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Abstract

What is the minimum number of edges that have to be added to the random graph G = Gn,0.5

in order to increase its chromatic number χ = χ(G) by one percent ? One possibility is to add all
missing edges on a set of 1.01χ vertices, thus creating a clique of chromatic number 1.01χ. This
requires, with high probability, the addition of Ω(n2/ log2 n) edges. We show that this is tight up
to a constant factor, consider the question for more general random graphs Gn,p with p = p(n),
and study a local version of the question as well.

The question is motivated by the study of the resilience of graph properties, initiated by the
second author and Vu, and improves one of their results.

1 Introduction

Consider the probability space whose points are graphs on n labeled vertices, where each pair of
vertices forms an edge, randomly and independently with probability p. The random graph Gn,p

denotes a random point in this probability space. This concept is one of the central notions in modern
discrete mathematics and it has been studied intensively during the last 50 years. By now, there are
thousands of papers and two excellent monographs by Bollobás [5] and by Janson et al. [9] devoted
to random graphs and their diverse applications. The subject of the theory of random graphs is the
investigation of the asymptotic behavior of various graph parameters. We say that a graph property
P holds asymptotically almost surely (a.a.s.) if the probability that Gn,p has P tends to one as n tends
to infinity.

One of the most important parameters of the random graph Gn,p is its chromatic number, which
we denote by χ(Gn,p). Trivially for every graph χ(G) ≥ |V (G)|/α(G), where α(G) denotes the size
of the largest independent set in G. It can be easily shown, using first moment computations, that
a.a.s α(Gn,p) ≤ 2 logb(np), where b = 1/(1 − p) (all logarithms in this paper are in the natural
base e). This provides a lower bound on the chromatic number of the random graph, showing that
χ(Gn,p) ≥ n

2 logb(np)
. The problem of determining the asymptotic behavior of χ(Gn,p), posed by Erdős

and Rényi in the early 60s, stayed for many years as one of the major open problems in the theory
of random graphs, until its solution by Bollobás [4], using a novel approach based on martingales
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that enabled him to prove that a.a.s. χ(Gn,p) = (1 + o(1)) n
2 logb(np)

for dense random graphs. Later
 Luczak [14] showed that this estimate also holds for all values of p ≥ c/n. In this paper we strengthen
these classical results, by showing that the chromatic number remains (1 + o(1)) n

2 logb(np)
even if we

are allowed to add to Gn,p any set of not too many additional edges. To describe the main results it
is convenient to use the framework of resilience, introduced by Sudakov and Vu [15].

A graph property is called monotone increasing (decreasing) if it is preserved under edge addition
(deletion). Following [15], we define:

Definition 1.1 Let P be a monotone increasing (decreasing) graph property.

• The global resilience of G with respect to P is the minimum number r such that by deleting
(adding) r edges from G one can obtain a graph not having P.

• The local resilience of a graph G with respect to P is the minimum number r such that by deleting
(adding) at most r edges at each vertex of G one can obtain a graph not having P.

Intuitively, the question of determining the resilience of a graph G with respect to a graph property
P is like asking, “How strongly does G possess P?”. Using this terminology, one can restate many
important results in extremal graph theory in this language. For example, the classical theorem of
Dirac asserts that the complete graph Kn has local resilience bn/2c with respect to having a Hamilton
cycle. In [15], the authors have initiated the systematic study of global and local resilience of random
and pseudo-random graphs. They obtained resilience results with respect to various properties such
as perfect matching, Hamiltonicity, chromatic number and having a nontrivial automorphism (the last
result appeared in an earlier paper with Kim [10]). For example, they proved that if p > log4 n/n then
a.a.s. any subgraph of G(n, p) with minimum degree (1/2 + o(1))np is Hamiltonian. Note that this
result can be viewed as a generalization of Dirac’s theorem mentioned above, since a complete graph is
also a random graph G(n, p) with p = 1. This connection is natural and most of the resilience results
for random and pseudo-random graphs can be viewed as generalizations of classical results from graph
theory. For additional recent resilience type results, see, e.g., [7, 8, 12, 6, 3].

In [15], Sudakov and Vu proved that the local resilience of dense Gn,p with respect to having
chromatic number (1 + o(1)) n

2 logb(np)
is at least np2/ log5 n. The main aim of the present short paper

is to obtain the following new bounds on both the global and the local resilience of the chromatic
number of the random graph, which substantially improve this result from [15].

Theorem 1.2 Let ε > 0 be a fixed constant and let n−1/3+δ ≤ p ≤ 1/2 for some δ > 0. Then
a.a.s. for every collection E of 2−12ε2 n2

log2
b(np)

edges the chromatic number of Gn,p ∪ E is still at most
(1 + ε) n

2 logb(np)
.

This shows that the global resilience of Gn,p with respect to having chromatic number at most
(1 + ε) n

2 logb(np)
is of order n2/ log2

b(np). The result is tight up to a constant factor. Indeed, take an
arbitrary set of, say, n/ logb(np) vertices of the random graph and add to it all the missing edges to
make it a clique. This adds only ∼ 1

4n
2/ log2

b(np) edges but increases the chromatic number by a
factor of 2.
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Theorem 1.3 Let ε > 0 be a fixed constant and let n−1/3+δ ≤ p ≤ 1/2 for some δ > 0. Then a.a.s. for
every graph H on n vertices with maximum degree ∆(H) ≤ 2−8ε n

logb(np) log logn the chromatic number
of Gn,p ∪H is still at most (1 + ε) n

2 logb(np)
.

As before, by transforming a subset of n/ logb(np) vertices of the random graph to a clique, it follows
that this result is tight up to the log log n factor. Both these theorems show that adding quite large
and dense graphs to Gn,p has very little impact on its chromatic number. It may be instructive to
compare the above two theorems to the following folklore result (see, e.g., [13] Chapter 9).

Fact 1.4 Let G and H be two graphs on the same set of points. Then

χ(G ∪H) ≤ χ(G)χ(H),

and there are pairs of G and H such that the equality holds.

The rest of this short paper is organized as follows. In the next section we prove our key technical
lemma, which shows that in the random graph Gn,p the independent sets of nearly maximal size are
rather uniformly distributed. Using this lemma we establish Theorems 1.2 and 1.3 in Section 3. The
last section of the paper contains some concluding remarks and open questions. Throughout the paper,
we systematically omit floor and ceiling signs whenever they are not crucial for the sake of clarity of
presentation. We also do not make any serious attempt to optimize the absolute constants in our
statements and proofs.

2 The distribution of independent sets in random graphs

In this section we prove the statement which will be our main technical tool. It shows that no matter
which set of m edges we add to the random graph Gn,p, a.a.s. there will be an independent set of
nearly maximal size which contains only a few of these edges. In order to state our result precisely we
need some preliminaries.

Let n−1/3+δ ≤ p ≤ 1/2 for some δ > 0 and let k0 = k0(n, p) be defined by

k0 = max
{
k :
(
n

k

)
(1− p)(

k
2) ≥ n4

}
. (1)

One can show easily that k0 satisfies k0 ∼ 2 logb(np) with b = 1/(1− p). Also, it follows from known
results on the asymptotic value of the independence number of G(n, p) (see, e.g., [9], [2]) that a.a.s.
the difference between k0 and the independence number of G(n, p) is bounded by an absolute constant,
as long as p(n) is in the above range.

Let µ be the expected number of independent sets of size k0 in Gn,p. Clearly

µ =
(
n

k0

)
(1− p)(

k0
2 ) ≥ n4,

by the definition of k0. For a pair u, v ∈ Gn,p, let Zu,v be the random variable counting the number of
independent sets of size k0 in Gn,p that contain both u and v. Let µ0 = E[Zu,v], then

µ0 =
(
n− 2
k0 − 2

)
(1− p)(

k0
2 ) .
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It is easy to see that µ0/µ = (1 + o(1))k2
0/n

2.
Let X be the random variable which is equal to the size of the largest collection of independent

sets of size k0 in the random graph Gn,p such that no pair of vertices u, v belongs to more than 4µ0

of these sets. We need the following lemma, which shows that with high probability the value of X is
concentrated around µ.

Lemma 2.1

Pr[X ≤ 3µ/5] ≤ e
− µ2

300µ2
0n

2p .

To prove this lemma we will need first to estimate from below the expectation of X. For a pair of
vertices u, v in Gn,p set

Z+
u,v =

{
Zu,v, Zu,v > 4µ0 ≥ 2µ0/(1− p),
0, otherwise .

We also define Z+ =
∑

u,v Z
+
u,v. This random variable has been considered before in [11], where the

authors studied the probability that the random graph Gn,p contains an independent set of size k0.
We will need the following claim, proved in this paper.

Proposition 2.2 E[Z+] = o(µ).

From this proposition we can immediately deduce the following bound on the expectation of X.

Corollary 2.3 Let X be the size of the largest collection of independent sets of size k0 in the random
graph Gn,p such that no pair of vertices belongs to more than 4µ0 of these sets. Then E[X] = (1−o(1))µ.

Proof. Let F be the collection of all independent sets in Gn,p of size k0. By the definition of k0, we
have that E[|F|] = µ. For every pair of vertices u, v which is contained in more than 4µ0 independent
sets of size k0, delete all these sets from F . Note that for every pair of vertices u, v we deleted at
most Z+

u,v sets and therefore the total number of deleted sets is at most Z+. It is easy to see that the
remaining independent sets cover every pair of vertices at most 4µ0 times and therefore their number
is at most X. By Proposition 2.2, this implies that

E[X] ≥ E[|F|]− E[Z+] = (1− o(1))µ.

This completes the proof, since clearly E[X] ≤ µ. 2

Let I be the largest collection of independent sets of size k0 in the random graph Gn,p such that
no pair of vertices belongs to more than 4µ0 of these sets and recall that X = |I|. Note that when
we connect by a new edge a pair of non-adjacent vertices u, v of Gn,p we can decrease the value of
X only by the number of independent sets in I which contain u, v. By definition, this is at most
4µ0. Now suppose we delete an existing edge (u, v) of the random graph. Although this might create
many new independent sets of size k0, they all contain u, v and we can include only at most 4µ0 of
them in I. Hence also in this case the value of X changes by at most 4µ0, i.e., X is a so called
4µ0-Lipschitz function. Now to finish the proof of Lemma 2.1 we apply a concentration inequality for
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such functions, proved by Alon, Kim and Spencer ([1], see also [2], Theorem 7.4.3). They considered
a random variable Y given on the space generated by mutually independent 0/1 choices such that
probability that a choice i is one is pi. Let ci be such that changing choice i can change Y by at most
ci, C = maxi ci and let the total variance satisfy

∑
i pi(1 − pi)c2

i ≤ σ2. Then if aC < 2σ2 for some
positive a, then

Pr
[
Y − E[Y ] < −a

]
≤ e−a2/(4σ2).

Proof of Lemma 2.1. As we already mentioned X is a 4µ0-Lipschitz random variable, which
depends on

(
n
2

)
random choices for the edges of Gn,p. This implies that the total variance is at most

16µ2
0

(
n
2

)
p(1− p) ≤ 8µ2

0n
2p = σ2. Let a = µ/3. Using that k0 > 1/p and µ/µ0 = (1 + o(1))n2/k2

0, it is
easy to check that 4µ0a ≤ 2σ2 = 16µ2

0n
2p. Note that by Corollary 2.3, if X ≤ 3µ/5 then we also have

that X − E[X] < −a. Therefore, the desired estimate for the lower tail of X follows from the above
inequality of [1]. 2

Remark. Using the same proof one can also obtain estimates on the upper tail of X and in particular
show that for any fixed δ > 0

Pr
[∣∣X − E[X]

∣∣ > δµ
]
< 2e

− δ2µ2

40µ2
0n

2p .

Finally we are ready to prove the main result of this section, which roughly says that in the random
graph Gn,p independent sets of nearly maximal size are uniformly distributed in the following sense.
Suppose we add to the random graph some set E of m edges. Consider a random subset of vertices of
size k0. By averaging, we expect that 2m/n2 fraction of its pairs are edges from E. Our next lemma
shows that with very high probability Gn,p has an independent set of size k0, which has this property
up to a constant factor.

Lemma 2.4 If n−1/3+δ ≤ p ≤ 1/2 for some δ > 0, then with probability at least 1−e−n1+δ
the random

graph Gn,p has the following property. For every collection E of m edges, there is an independent set
I in Gn,p of size k0 such that I contains at most 7k2

0
m
n2 edges of E.

Proof. Let I be the largest collection of independent sets of size k0 in random graph Gn,p such that
no pair of vertices belongs to more than 4µ0 of these sets. Recall that µ0/µ = (1 + o(1))k2

0/n
2. Also,

by the definition of k0, it is easy to check that k0 ≤ 2
p log n. Together this implies that

µ2

300µ2
0n

2p
≥ n2

400k4
0p
≥ n2p3

104 log4 n
> n1+δ.

Therefore, by Lemma 2.1 we have that with probability at least 1 − e−n1+δ
the size of I is at least

3µ/5. Consider an auxiliary bipartite graph H with parts I and E in which independent set I ∈ I
is adjacent to edge (u, v) ∈ E iff both vertices u, v belong to I. By the definition of I, every edge
(u, v) ∈ E is contained in at most 4µ0 sets from I. Therefore the number of edges e(H) is bounded
by 4µ0m. Thus there is an independent set I ∈ I, whose degree in H is at most e(H)/|I|. This I
contains at most

e(H)
|I|

≤ 4µ0m

|I|
≤ 20µ0m

3µ
≤ 7k2

0

m

n2

edges from E. 2
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3 Global and local resilience of the chromatic number

In this section we prove our main results. We start by recalling several additional facts used in the
proofs. The first is the following classical theorem of Turán (see e.g., [2] p. 95), which provides a lower
bound for the size of the maximum independent set in a graph.

Lemma 3.1 Let G be graph on n vertices with e(G) edges. Then the independence number α(G) of
G satisfies

α(G) ≥ n2

2e(G) + n
.

We also need the following simple lemma which estimates the number of edges spanned by small
subsets of random graph.

Lemma 3.2 Let n−1/3 ≤ p ≤ 1/2 and let ε be a positive constant. Then a.a.s. every subset of Gn,p
of size s ≤ εn

16 log(np) contains at most εnp
8 log(np)s edges.

Proof. Define r = εn
16 log(np) . The probability of existence of a subset violating the assertion of the

lemma is at most
r∑

s=rp

(
n

s

)( (s
2

)
2srp

)
p2srp ≤

r∑
s=rp

(
en

s

( es
4rp

)2rp
p2rp

)s
≤

r∑
s=rp

(
n
(e

4

)2rp
)s

= o(1).

Here we used that rp >
√
n together with the well known fact that

(
a
b

)
≤ (ea/b)b. 2

Finally, recall the simple fact that any graph with chromatic number at least r must have a
subgraph with minimum degree r − 1.

Proof of Theorem 1.2: Let E be an arbitrary set of m = 2−12ε2n2/ log2
b(np) edges, suppose it

has been added to Gn,p, and put G = Gn,p ∪ E. Let b = 1/(1 − p) and let k = 2 logb(np/ log3 n) =
(1+o(1))2 logb(np). Since every subset of Gn,p is a random graph itself and the number of subsets is at
most 2n, using Lemma 2.4 together with the union bound, we obtain that a.a.s. every subset of Gn,p
of size s ≥ n/ log2 n has an independent set I of size at least k which contains at most 7k2

0
m
s2
≤ 8k2 m

s2

edges of E. Repeatedly apply the following procedure until the remaining graph has at most εn
16 log(np)

vertices. Given current subset, which has s vertices, find in it an independent set I of Gn,p of size at
least k which contains at most 8k2 m

s2
edges of E. Apply Lemma 3.1 to the induced subgraph G[I] to

find an independent set of G of size k2

16k2m/s2+k
. Color it by a new color, remove its vertices from G

and continue.
If the current subgraph of G has s ≥ 2−in vertices, then we can find in it an independent set of

size at least k2

22i+4k2m/n2+k
. Therefore if we start with at most 2−i+1n vertices, then after pulling out

χi ≤ 2−in
/ k2

22i+4k2m/n2 + k
= 2i+4m

n
+ 2−i

n

k

independent sets we will remain with less than 2−in vertices. Let i0 be such that 2i0 = 16ε−1 log(np).
Summing up for all 1 ≤ i ≤ i0 we obtain that we can color all but εn

16 log(np) vertices of G using only
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i0∑
i=1

χi =
i0∑
i=1

(
2i+4m

n
+ 2−i

n

k

)
≤ 2i0+5m

n
+ n/k ≤ 29ε−1 log(np)

2−12ε2n

log2
b(np)

+ n/k

≤ ε

4
· log(np)

logb(np)
· n/k + n/k ≤ (1 + ε/4)n/k

colors. Next we prove that the remaining εn
16 log(np) vertices of G can be colored by at most r = εn

3 logb(np)

additional colors.
Indeed suppose that the remaining vertices form a graph with chromatic number more than r.

Then this graph contains a subgraph G′ with minimum degree at least r− 1. Denote by s the number
of vertices of G′ and note that r ≤ s ≤ εn

16 log(np) vertices. The number of edges in G′ is at least
s(r−1)/2. On the other hand, using that 1

p log(np) ≥ logb(np) together with Lemma 3.2, we conclude
that the number of edges in G′ is at most

εnp

8 log(np)
s+ |E| ≤ εn

8 logb(np)
s+

2−12ε2n2

log2
b(np)

≤ εn

8 logb(np)
s+

2−10εn

logb(np)
s < s

εn

7 logb(np)
<
s(r − 1)

2
.

This contradiction shows that any εn
16 log(np) vertices of G can be colored by at most εn

3 logb(np)
colors.

Therefore the chromatic number of G is at most (1 + ε/4)n/k + εn/(3 logb n) < (1 + ε) n
2 logb(np)

,
completing the proof. 2

Proof of Theorem 1.3: The proof of this result follows along the same lines as the one for global
resilience. Let H be a graph with maximum degree ∆ ≤ 2−8ε n

logb(np) log logn and let G = Gn,p ∪ H.
Set b = 1/(1 − p) and k = 2 logb(np/ log3 n) = (1 + o(1))2 logb(np). Let S be a subset of Gn,p of size
s = |S| ≥ n/ log2 n and let e(H[S]) be the number of edges of H spanned by S. Since H has bounded
maximum degree we have that e(H[S]) ≤ ∆s/2. We can again assume, by Lemma 2.4, that every
such subset S has an independent set I of size at least k which contains at most

7k2
0

e(H[S])
s2

≤ 8k2 e(H[S])
s2

≤ 4k2∆
s

edges of H. Applying Lemma 3.1 to the induced subgraph G[I], we find in it an independent set of G
of size k2

8k2∆/s+k
. Repeatedly color every such independent set by a new color and remove it from G

until the remaining graph has at most n
log2 n

vertices.

If the current subgraph of G has s ≥ 2−in vertices, then we can find in it an independent set of
size at least k2

2i+3k2∆/n+k
. Therefore if we start with at most 2−i+1n vertices, then after pulling out

χi ≤ 2−in
/ k2

2i+3k2∆/n+ k
= 8∆ + 2−i

n

k

independent sets we will remain with less than 2−in vertices. Let i0 be such that 2i0 = log2 n, then
i0 ≤ 3 log log n. Summing up for all 1 ≤ i ≤ i0 we obtain that we can color all but n

log2 n
vertices of G

using only

i0∑
i=1

χi =
i0∑
i=1

(
8∆ + 2−i

n

k

)
≤ n

k
+ 8∆i0 ≤

n

k
+ 24 log log n

2−8εn

logb(np) log log n
≤ (1 + ε/4)

n

k
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colors.
Consider any subset S of s ≤ n

log2 n
vertices of G. By Lemma 3.2 it has at most εnp

8 log(np)s edges
of Gn,p. The number of edges of H inside S is clearly at most ∆s/2. Therefore there are at most( εnp

8 log(np) + ∆/2
)
s edges in the subgraph of G induced by S. Using that 1

p log(np) ≥ logb(np) we
conclude that G[S] has a vertex of degree at most

2e(G[S])/s ≤ εnp

4 log(np)
+ ∆ <

εn

2 logb(np)
+

2−8εn

logb(np) log log n
<

3εn
5k
− 1.

This shows that we can color the remaining n
log2 n

vertices in 3εn/(5k) colors and the whole graph G

by (1 + ε/4 + 3ε/5)nk < (1 + ε) n
2 logb(np)

colors. 2

4 Concluding remarks and open problems

We have studied the global and local resilience of random graphs with respect to the property of
having a chromatic number close to its typical value. Our bounds for global resilience are tight up to a
constant factor, but the ones for the local case are only tight up to a log log n factor. It seems plausible
to conjecture that the assertion of Theorem 1.3 holds even when the log log n term is omitted in the
hypothesis. It is also possible that Theorem 1.2 can be strengthened, and that the most economical
way to increase the chromatic number of the random graph Gn,p by a factor of (1 + ε) is to construct
an appropriately large clique in it. If this is the case, then one has to add to Gn,p, a.a.s., more than
n2/(16 log2

b n) edges in order to increase its chromatic number by a factor of (1 + ε), for any fixed
ε > 0 and sufficiently large n. This remains open. It may also be interesting to estimate the minimum
number of edges that have to be added to Gn,p in order to increase the chromatic number by a lower
order term. This is related to the question of estimating the concentration of the chromatic number
of random graphs, and appears to be difficult.
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[9] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, John Wiley and Sons, New York,
2000.

[10] J.H. Kim, B. Sudakov and V. Vu, On the asymmetry of random regular graphs and random
graphs, Random Structures Algorithms 21 (2002), 216–224.

[11] M. Krivelevich, B. Sudakov, V. Vu and N. Wormald, On the probability of independent sets in
random graphs, Random Structures and Algorithms 22 (2003), 1–14.

[12] M. Krivelevich, C. Lee and B. Sudakov, Resilient pancyclicity of random and pseudo-random
graphs, SIAM J. of Discrete Math., to appear.

[13] L. Lovász, Combinatorial problems and exercises, 2nd edition, AMS Chelsea Publishing,
2007.

[14] T.  Luczak, The chromatic number of random graphs, Combinatorica 11 (1991), 45–54.

[15] B. Sudakov and V. Vu, Local resilience of graphs, Random Structures and Algorithms 33 (2008),
409–433.

9


