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Abstract

We present an exact algorithm that decides, for every fixed r ≥ 2 in time

O(m) + 2O(k2) whether a given multiset of m clauses of size r admits a truth
assignment that satisfies at least ((2r − 1)m + k)/2r clauses. Thus Max-r-
Sat is fixed-parameter tractable when parameterized by the number of satisfied
clauses above the tight lower bound (1 − 2−r)m. This solves an open problem
of Mahajan, Raman and Sikdar (J. Comput. System Sci., 75, 2009).

Our algorithm is based on a polynomial-time data reduction procedure that
reduces a problem instance to an equivalent algebraically represented problem
with O(k2) variables. This is done by representing the instance as an appropri-
ate polynomial, and by applying a probabilistic argument combined with some
simple tools from Harmonic analysis to show that if the polynomial cannot be
reduced to one of size O(k2), then there is a truth assignment satisfying the
required number of clauses.

We introduce a new notion of bikernelization from a parameterized problem
to another one and apply it to prove that the above-mentioned parameterized
Max-r-Sat admits a polynomial-size kernel.

Combining another probabilistic argument with tools from graph matching
theory and signed graphs, we show that if an instance of Max-2-Sat with m
clauses has at least 3k variables after application of certain polynomial time
reduction rules to it, then there is a truth assignment that satisfies at least
(3m + k)/4 clauses.

We also outline how the fixed-parameter tractability and polynomial-size
kernel results on Max-r-Sat can be extended to more general families of Boolean
Constraint Satisfaction Problems.

∗A preliminary version of this paper is to appear in the proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA 2010).
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1 Introduction

The Maximum r-Satisfiability Problem (Max-r-Sat) is a classic optimization prob-
lem with a wide range of real-world applications. The task is to find a truth as-
signment to a multiset of clauses, each with exactly r literals, that satisfies as many
clauses as possible, or in the decision version of the problem, to satisfy at least t
clauses where t is given with the input. Even Max-2-Sat is NP-hard [10] and hard
to approximate [15], in strong contrast with 2-Sat which is solvable in linear time [3].

It is always possible to satisfy a 1−2−r fraction of a given multiset of clauses with
exactly r literals each; a truth assignment that meets this lower bound can be found
in polynomial time by Johnson’s algorithm [19]. This lower bound is tight in the sense
that it is optimal for an infinite sequence of instances. In this paper we show that
for every fixed r we can decide in time O(m) + 2O(k2) whether a given multiset of m
clauses admits a truth assignment that satisfies at least ((2r − 1)m + k)/2r clauses.
Thus, Max-r-Sat is fixed-parameter tractable when parameterized by the number
of satisfied clauses above the tight lower bound; this answers a question posed by
Mahajan, Raman and Sikdar [21].

Our algorithm described in Section 4 is based on a polynomial-time data reduction
procedure that reduces a problem instance to an equivalent algebraically represented
problem with O(k2) variables. This is done by representing the instance as an ap-
propriate polynomial, and by applying a probabilistic argument combined with some
simple tools from Harmonic analysis to show that if the polynomial cannot be re-
duced to one of size O(k2), then there is a truth assignment satisfying the required
number of clauses. The basic approach is based on the ideas of [1], and a similar one
which, however, does not apply any algebraic reductions, was used in [11, 12] to show
the existence of quadratic kernels for other problems parameterized above tight lower
bounds.

We also show that the above-mentioned parameterized Max-r-Sat admits a
polynomial-size kernel. This can be deduced from our fixed-parameter result and
a general lemma proved in Section 3, and can also be proved by a more efficient,
direct argument. The lemma, which is interesting in its own right, links a new con-
cept that we call bikernelization with the well-known concept of kernelization. We
believe that bikernelization, in general, and the lemma, in particular, will have further
applications.

In Section 5, combining another probabilistic argument with tools from graph
matching theory and signed graphs, we show that if an instance I of Max-2-Sat
on m clauses has at least 3k variables after application of certain polynomial time
reduction rules to it, then there is a truth assignment for I that satisfies at least
(3m+ k)/4 clauses. Thus, Max-2-Sat admits a problem kernel with at most 3k − 1
variables.

Section 6 is devoted to discussions. In particular, we outline how the fixed-
parameter tractability and polynomial-size kernel results on Max-r-Sat can be ex-
tended to more general families of Boolean Constraint Satisfaction Problems.

Related Work Parameterizations above a guaranteed value were first considered by
Mahajan and Raman [20] for the problems Max-Sat and Max-Cut. They devised
an algorithm for Max-Sat with running time O∗(1.618k+

∑m
i=1 |Ci|) that finds, for a
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multiset {C1, . . . , Cm} of m clauses, a truth assignment satisfying at least dm/2e+ k
clauses, or decides that no such truth assignment exists (|Ci| denotes the number of
literals in Ci). In a recent paper [21] Mahajan, Raman and Sikdar argued that a
natural (and challenging) parameter for a maximization problem is the number of
clauses satisfied above a tight lower bound, which is (1− 2−r)m for Max-Sat if each
clause contains exactly r different variables. Only a few non-trivial results are known
for problems parameterized above a tight lower bound [12, 13, 14, 17, 20].

Mahajan et al. [21] state several problems parameterized above a tight lower bound
whose parameterized complexity is open. One of the problems is the (exact) Max-
r-Sat problem (an instance consists of m clauses, each containing exactly r different
literals) parameterized by the number of satisfied clauses above the tight lower bound
(1− 2−r)m. Our main result answers this question.

2 Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x or
its negation x. A clause is a finite set of literals not containing a complementary
pair x and x. A clause is of size r if it contains exactly r literals. For simplicity of
presentation, we will denote a clause by a sequence of its literals. For example, the
clause {x, y} will be denoted xy or equivalently yx. A CNF formula F is a finite
multiset of clauses (a clause may appear in the multiset several times). A variable
x occurs in a clause if the clause contains x or x, and x occurs in a CNF formula F
if it occurs in some clause of F . Let var(C) and var(F ) denote the sets of variables
occurring in C and F , respectively. A CNF formula is an r-CNF formula if |C| = r
for all C ∈ F . Thus we require that each clause of a r-CNF formula contains exactly r
different literals (some authors use for that the term exact r-CNF). A truth assignment
is a mapping τ : V → {−1, 1} defined on some set V of variables. We write 2V to
denote the set of all truth assignments on V . A truth assignment τ satisfies a clause
C if there is some variable x ∈ C with τ(x) = 1 or a negated variable x ∈ C with
τ(x) = −1. We write sat(τ, F ) for the number of clauses of F that are satisfied by τ ,
and we write

sat(F ) = max
τ∈2var(F )

sat(τ, F ).

A parameterized problem is a subset L ⊆ Σ∗×N over a finite alphabet Σ. L is fixed-
parameter tractable if the membership of an instance (x, k) in Σ∗×N can be decided in
time |x|O(1) ·f(k) where f is a computable function of the parameter [8, 9, 22]. Given
a parameterized problem L, a kernelization of L is a polynomial-time algorithm that
maps an instance (x, k) to an instance (x′, k′) (the kernel) such that (i) (x, k) ∈ L
if and only if (x′, k′) ∈ L, (ii) k′ ≤ f(k), and (iii) |x′| ≤ g(k) for some functions f
and g. The function g(k) is called the size of the kernel. A parameterized problem is
fixed-parameter tractable if and only if it is decidable and admits a kernelization [9].

We shall consider the following parameterized version of Max-r-Sat.
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Max-r-Sat above Tight Lower Bound (or Max-r-Sattlb for short)
Instance: A pair (F, k) where F is a multiset of m clauses of size r and
k is a nonnegative integer.
Parameter: The integer k.
Question: Is sat(F ) ≥ ((2r − 1)m+ k)/2r?

We note that Mahajan et al. [21] use a slightly different formulation of the problem,
asking for an assignment that satisfies at least (1−2−r)m+k clauses; since r is fixed,
this change does not affect the complexity of the problem.

We will also refer to the following special case of another problem introduced by
Mahajan et al. [21].

Max r-Lin2 above Tight Lower Bound (or Max-r-Lin2tlb for
short)
Instance: A system of m linear equations e1, . . . , em in n variables over
F2, where no equation has more than r variables, and each equation ej
has a positive integral weight wj , and a nonnegative integer k.
Parameter: The integer k.
Question: Is there an assignment of values to the n variables such that
the total weight of the satisfied equations is at least (W + k)/2, where
W = w1 + · · ·+ wm ?

Note that trivially W/2 is indeed a tight lower bound for the above problem, as
the expected number of satisfied equations in a random assignment is W/2, and if
the equations come in identical pairs with contradicting free terms, no assignment
satisfies more equations. It was proved in [12] that Max-r-Lin2tlb admits a kernel
with O(k2) equations and variables.

3 Bikernelization

In this section we introduce a new notion of a bikernelization and study its basic
properties. A bikernelization from L to L′ is of interest especially when L′ is a well-
studied problem.

Given a pair L,L′ of parameterized problems, a bikernelization from L to L′ is a
polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′) (the
bikernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ f(k), and
(iii) |x′| ≤ g(k) for some functions f and g. The function g(k) is called the size of
the bikernel. Observe that a kernelization of a parameterized problem L is simply a
bikernelization from L to itself, i.e., a bikerenelization generalizes a kernelization.

Recall that a parameterized problem is fixed-parameter tractable if and only if it
is decidable and admits a kernelization. This result can be extended as follows: A
parameterized problem L is fixed-parameter tractable if and only if it is decidable and
admits a bikernelization from itself to a parameterized problem L′. Indeed, if L is
fixed-parameter tractable, then L is decidable and admits a bikernelization to itself.
If L is decidable and admits a bikernelization from itself to a parameterized problem
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L′, then (x, k) can be decided by first mapping it to (x′, k′) in polynomial time and
then deciding (x′, k′) in time depending only on k′, and thus only on k.

We are especially interested in cases when kernels are of polynomial size. The
next lemma is similar to Theorem 3 in [5].

Lemma 1. Let L,L′ be a pair of parameterized problems such that L′ is in NP and
L is NP-complete. If there is a bikernelization from L to L′ producing a bikernel of
polynomial size, then L has a polynomial-size kernel.

Proof. Consider a bikernelization from L to L′ that maps an instance (x, k) ∈ L to an
instance (x′, k′) ∈ L′ with k′ ≤ f(k). Since L′ is in NP and L is NP-complete, there
exists a polynomial time reduction from L′ to L. Thus, we can find in polynomial
time an instance (x′′, k′′) of L which is decision-equivalent with (x′, k′), and in turn
with (x, k). Observe that |x′′| ≤ |x′|O(1) ≤ kO(1) and k′′ ≤ (k′)O(1) + (|x′|)O(1) ≤
f(k)O(1) + kO(1). Thus, (x′′, k′′) is a kernel of L of polynomial size.

4 MAX-r-SAT

4.1 An Algebraic Representation

Let F be an r-CNF formula with clauses C1, . . . , Cm in the variables x1, x2, . . . , xn.
For F , consider

X =
∑
C∈F

[1−
∏

xi∈var(C)

(1 + εixi)],

where εi ∈ {−1, 1} and εi = −1 if and only if xi is in C.

Lemma 2. For a truth assignment τ , we have X = 2r(sat(τ, F )− (1− 2−r)m).

Proof. Observe that
∏
xi∈var(C)(1 + εixi) equals 2r if C is falsified and 0, otherwise.

Thus, X = m− 2r(m− sat(τ, F )) implying the claimed formula.

After algebraic simplification X = X(x1, x2, . . . , xn) can be written as X =∑
I∈S XI , where XI = cI

∏
i∈I xi, each cI is a nonzero integer and S is a family

of nonempty subsets of {1, . . . , n} each with at most r elements.
The question we address is that of deciding whether or not there are values xi ∈

{−1, 1} so thatX = X(x1, x2, . . . , xn) ≥ k. The idea is to use a probabilistic argument
and show that if the above polynomial has many nonzero coefficients, that is, if |S|
is large, this is necessarily the case, whereas if it is small, the question can be solved
by checking all possibilities of the relevant variables.

4.2 The Properties of X

In what follows, we assume that each variable xi takes its values randomly and in-
dependently in {−1, 1} and thus X is a random variable. Our approach is similar to
the one in [1]. For completeness, we reproduce part of the argument (modifying it a
bit and slightly improving the constant for the case considered here). We need the
simple lemma.
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Lemma 3 (see, e.g., [1], Lemma 3.1). For every real random variable X with finite
and positive forth moment,

E(|X|) ≥ E(X2)3/2

E(X4)1/2
.

The above lemma implies the following (see [1], Lemma 3.2, part (ii) for a similar
result).

Corollary 1. Let X be a real random variable and suppose that its first, second and
forth moments satisfy E(X) = 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4. Then

P(X ≥ σ

2
√
b
) > 0.

Proof. By Lemma 3, E(|X|) ≥ σ√
b
. Since E(X) = 0 it follows that

P(X > 0)E(X|X > 0) ≥ σ

2
√
b
. (1)

Therefore, X must be at least σ/(2
√
b) with positive probability.

We also use the following lemma of Bourgain [7].

Lemma 4 ([7]). Let f = f(x1, . . . , xn) be a polynomial of degree r in n variables
x1, . . . , xn with domain {−1, 1}. Define a random variable X by choosing a vector
(ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn). Then,
E(X4) ≤ 26r(E(X2))2.

Returning to the random variable X=X(x1, x2, . . . , xn) defined in the previous sub-
section, we prove the following.

Lemma 5. Let X =
∑
I∈S XI , where XI = cI

∏
i∈I xi is as in the previous subsec-

tion, and assume it is not identically zero. Then E(X) = 0, E(X2) =
∑
I∈S c

2
I ≥

|S| > 0 and E(X4) ≤ 26rE(X2)2.

Proof. Since the xi’s are mutually independent, E(X) = 0. Note that for I, J ∈ S,
I 6= J , we have E(XIXJ) = cIcJE(

∏
i∈I∆J xi) = 0, where I ∆ J is the symmetric

difference of I and J . Thus, E(X2) =
∑
I∈S c

2
I . By Lemma 4, E(X4) ≤ 26rE(X2)2.

4.3 The Main Result for General r

Theorem 1. The problem Max-r-Sattlb is fixed-parameter tractable and can be
solved in time O(m) + 2O(k2). Moreover, there exist (i) a polynomial-size bikernel
from Max-r-Sattlb to Max-r-Lin2tlb, and (ii) a polynomial-size kernel of Max-
r-Sattlb. In fact, there are such a bikernel and a kernel of size O(k2).

Proof. By Lemma 2 our problem is equivalent to that of deciding whether or not
there is a truth assignment to the variables x1, x2, . . . , xn, so that

X(x1, . . . , xn) ≥ k. (2)
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Note that in particular this implies that if X is the zero polynomial, then any truth
assignment satisfies exactly a (1−2−r) fraction of the original clauses. By Corollary 1

and Lemma 5, P(X ≥
√

E(X2)

2
√
b

) > 0, where b = 26r and E(X2) =
∑
I∈S c

2
I ≥ |S|; the

last inequality follows from the fact that each |cI | is a positive integer. Therefore

P(X ≥
√
|S|

2·8r ) > 0. Now, if k ≤
√
|S|

2·8r then there are xi ∈ {−1, 1} such that (2) holds,
and there is an assignment for which the answer to Max-r-Sattlb is Yes. Otherwise,
|S| = O(k2), and in fact even

∑
I∈S |cI | ≤

∑
I∈S c

2
I = O(k2), that is, the total number

of terms of the simplified polynomial, even when counted with multiplicities, is at most
O(k2).

For any fixed r, the representation of a problem instance of m clauses as a poly-
nomial, and the simplification of this polynomial, can be performed in time O(m).
If the number of nonzero terms of this polynomial is larger than 4 · 82rk2, then the
answer to the problem is Yes. Otherwise, the polynomial has at most O(k2) terms
and depends on at most O(k2) variables, and its maximum can be found in time
2O(k2).

This completes the proof of the first part of the theorem. We next establish the
second part. Given the simplified polynomial X as above, define a problem in Max-r-
Lin2tlb with the variables z1, z2, . . . , zn as follows. For each nonzero term cI

∏
i∈I xi

consider the linear equation
∑
i∈I zi = b, where b = 0 if cI is positive, and b = 1 if cI

is negative, and either associate this equation with the weight wI = |cI |, or duplicate
it |cI | times. It is easy to check that this system of equations has an assignment zi
satisfying at least [

∑
I∈S wI+k]/2 of the equations if and only if there are xi ∈ {−1, 1}

so that X(x1, x2, . . . , xn) ≥ k. This is shown by the transformation xi = (−1)zi . See
also [16] and [12] for a similar discussion. Since, as explained above, we may assume
that

∑
I∈S |cI | = O(k2) (as otherwise we know that the answer to our problem is

Yes), this provides the required bikernel of size O(k2) to Max-r-Lin2tlb.
It remains to prove the existence of a polynomial size kernel for the original prob-

lem. One way to do that is to apply Lemma 1. Indeed, Max-r-Lin2tlb is in NP, and
Max-r-Sattlb is NP-complete, implying the desired result.

It is also possible to give a direct proof, which shows that the problem admits a
kernel of size at most O(k2). To do so, we replace each linear equation of at most
r variables by a set of 2r−1 clauses, so that if the variables zi satisfy the equation,
the same Boolean variables xi = zi satisfy all these clauses, and if the variables zi
do not satisfy the equation, then the variables xi above satisfy only 2r−1 − 1 of the
clauses. This is done as follows. Consider, first, a linear equation with exactly r
variables. After renumbering the variables, if needed, a typical equation is of the
form z1 + z2 + · · · + zr = b, where the sum is over F2 and b ∈ {0, 1}. There are
exactly 2r−1 Boolean assignments δ = (δ1, δ2, . . . , δr) for the variables zi that do not
satisfy the equation. For each such assignment δ let Cδ be the clause consisting of
r literals, where the literal number i is xi if δi = 0 and is xi if δi = 1. Note that if
the variables z1, z2, . . . , zr satisfy the above equation, then (z1, z2, . . . , zr) is not one
of the vectors δ considered, and hence each of the clauses Cδ constructed contains at
least one satisfied literal when xi = zi. Therefore, in this case all clauses are satisfied.
A similar argument shows that if the variables zi do not satisfy the equation, there
will be exactly one non-satisfied clause, namely the one corresponding to the vector
δ = (z1, z2, . . . , zr). The construction can be extended to equations with less than r
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variables. Indeed, the only property used in the transformation above is that there are
exactly 2r−1 Boolean assignments for the variables z1, z2, . . . , zr that do not satisfy
the equation. If the equation has only (1 ≤) s < r variables, add to these variables
an arbitrary set of r − s of the other variables, and consider the set of all Boolean
assignments to this augmented set of variables that do not satisfy the equation. Here,
too, there are exactly 2r−1 such assignments and we can thus repeat the construction
above in this case as well.

The above procedure transforms a set of W linear equations over F2 into a multiset
of 2r−1W clauses. Moreover, if some truth assignment does not satisfy exactly `
equations, then the same assignment does not satisfy the same number, `, of clauses.
In particular, there is an assignment satisfying all equations but (W − k)/2 of them,
if and only if there is an assignment satisfying all clauses but (W − k)/2 of them.
This means that among the m = 2r−1W clauses, the number of satisfied ones is
m− (W −k)/2 = [(2r−1)m+2r−1k]/2r. This reduces an instance of Max-r-Lin2tlb

with W equations and parameter k to an instance of Max-r-Sattlb with 2r−1W
clauses and parameter 2r−1k. Since r is a constant, this provides the required kernel
of size O(k2), completing the proof.

5 Max-2-Sat

In this section we describe an alternative, more combinatorial, approach to the prob-
lem for r = 2. Although this approach is somewhat more complicated than the one
discussed in the previous section, it provides an additional insight to this special case
of the problem, and allows us to obtain a linear kernel for Max-2-Sattlb.

We start with a simple reduction rule that applies to any value of r.

5.1 The Semicomplete Reduction

We say that a pair of distinct clauses Y and Z has a conflict if there is a literal p ∈ Y
such that p ∈ Z. We say that an r-CNF formula F is semicomplete if the number of
clauses is m = 2r and every pair of distinct clauses of F has a conflict. A semicomplete
r-CNF formula is complete if each clause is over the same set of variables. There are
r-CNF formulas that are semicomplete but not complete; consider for example {xy,
xy, xz, xz}. We have the following:

Lemma 6. Every truth assignment to a semicomplete r-CNF formula satisfies exactly
2r − 1 clauses.

Proof. Let S be a semicomplete r-CNF formula. To prove that no truth assignment
satisfies all clauses of S we use the following simple counting argument from [18].
Observe that every clause is not satisfied by exactly 2n−r truth assignments. However,
each of these assignments satisfies each other clause (due to the conflicts). So, we have
exactly 2r · 2n−r truth assignments not satisfying F . But 2r · 2n−r = 2n, the total
number of truth assignments.

Now let τ be a truth assignment of S. By the above, τ does not satisfy a clause
C of F . However, τ satisfies any other clause of S as any other clause has a conflict
with C.
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Consider the following data reduction procedure.
Given an r-CNF formula F that contains a semicomplete subset F ′ ⊆ F , delete

F ′ from F and consider F \ F ′ instead. Let FS denote the formula obtained from
F by applying this deletion process as long as possible. We say that FS is obtained
from F by semicomplete reduction.

We state the following two simple observations as a lemma.

Lemma 7. Let F be an r-CNF formula.

1. FS can be obtained from F in polynomial time.

2. sat(F )− sat(FS) = (1− 2−r)(|F | − |FS |).

5.2 Kernelization

Let F be a 2-CNF formula. A variable x ∈ var(F ) is insignificant if for each literal
y the numbers of occurrences of the two clauses xy and xy in F are the same. A
variable x ∈ var(F ) is significant if it is not insignificant. A literal is significant or
insignificant if its underlying variable is significant or insignificant, respectively.

Theorem 2. Let F be a 2-CNF formula with F = FS (i.e., F contains no semi-
complete subsets) and let k ≥ 0 be an integer. If F has more than 3k − 2 significant
variables, then sat(F ) ≥ (3|F |+ k)/4.

The remainder of this section is devoted to the proof of Theorem 2 and its corol-
laries. Let F be a 2-CNF formula with m clauses and n variables and let k be an
integer. We assume that F contains no semicomplete subsets, i.e., F = FS .

For a literal x let c(x) denote the number of clauses in F containing x. Given a
pair of literals x and y, x 6= y, let c(xy) be the number of occurrences of clause xy
in F .

Given a clause C ∈ F and a variable x ∈ var(F ), let δC(x) be an indicator
variable whose value is set as δC(x) = 1 if x ∈ C, δC(x) = −1 if x ∈ C, and δC(x) = 0
otherwise.

Lemma 8. For each subset R = {x1, . . . , xq} ⊆ var(F ) we have sat(F ) ≥ (3m+kR)/4
for

kR =
∑

1≤i≤q

(c(xi)− c(xi)) +
∑

1≤i<j≤q

(
c(xixj) + c(xixj)− c(xixj)− c(xixj)

)
.

Proof. Take a random truth assignment τ ∈ 2var(F ) such that τ(xi) = 1 for all
i ∈ {1, . . . , q} and P(τ(x) = 1) = 0.5 for all x ∈ var(F ) \ R. A simple case analysis
yields that the probability that a clause C ∈ F is satisfied by τ is given by

P(τ satisfies C) = 1− 1
4

∏
1≤i≤q

(1− δC(xi)).

Observe that for any clause C and any three distinct variables x, y, z we have
δC(x)δC(y)δC(z) = 0 as var(C) contains exactly two variables. Hence we can deter-
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mine the expected number of clauses satisfied by τ as follows.

E(sat(τ, F )) =
∑
C∈F

P[ τ satisfies C ]

=
∑
C∈F

{
1− 1

4

∏
1≤i≤q

(1− δC(xi))
}

=
3
4
m+

1
4

∑
C∈F

{ ∑
1≤i≤q

δC(xi)−
∑

1≤i<j≤q

δC(xi)δC(xj)
}

=
3
4
m+

1
4
{ ∑

1≤i≤q

∑
C∈F

δC(xi)−
∑

1≤i<j≤q

∑
C∈F

δC(xi)δC(xj)
}

=
3
4
m+

1
4
kR.

We construct an auxiliary graph G = (V,E) from F by letting V = var(F ) and
xy ∈ E if and only if there exists a clause C ∈ F with var(C) = {x, y} (equivalently,
c(xy) + c(xy) + c(xy) + c(xy) ≥ 1).

We assign a weight to each vertex x and edge xy of G = (V,E):

w(x) :=
∑
C∈F

δC(x) = c(x)− c(x),

w(xy) := −
∑
C∈F

δC(x)δC(y) = c(xy) + c(xy)− c(xy)− c(xy).

For subsets U ⊆ V and H ⊆ E, let w(U) =
∑
x∈U w(x) and w(H) =

∑
xy∈H w(xy).

The weight w(Q) of a subgraph Q = (U,H) is w(U) + w(H). Let G0 be the graph
obtained from G by removing all edges of weight zero.

Lemma 9. A variable x ∈ var(F ) is insignificant if and only if x is an isolated vertex
in G0 and w(x) = 0.

Proof. Suppose x ∈ var(F ) is insignificant. Choose an edge xy ∈ E (this is possible
since by construction G has no isolated vertices). Since x is insignificant, c(xy) =
c(xy) and c(xy) = c(xy) and thus w(xy) = 0. Therefore the edge xy does not appear
in G0 and x is isolated in G0. Observe that we have c(x) = c(x), which implies
w(x) = 0.

Suppose x ∈ var(F ) is an isolated vertex of G0 and w(x) = 0. Since G has no
isolated vertices, we have w(xy) = 0 for all xy ∈ E. In order to derive a contradiction,
let us suppose x is a significant variable of F . Consequently there is (i) either a
clause xy ∈ F such that c(xy) > c(xy), or (ii) there is a clause xy ∈ F such that
c(xy) > c(xy). We consider case (i) only, case (ii) can be treated analogously. With
w(xy) = 0, we have c(xy) > c(xy), and thus xy ∈ F .

Now the condition w(x) = c(x)− c(x) = 0 implies the existence of an edge xz ∈ E
with z 6= y such that for some z′ ∈ {z, z} we have xz′ ∈ F and c(xz′) > c(xz′).
Without loss of generality, assume that z′ = z. Since w(xz) = 0, we have xz ∈ F .
However, the four clauses xy, xy, xz, xz in F form a semicomplete 2-CNF formula,
which contradicts our assumption that F = FS . Hence x is indeed an insignificant
variable.
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For a set X ⊆ var(F ) we let FX denote the 2-CNF formula obtained from F by
replacing x with x and x with x for each x ∈ X. We say that FX is obtained from F
by switching X.

The following lemma follows immediately from the definitions of switch and weights.

Lemma 10. The auxiliary graph GX corresponding to FX can be obtained from
G = (V,E) by reversing the signs of the weights of all vertices in X and all edges
between X and V \X. Moreover, sat(F ) = sat(FX).

To distinguish between weights in G and GX , we use wX(.) for weights of GX .
Similarly, we use cX(.) for FX .

It is sometimes convenient to stress that the set X we are switching induces a
subgraph. We can switch an induced graph Q by switching all the vertices of Q.
Observe that by switching an induced graph Q, we reverse the signs of weights on all
vertices of Q and all edges incident with exactly one vertex of Q, but the sign of each
edge within Q remains unchanged. This property will play a major role to show that
a certain structure meets the condition of the following lemma.

Lemma 11. If there exist a set X ⊂ V (G0) and an induced subgraph Q = (U,H) of
G0 with wX(Q) ≥ k, then sat(F ) ≥ (3m+ k)/4.

Proof. We consider U = {x1, . . . , xq} as a subset of var(FX). By Lemmas 8 and 10,
sat(F ) = sat(FX) ≥ (3m+ kU )/4, where

kU =
q∑
i=1

(cX(xi)− cX(xi)) +
∑

1≤i<j≤q

(cX(xixj) + cX(xixj)− cX(xixj)− cX(xixj))

=
q∑
i=1

wX(xi) +
∑

1≤i<j≤q

wX(xixj) = wX(Q) ≥ k.

To apply Lemma 11 in the proof of Theorem 2, we will focus on a special case
of induced subgraphs of G0. For a set U ⊆ V (G0), let G0[U ] denote the subgraph
of G0 induced by U . We call G0[U ] an induced star with center x if x is a vertex of
G0, I is an independent set in the subgraph of G0 induced by the neighbors of x and
U = {x} ∪ I. We are interested in the induced star due to the following property.

Lemma 12. Let x be the center of an induced star Q = G0[U ] and let I = U \ {x}.
Then there is a set X ⊆ U such that wX(Q) ≥ |I|.

Proof. Let H be the set of edges of Q. We may assume that w(xy) > 0 for each y ∈ I
since otherwise we can switch y. By a random switch of Q, we mean a switch of Q
with probability 0.5. Take a random switch R of Q. Then we have E(wR(z)) = 0 for
all z ∈ U . Note that the sign of each edge in H remains positive. Hence we have
E(wR(Q)) = w(H) ≥ |I| and thus there exists a setX ⊆ U for which wX(Q) ≥ |I|.

If we are given more than one induced star, a sequence of random switches gives
us a similar result.

Lemma 13. Let Q1 = (U1, H1), . . . , Qm = (Um, Hm) be a collection of vertex-disjoint
induced stars of G0 with centers x1, . . . , xm, let U =

⋃m
i=1 Ui, and let Q = G0[U ].

Then there is a set X ⊆ U such that wX(Q) ≥
∑m
i=1 |Ii|, where Ii = Ui \ {xi},

i = 1, . . . ,m.

11



Proof. As in the proof of Lemma 12, we may assume that all the edges of Hi have
positive weights. Let H be the set of edges of Q. By a random switch of Q, we mean a
sequence of switches of Q1, . . . , Qm each with probability 0.5. Take a random switch
R of Q. Then we have E(wR(x)) = 0 for all x ∈ U . Moreover, for the subgraph
Q of G0

R, it holds that E(wR(xy)) = 0 for all xy ∈ H \
⋃m
i=1Hi since each choice

of wR(xy) ≥ 0 and wR(xy) ≤ 0 is equally likely. By linearity of expectation and
Lemma 12, we have E(wR(Q)) = w(

⋃m
i=1Hi) ≥

∑m
i=1 |Ii| and thus there exists a set

X ⊆ U for which wX(Q) ≥
∑m
i=1 |Ii|.

We are now in the position to complete the proof of Theorem 2.
Suppose that (F, k) is a no-instance, i.e., sat(F ) < (3m + k)/4. Notice that a

matching can be viewed as a collection of induced stars of G0 for which |Ii| = 1. It
follows by Lemmas 11 and 13 that G0 has no matching of size k. The Tutte-Berge
formula [4, 6] states that the size of a maximum matching in G0 equals

min
S⊆V (G0)

1
2
{|V (G0)|+ |S| − oc(G0 − S)}

where oc(G0 − S) is the number of odd components (connected components with
an odd number of vertices) in G0 − S. Hence there is a set S ⊆ V (G0) such that
|V (G0)|+ |S| − oc(G0 − S) < 2k. It follows that

|V (G0)| ≤ oc(G0 − S)− |S|+ 2k − 1. (3)

We will now classify odd components in G0−S. One obvious type of odd compo-
nents is an isolated vertex in G0 of weight zero, which corresponds to an insignificant
variable by Lemma 9. All the other odd components can be categorized into one of
the following two types:

1. Let Q1, . . . , QL be the odd components of G0 − S such that for all 1 ≤ i ≤ L
we have |Qi| = 1 and Qi is a significant variable.

2. Let Q′1, . . . , Q
′
L′ be the odd components of G0 − S such that for all 1 ≤ i ≤ L′

we have |Q′i| > 1.

We construct a collection of induced stars as follows. From each of Q′1, . . . , Q
′
L′

we choose an edge, which is an induced star with |I| = 1. Let us consider Q1, . . . , QL.
Each vertex Qi is adjacent to at least one vertex of S. Thus, we can partition
Q1, . . . , QL into |S| sets, some of them possibly empty, such that each partite set forms
an independent set in which every vertex is adjacent to the corresponding vertex xi
of S. Each partite set, together with xi, forms an induced star. Now observe that
we have a collection of induced stars and the total number of edges equals L+ L′. If
L+L′ ≥ k, Lemma 13 implies that for some set X of vertices from the odd components
wX(Q) ≥ k, which is impossible by Lemma 11. Hence L+ L′ ≤ k − 1.

Therefore, oc(G0−S)−n′ = L+L′ ≤ k−1, where n′ is the number of insignificant
variables. By (3), we have |V (G0)| − n′ ≤ k − 1− |S|+ 2k − 1 ≤ 3k − 2. It remains
to observe that |V (G0)| − n′ equals the number of significant variables of F . This
completes the proof of Theorem 2.

Corollary 2. The problem Max-2-Sattlb admits a (polynomial time) reduction to
a problem kernel with at most 3k − 1 variables.

12



Proof. Consider an instance (F, k) of the problem. First we apply the semicomplete
reduction and obtain (in polynomial time) an instance (F ′, k) with F ′ = FS . We
determine (again in polynomial time) the set S′ of significant variables of F ′. If
|S′| > 3k − 2 then (F ′, k) is a yes-instance by Theorem 2, and consequently (F, k) is
a yes-instance by Lemma 7. Assume now that |S′| ≤ 3k − 2.

Let z be a new variable not occurring in F . Since F ′ = FS , no clause contains
two insignificant variables and, thus, each insignificant variable can be replaced by z
without changing the solution to (F ′, k). Let us denote the modified F ′ by F ′′; F ′′

has at most 3k − 1 variables.
Let p be the number of clauses in F ′′. Observe that we can find a truth assignment

satisfying the maximum number of clauses of F ′′ in time O(p8k). Thus, if p > 8k,
we can find the optimal truth assignment in the polynomial time O(p2) = O(m2).
Thus, we may assume that F ′′ has at most 8k clauses. Therefore, F ′′ is a kernel of
the Max-2-Sattlb problem.

6 Concluding Remarks

• Our algorithm for the parameterized Max-r-Sat problem can be easily modified
to provide, efficiently, for any given instance of m clauses to which there is a truth
assignment satisfying at least k/2r clauses above the average, an assignment for the
variables with this property. Indeed, the proof of Theorem 1 only requires that the
variables xi are 4r-wise independent, and there are known constructions of polynomial
size sample spaces supporting such random variables (see, e.g., [2], Chapter 16). Thus,
if in the polynomial X,

√
|S|/(2 · 8r) > k, then one can find an assignment satisfying

at least as many clauses as needed by going over all points in such a sample space,
and if not, one can solve the problem by an exhaustive search.

• The fixed-parameter tractability result on MAX-r-SAT can be easily extended to
any family of Boolean r-Constraint Satisfaction Problems. Here is an outline of the
argument.

Let r be a fixed positive integer, let Φ be a set of Boolean functions, each involving
at most r variables, and let F = {f1, f2, . . . , fm} be a collection of Boolean functions,
each being a member of Φ, and each acting on some subset of the n Boolean variables
x1, x2, . . . , xn. The Boolean Max-r-Constraint Satisfaction Problem (corresponding
to Φ), which we denote by the Max-r-CSP problem, for short, when Φ is clear
from the context, is the problem of finding a truth assignment to the variables so as
to maximize the total number of functions satisfied. Note that this includes, as a
special case, the Max-r-Sat problem considered in the previous section, as well as
many related problems. As most interesting problems of this type are NP-hard, we
consider their parameterized version, where the parameter is, as before, the number
of functions satisfied minus the expected value of this number. Note, in passing, that
the above expected value is a tight lower bound for the problem, whenever the family
Φ is closed under replacing each variable by its complement, since if we apply any
Boolean function to all 2r choices of literals whose underlying variables are any fixed
set of r variables, then any truth assignment to the variables satisfies exactly the same
number of these 2r functions.
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For each Boolean function f of r Boolean variables

xi1 , xi2 , . . . , xir ,

define a random variable Xf as follows. As in the discussion of the Max-r-Sat
problem, suppose each variable xij attains values in {−1, 1}. Let V ⊂ {−1, 1}r
denote the set of all satisfying assignments of f . Then

Xf (x1, x2, . . . , xn) =
∑

v=(v1,...,vr)∈V

[
r∏
j=1

(1 + xijvj)− 1].

This is a random variable defined over the space {−1, 1}n and its value at x =
(x1, x2, . . . , xn) is 2r−|V | if x satisfies f , and is −|V | otherwise. Thus, the expectation
of Xf is zero. Define now X =

∑
f∈F Xf . Then the value of X at x = (x1, x2, . . . , xn)

is precisely 2r(s − a), where s is the number of the functions satisfied by the truth
assignment x, and a is the average value of the number of satisfied functions. Our
objective is to decide if X attains a value of at least k. As this is a polynomial of degree
at most r with integer coefficients and expectation zero, we can repeat the arguments
of Section 4 and prove that, for every fixed r, the problem is fixed-parameter tractable.
Moreover, our previous arguments show that the problem admits a polynomial-size
bikernel reducing it to an instance of Max-r-Lin2tlb of size O(k2), and if the specific
r-CSP problem considered is NP-complete, then there is a polynomial size kernel.
This is the case for most interesting choices of the family Φ.
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