboricity of k-degenerate graphs (Definition 1.2).

Lemma 2.2. For a k-degenerate graph G, S(G) ≤ 2k.
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Proof. By following the degeneracy order, the edges of G can be oriented acyclically such that
each vertex has an out-degree at most k. Now the edges of G can be partitioned into k spanning
forests by choosing a different forest for each outgoing edge from a vertex. Thus, A(G) ≤ k
and S(G) ≤ 2k.

With this we now give a proof of our first result.

Proof of Theorem 1.3.

Statement. For a k-degenerate graph G on n vertices,

π(G) ≤ 2k (N(n, 3) + 3) ,

where N(n, 3) is the minimum cardinality of a family of permutations that is 3-suitable for [n].

Proof. Let r = N(n, 3) and let T = {τ 1, . . . , τ r} be a family of permutations that is 3-suitable
for V (G). Recall that a family T of permutations of V is called 3-suitable if for every three
distinct vertices a, b, c ∈ V (G) there exists a permutation τ ∈ T such that {a, b} ≺τ {c}.

By Lemma 2.2, we can partition the edges of G into a collection of 2k spanning star forests
{C1, . . . , C2k}. For each star forest Ci, we construct a family Fi = {σ1

i , . . . , σ
r
i , αi, βi, γi} of

permutations of V (G) as follows. In σji , consider each star in Ci as a block and arrange the
stars according to the order of their roots in τ j and then within each star the leaves are arranged
according to their order in τ j followed by the root. The permutation αi is obtained from σ1

i by
reversing the order of leaves within each star without changing the order among the stars. The
permutation βi is obtained from σ1

i by reversing the order among the stars without changing
the order of vertices within a star. Finally, the permutation γi is obtained from σ1

i by reversing
both the order of leaves within a star and the order among the stars. Notice that in all the
permutations in Fi, the vertices of each star in Ci appear consecutively with the root being the
rightmost.

Claim 1. F =
⋃2k
i=1Fi is a pairwise-suitable family of permutations for G.

Let {a, b}, {c, d} be two disjoint edges in G. Let Ci be the star forest which contains the
edge {a, b}. We will show that at least one of the permutations in Fi will separate these two
edges. Since the edge {a, b} is present in Ci, the vertices a and b belong to the same star, say
Sa, of Ci. Without loss of generality, we can assume that a is the root of Sa. Let x and y be
the roots of the stars Sx and Sy in Ci which contain the vertices c and d, respectively. It is not
necessary that the vertices a, x and y are distinct.

If neither c nor d is in Sa then {a, b} and {c, d} are separated in σji where τ j is a permutation
in which a succeeds both x and y. If both c and d are in Sa, that is, if x = y = a, then the two
edges are separated in σji where τ j is a permutation in which b succeeds c and d. If exactly one
of c or d, say c, is in Sa, that is, y 6= x = a, then {a, b} is separated from {c, d} in one of σ1

i ,
αi, βi or γi.

This proves Claim 1 and, as |F| ≤ 2k(r + 3), the theorem.

2.3 Upper bound: Fully subdivided graphs

In this section we establish an upper bound for π(G1/2) in terms of χ(G), the chromatic number
of G. With the definitions recalled below, we do this by constructing an interval order based on
G of height χ(G)− 1 and then showing that its poset dimension is an upper bound on π(G1/2).
We need some more definitions and notation before proceeding.
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Definition 2.3 (Poset dimension). Let (P ,C) be a poset (partially ordered set). A linear
extension L of P is a total order which satisfies (x C y ∈ P) =⇒ (x C y ∈ L). A realiser of
P is a set of linear extensions of P , say R, which satisfy the following condition: for any two
distinct elements x and y, x C y ∈ P if and only if x C y ∈ L, ∀L ∈ R. The poset dimension
of P , denoted by dim(P), is the minimum integer k such that there exists a realiser of P of
cardinality k.

Definition 2.4 (Interval dimension). An open interval on the real line, denoted as (a, b), where
a, b ∈ R and a < b, is the set {x ∈ R : a < x < b}. For a collection C of open intervals on the
real line the partial order (C,C) defined by the relation (a, b)C (c, d) if b ≤ c in R is called the
interval order corresponding to C. The poset dimension of this interval order (C,C) is called
the interval dimension of C and is denoted by dim(C).

The major part of our proof of Theorem 1.6 is the following lemma.

Lemma 2.5. For any graph G and a permutation σ of V (G), let CG,σ denote the collection of
open intervals (σ(u), σ(v)), {u, v} ∈ E(G), u ≺σ v. Then,

π(G1/2) ≤ min
σ

dim(CG,σ) + 2,

where the minimisation is done over all possible permutations σ of V (G).

Proof. Let σ be any permutation of V (G). We relabel the vertices of G so that v1 ≺σ · · · ≺σ vn,
where n = |V (G)|. For every edge e = {vi, vj} ∈ E(G), i < j, the new vertex in G1/2 introduced
by subdividing e is denoted as uij. For a new vertex uij, its two neighbours, vi and vj will be
respectively called the left neighbour and right neighbour of uij. We call an edge of the form
{vi, uij} as a left edge and one of the form {uij, vj} as a right edge.

Let R = {L1, . . . , Ld} be a realiser for (CG,σ,C) such that d = dim(CG,σ). For each total
order Lp, p ∈ [d], we construct a permutation σp of V (G1/2) as follows. First, the subdivided
vertices are ordered from left to right as the corresponding intervals are ordered in Lp, i.e.,
uij ≺σp ukl ⇐⇒ (i, j) ≺Lp (k, l). Next, the original vertices are introduced into the order one
by one as follows. The vertex v1 is placed as the leftmost vertex. Once all the vertices vi, i < j,
are placed, we place vj at the leftmost possible position so that vj−1 ≺σp vj and uij ≺σp vj,∀i <
j. This ensures that vj ≺σp ujk,∀k > j because uij′ ≺σp ujk,∀j′ ≤ j (Since (i, j′) C (j, k)).
Now we construct two more permutations σd+1 and σd+2 as follows. In both of them, first
the original vertices are arranged in the order v1, . . . , vn. In σd+1, the subdivided vertices are
placed (in any order) immediately after its left neighbour, i.e., vi ≺σd+1

uij ≺σd+1
vi+1 for all

{i, j} ∈ E(G). In σd+2, the subdivided vertices are placed (in any order) immediately before
its right neighbour, i.e., vj−1 ≺σd+2

uij ≺σd+2
vj for all {i, j} ∈ E(G). Notice that in all the

permutations so far constructed, the left (right) neighbour of every subdivided vertex is placed
to its left (right).

We complete the proof by showing that F = {σ1, . . . , σd+2} is pairwise suitable for G1/2 by
analysing the following cases. Any two disjoint left edges are separated in σd+1 and any two
disjoint right edges are separated in σd+2. If (i, j)C(k, l), then every pair of disjoint edges among
those incident on uij or ukl are separated in every permutation in F . Hence the only non-trivial
case is when we have a left edge {vi, uij} and a right edge {ukl, vl} such that (i, j) ∩ (k, l) 6= ∅.
Since (i, j) and (k, l) are incomparable in (CG,σ,C), there exists one permutation σp, p ∈ [d]
such that uij ≺σp ukl (and another permutation σq, q ∈ [d] such that ukl ≺σq uij). Since vi is
before uij and vl is after ukl in every permutation, σp separates {vi, uij} from {ukl, vl}.

Proof of Theorem 1.6

The height of a partial order is the size of a largest chain in it. It was shown by Füredi,
Hajnal, Rödl and Trotter [11] that the maximum dimension of an interval order of height h
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is lg lg h + (1
2

+ o(1)) lg lg lg h (see also Theorem 9.6 in [16]). A proof of Theorem 1.6 is now
immediate.

Statement. For a graph G with chromatic number χ(G),

π(G1/2) ≤ lg lg(χ(G)− 1) +

(
1

2
+ o(1)

)
lg lg lg(χ(G)− 1).

Proof. Let V1, . . . , Vχ(G) be the colour classes of an optimal proper colouring of G. Let σ be
a permutation of V (G) such that V1 ≺σ · · · ≺σ Vχ(G). Now it is easy to see that the longest
chain in (CG,σ,C) is of length at most χ(G) − 1. Hence the statement follows from the result
of Füredi et al. [11] and Lemma 2.5 above.

2.4 Lower bound: Fully subdivided clique

It easily follows from Theorem 1.6 that π(K
1/2
n ) ∈ O(lg lg n). In this section we prove that

π(K
1/2
n ) ∈ Ω(lg lg n). We give a brief outline of the proof below. (Definitions of the new terms

are given before the formal proof.)
First, we use the Erdős-Szekeres Theorem [7] to argue that for any family F of permutations

of V (K
1/2
n ), with |F| < 1

2
lg lg n, a subset V ′ of original vertices of K1/2

n , with cardinality
n′ = |V ′| ≈ 2

√
lgn, is ordered essentially in the same way by every permutation in F . Since

the ordering of the vertices in V ′ are fixed, the only way for F to realise pairwise suitability
among the edges in the subdivided paths between vertices in V ′ is to find suitable positions for
the new vertices (those introduced by subdivisions) inside the fixed order of V ′. We then show
that this amounts to constructing a realiser for the canonical open interval order (Cn′ ,C) and
hence |F|, in this case, is bounded below by the poset dimension of (Cn′ ,C). It follows quite
easily from existing literature that the poset dimension of this canonical open interval order is
at least 1

2
lg lg n for large n.

Definition 2.6 (Canonical open interval order). For an integer n ≥ 3, let Cn = {(a, b) : a, b ∈
[n], a < b} be the collection of all the

(
n
2

)
open intervals which have their endpoints in [n].

Then (Cn,C), the interval order corresponding to the collection Cn, is called the canonical
open interval order.

Usually, in literature, the canonical interval order is defined over non-degenerate closed
intervals. For a positive integer n, let In = {[a, b] : a, b ∈ [n], a < b} be the collection of all
the

(
n
2

)
non-degenerate closed intervals which have their endpoints in [n]. The poset (In,C′),

where [i, j] C′ [k, l] ⇐⇒ j < k is called the canonical (closed) interval order. It is easy to see,
by examining the map [i, j] 7→ (i, j + 1), that (In−1,C′) is isomorphic to the poset obtained
from (Cn,C) by removing all the unit-length intervals. Therefore dim(Cn) ≥ dim(In−1). It
was established by Füredi, Hajnal, Rödl and Trotter [11] that the dimension of (In,C′) is
bounded below by the chromatic number of the double shift graph G(n, 3) which in turn is
equal to the smallest number t for which there are at least n anti-chains in the lattice of
subsets of [t] - the inverse of the classic Dedekind problem. Due to the work of Kleitman and
Markovsky on the Dedekind problem [14], we know that the chromatic number of the double
shift graph G(n, 3) is at least lg lg n + 1

2
lg lg lg n + 1

2
lg π

2
+ o(1). Hence we can conclude that

dim(Cn) ≥ lg lg(n− 1) + 1
2

lg lg lg(n− 1) + 1
2

lg π
2

+ o(1).

Proof of Theorem 1.5

Statement. Let K1/2
n denote the graph obtained by fully subdividing Kn. Then, 1

2
f(n) ≤

π(K
1/2
n ) ≤ g(n), where both f(n) and g(n) are lg lg(n− 1) +

(
1
2

+ o(1)
)

lg lg lg(n− 1).
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Proof. The upper bound follows from Theorem 1.6. So it suffices to show the lower bound.
Let m = blg lg(n− 1)c and hence 22m ≤ n − 1 < 22m+1 . Let v1, . . . , vn denote the original

vertices (the vertices of degree n − 1) in K
1/2
n and let uij, i, j ∈ [n], i < j, denote the new

vertex of degree 2 introduced when the edge {i, j} of Kn was subdivided. Let F be a family
of permutations that is pairwise suitable for K1/2

n such that |F| = r = π(K
1/2
n ). By the Erdős-

Szekeres Theorem [7], we know that if τ and τ ′ are two permutations of [n2 + 1], then there
exists some X ⊆ [n2 + 1] with |X| = n+ 1 such that the permutations τ and τ ′ when restricted
to X are the same or reverse of each other. Then by repeated application of the Erdős-Szekeres
Theorem, we can see that there exists a set X of p = 22m−r+1

+ 1 original vertices of K1/2
n such

that, for each σ, σ′ ∈ F , the permutation of X obtained by restricting σ to X is the same
or reverse of the permutation obtained by restricting σ′ to X. Without loss of generality, let
X = {v1, . . . , vp} such that, for each σ ∈ F , either v1 ≺σ · · · ≺σ vp or vp ≺σ · · · ≺σ v1.

Next we “massage” F to give it two nice properties without changing its cardinality or
sacrificing its pairwise suitability for K1/2

n . Note that if a family of permutations is pairwise
suitable for a graph then the family retains this property even if any of the permutations in
the family is reversed. Hence we can assume the following property without loss of generality.

Property 1. v1 ≺σ · · · ≺σ vp,∀σ ∈ F .

Consider any i, j ∈ [p], i < j. For each σ ∈ F , it is safe to assume that vi ≺σ uij ≺σ vj.
Otherwise, we can modify the permutation σ such that F is still a pairwise suitable family of
permutations for K1/2

n . To demonstrate this, suppose vi ≺σ vj ≺σ uij. Then, we modify σ such
that uij is the immediate predecessor of vj. It is easy to verify that, for each pair of disjoint
edges e, f ∈ E(K

1/2
n ), if e ≺σ f or f ≺σ e then the same holds in the modified σ too. Similarly,

if uij ≺σ vi ≺σ vj then we modify σ such that uij is the immediate successor of vi. Hence we
can assume the next property also without loss in generality.

Property 2. vi ≺σ uij ≺σ vj, ∀i, j ∈ [p], i < j, ∀σ ∈ F .

These two properties ensure that for any two open intervals (i, j) and (k, l) in Cp if (i, j) C
(k, l) then uij ≺σ ukl,∀σ ∈ F . In the other case, i.e., when (i, j) ∩ (k, l) 6= ∅, we make the
following claim.

Claim 1. Let i, j, k, l ∈ [p] such that (i, j) ∩ (k, l) 6= ∅. Then there exist σa, σb ∈ F such that
uij ≺σa ukl and ukl ≺σb uij.

Since (i, j)∩(k, l) 6= ∅, we have k < j and i < l. Hence by Property 1, ∀σ ∈ F , vk ≺σ vj and
vi ≺σ vl. Now we prove the claim by contradiction. If uij ≺σ ukl for every σ ∈ F then, together
with the fact that vk ≺σ vj,∀σ ∈ F , we see that no σ ∈ F can separate the edges {vj, uij} and
{vk, ukl}. But this contradicts the fact that F is a pairwise suitable family of permutations for
K

1/2
n . Similarly if ukl ≺σ uij for every σ ∈ F then, together with the fact that vi ≺σ vl,∀σ ∈ F ,

we see that no σ ∈ F can separate {vi, uij} and {vl, ukl}. But this too contradicts the pairwise
suitability of F . Thus we prove Claim 1.

With these two properties and the claim above, we are ready to prove the following claim.

Claim 2. |F| ≥ dim(Cp).

For every σ ∈ F , construct a total order Lσ of Cp such that (i, j)C (k, l) ∈ Lσ ⇐⇒ uij ≺σ
ukl. By Property 1 and Property 2, Lσ is a linear extension of (Cp,C). Further, Claim 1 ensures
that R = {Lσ}σ∈F is a realiser of (Cp,C). Hence |F| = |R| ≥ dim(Cp).

Before using the result from Füredi et al. [11] to bound the dimension of the above interval
order from below, we assume that r = |F| < 2(m + 1)/3, which is safe to do since we have
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nothing to prove otherwise. This ensures that n → ∞ if and only if p → ∞ and thus o(1) is
the class of functions which tend to 0 as either n or p tends to infinity.

From the discussion before the proof, we know that we can bound dim(Cp) from below by
lg lg(p− 1) + 1

2
lg lg lg(p− 1) + 1

2
lg π

2
+ o(1) which in our case is (m+ 1− r) + 1

2
lg(m+ 1− r) +

1
2

lg π
2

+o(1) since p = 22m+1−r . Hence by Claim 2, r ≥ (m+1−r)+ 1
2

lg(m+1−r)+ 1
2

lg π
2

+o(1).
Using the fact that m+ 1 > lg lg(n− 1), we can conclude that r ≥ 1

2
lg lg(n− 1) + 1

4
lg lg lg(n−

1) + 1
4

lg π
4

+ o(1). The details of computation are left to the reader.

2.5 Sparsity in graphs with bounded separation dimension

In this section, first we show that graphs with bounded separation dimension cannot be
very dense. More precisely we show that an n-vertex graph with separation dimension s is
O((4 lg n)s−2)-degenerate. Next we show that the hypercubes form a sequence of graphs in
which separation dimension is a very slowly growing function of the degeneracy.

Proof of Theorem 1.8.

Statement. Every n-vertex graph with separation dimension s, s ≥ 2, has at most 3(4 lg n)s−2n
edges.

Proof. Let s be the smallest integer greater than or equal to 2 such that there exists an n-vertex
graph G with separation dimension s and m > 3(4 lg n)s−2n edges. We can assume that s > 2
since graphs with separation dimension 2 are planar.

Let {σ1, . . . , σs} be a separating family of permutations for G. After relabelling the vertices
if necessary, we can assume that σ1 = (v1, . . . , vn). We define the length l(vivj) of an edge vivj
in σ1 as |i − j| + 1. Setting l = blg nc, for each k ∈ [l], let Bk be the collection of edges vivj
in G such that blg (l(vivj))c = k. Thus B1, . . . , Bl is a partition of E(G). Hence there exists a
k ∈ [l] such that |Bk| ≥ m/ lg n.

If we choose the set of
⌊
n/2k

⌋
vertices H = {vi2k : 1 ≤ i ≤ n/2k}, every edge vivj in Bk

is “hit” by a vertex in H, that is, ∃vh ∈ H such that vi �σ1 vh �σ1 vj. Hence there exists a
vertex vh ∈ H such that at least 2k|Bk|/n edges in Bk are hit by vh. Consider the subgraph
G′ spanned by the edges in Bk that are hit by vh. Since the length of an edge in Bk is less
than 2k+1, the number of vertices n′ in G′ is at most 2k+2. One can verify that the number of
edges m′ in G′ which is at least 2k|Bk|/n is more than 3(4 lg n)s−3n′. Since every pair of disjoint
edges in G′ is separated in {σ2, . . . , σs}, the separation dimension of G′ is at most s− 1. This
contradicts the minimality in the choice of s.

The final result in the paper is an estimate on the separation dimension of hypercubes. For
a positive integer d, the d-dimensional hypercube Qd is the graph with 2d vertices where each
vertex v corresponds to a distinct d-bit binary string g(v) and two vertices u, v ∈ V (Qd) are
adjacent if and only if g(u) differs from g(v) at exactly one bit position. Let gi(v) denote the
i-th bit from the right in g(v), where i ∈ [d]. The number of ones in g(v) is called the hamming
weight of v and is denoted by h(v).

Observation 2.7. Let a, b, c, d be four distinct vertices in the hypercube Qd with {a, b}, {c, d} ∈
E(Qd) such that g(a) and g(b) differ only in the i-th bit position from the right and g(c) and
g(d) differ only in the j-th position from the right. Then there exists some k ∈ [d] \ {i, j} such
that gk(a) = gk(b) 6= gk(c) = gk(d).

Proof. Assume for contradiction that, for every k ∈ [d] \ {i, j}, gk(a) = gk(b) = gk(c) = gk(d).
If i = j then there can be only 2 distinct binary strings among {g(a), g(b), g(c), g(d)}. If i 6= j,
then there can only be 3 distinct binary strings among {g(a), g(b), g(c), g(d)} since the i-th and
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j-th bit positions from the right cannot simultaneously be 1− gi(c) and 1− gj(a) respectively
for any of the 4 strings in the set. This contradicts the distinctness of a, b, c, and d.

Proof of Theorem 1.9.

Statement. For the d-dimensional hypercube Qd,

π(K
1/2
d ) ≤ π(Qd) ≤ N(d, 3).

Proof. The subgraph H of Qd induced on the vertices with hamming weight 1 and 2 is isomor-
phic to K1/2

d . Hence the lower bound.
Next we show the upper bound by using 3-suitable permutations of the bit positions. Let

E = {σ1, . . . , σr}, r = N(d, 3), be a smallest 3-suitable family of permutations of [d]. From
E , we construct a family of permutations F = {τ1, . . . , τr} that is pairwise suitable for Qd.
The permutation τj is constructed by first permuting the bit positions of all the binary strings
according to σj and then reading out the vertices in the right-to-left lexicographic order of the
bit strings.

In order to show that F is a pairwise suitable family of permutations for Qd, consider two
disjoint edges {a, b}, {c, d} in Qd such that g(a) and g(b) differ only in the i-th position from the
right and g(c) and g(d) differ only in the j-th position from the right. Then, from Observation
2.7, we know that there exists a k ∈ [d] \ {i, j} such that gk(a) = gk(b) 6= gk(c) = gk(d).
Since E is a 3-suitable family of permutations for [d], there exists a permutation σs ∈ E such
that {i, j} ≺σs k. Hence, in the right-to-left lexicographic order τs, either {a, b} ≺τs {c, d} or
{c, d} ≺τs {a, b}.
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