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Abstract

For a real c ≥ 1 and an integer n, let f(n, c) denote the maximum integer f so that every graph
on n vertices contains an induced subgraph on at least f vertices in which the maximum degree
is at most c times the minimum degree. Thus, in particular, every graph on n vertices contains a
regular induced subgraph on at least f(n, 1) vertices. The problem of estimating f(n, 1) was posed
long time ago by Erdős, Fajtlowicz and Staton. In this note we obtain the following upper and
lower bounds for the asymptotic behavior of f(n, c):
(i) For fixed c > 2.1, n1−O(1/c) ≤ f(n, c) ≤ O(cn/ log n).
(ii) For fixed c = 1 + ε with ε > 0 sufficiently small, f(n, c) ≥ nΩ(ε2/ ln(1/ε)).

(iii) Ω(lnn) ≤ f(n, 1) ≤ O(n1/2 ln1/4 n).
An analogous problem for not necessarily induced subgraphs is briefly considered as well.

1 Introduction

All graphs considered here are finite and simple. For a graph G = (V,E), let ∆(G), δ(G) and d(G) =
2|E|
|V | denote its maximum degree, minimum degree and average degree, respectively. The density of G

is p = |E|/
(|V |

2

)
, clearly this is a number between 0 and 1. For U ⊆ V , let G[U ] denote the subgraph

of G induced on U .

Definition 1 A graph G is c-nearly regular if ∆(G) ≤ c · δ(G).

For a graph G = (V,E) and a constant c ≥ 1, let

f(G, c) = max{|U | : G[U ] is a c-nearly regular graph} .
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Define
f(n, c) = min{f(G, c) : |V (G)| = n}.

Thus, every graph G on n vertices contains a c-nearly regular induced subgraph on at least f(n, c)
vertices. In particular, for c = 1 every such G contains a strictly regular induced subgraph on at least
f(n, 1) vertices.

The problem of estimating f(n, 1) was posed by Erdős, Fajtlowicz and Staton (c.f. [3] or [2], page
85). By the known estimates for Graph Ramsey numbers (c.f., e.g., [6]), every graph on n vertices
contains either clique or independent set of order Ω(lnn). This implies that f(n, 1) ≥ Ω(lnn). Erdős,
Fajtlowicz and Staton conjectured that the ratio f(n, 1)/ lnn tends to infinity as n tends to infinity.
We are unable to prove or disprove this conjecture, and can only obtain several bounds, listed in the
following results. The first deals with the case of large c.

Proposition 1.1 There exists an absolute constant b so that for K ≥ 2.1, f(n,K) ≥ n1−b/K .

The problem of obtaining a nontrivial lower bound for values of c close to 1 is more interesting. Here
we first deal with the case of graphs with positive density, and show that any such graph must contain
a nearly regular subgraph on a linear number of vertices.

Theorem 1.2 Let ε > 0 be a small real, and let p satisfy 0 < p < 1. Then, for every sufficiently
large n, any graph G = (V,E) on n vertices with density at least p contains an induced (1 + ε)-nearly
regular subgraph on at least

0.5
(ε

6

) 144
ε2

ln(1/p)
· n

vertices.

For general (possibly sparse) graphs we have the following:

Theorem 1.3 Let ε > 0 be a sufficiently small constant. Then

f(n, 1 + ε) ≥ n
ε2

250 ln(1/ε) ,

for all sufficiently large n.

Our upper bounds for f(n, c) are rather far from the lower bounds. For the strictly regular case we
prove the following.

Theorem 1.4 f(n, 1) ≤ O(n1/2 log1/4 n).

This is a slight improvement of an earlier estimate of Bollobás (c.f. [2]), who showed that for every
ε > 0, f(n, 1) ≤ c(ε)n1/2+ε. For the nearly regular case we have:

Proposition 1.5 For every constant K ≥ 2, f(n,K) ≤ 7K n
logn .
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The lower bounds are proved in the next section, the upper bounds are presented in Section 3. We
conclude in Section 4 with a few open problems and a brief discussion of an analogous problem for
not necessarily induced subgraphs. Throughout this note we assume, whenever this is needed, that
the number of vertices n of the graphs discussed is sufficiently large. To simplify the presentation,
we make no attempt to optimize the absolute constants, and omit all floor and ceiling signs whenever
these are not crucial. We also use the following standard asymptotic notation: for two functions f(n),
g(n) of a natural valued parameter n, we write f(n) = o(g(n)), whenever limn→∞ f(n)/g(n) = 0;
f(n) = O(g(n)) if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all n, and f(n) = Ω(g(n))
if g(n) = O(f(n)).

2 Lower bounds

For a graph G = (V,E) and a subset U ⊆ V , the number of edges of G spanned by U in G is denoted
by eG(U); the number of edges between disjoint subsets U,W of vertices of G is denoted by eG(U,W ).

2.1 Large c

In this subsection we prove Proposition 1.1, that provides a lower bound for f(n, c) when c is a
relatively large constant.

We need the following rather standard argument, allowing one to pass from a graph with a large
average degree to one with a large minimum degree.

Proposition 2.1 Let K > 1, α < 1/2 be constants. Then every graph G = (V,E) on |V | = n vertices
with ∆(G) ≤ Kd(G) contains an induced (K/α)-nearly regular subgraph G∗ with at least 1−2α

K−2αn

vertices and at least K−2Kα
2K−4α nd edges.

Proof. Denote the average degree d(G) of G by d. We can obviously assume that d > 0. Start with
G and delete repeatedly vertices of degree less than αd till there are none left. Denote the resulting
graph by G∗. Then G∗ is an induced subgraph of G, satisfying ∆(G∗) ≤ ∆(G), δ(G∗) ≥ αd, implying

∆(G∗) ≤ ∆(G) ≤ Kd ≤ K

α
δ(G∗) ,

and thus G∗ is a (K/α)-nearly regular graph. We now estimate the number of vertices of G∗. Denote
the latter by t. While creating G∗ from G, we deleted less than (n− t)αd edges, and thus

∆(G∗) ≥ d(G∗) >
2(|E(G)| − (n− t)αd)

t
=
nd− 2(n− t)αd

t
.

But ∆(G∗) ≤ ∆(G) ≤ Kd, implying:

nd− 2(n− t)αd
t

≤ Kd .
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Solving the above inequality for t, we get t ≥ 1−2α
K−2αn, supplying the required lower bound for the

number of vertices of G∗. To bound the number of its edges note that the number of vertices deleted
is n− t and hence the number of edges deleted is at most (n− t)αd, leaving at least

1
2
nd− (n− t)αd =

(
1
2
− α

)
nd+ tαd ≥

(
1
2
− α

)
nd+

1− 2α
K − 2α

nαd =
K − 2Kα
2K − 4α

nd,

as needed. 2

Remark 1 It is instructive to observe that the above argument breaks down completely for α ≥ 1/2.
Therefore, when estimating f(n, c) from below for small c, in particular for c < 2, we will adapt a
different strategy.

We proceed with the following result, whose proof resembles that of one of the results in [4].

Proposition 2.2 Let K > 1 be a constant. Every graph G = (V,E) on |V | = |V (G)| = n vertices
contains an induced subgraph G∗ on at least n1+log2(1− 1

K ) vertices, for which ∆(G∗) ≤ Kd(G∗).

For large K the above estimate behaves like n1−Θ( 1
K ). Therefore, the assertions of Proposition 2.1

and Proposition 2.2 imply that of Proposition 1.1.

Proof of Proposition 2.1. Set G0 = G, k∗ = log2 n. For i = 0, . . . , k∗ repeat the following loop.
Set

ni = |V (Gi|, ∆i = ∆(Gi), di = d(Gi) .

If ∆i ≤ Kdi, abort the loop. Otherwise delete repeatedly vertices of degree at least Kdi/2 from Gi

till there are none left. Let Gi+1 be the resulting graph and increment i.

Denote by G∗ the resulting graph of the above described process. Observe that at iteration i we delete
at most |E(Gi)|/(Kdi/2) = (nidi/2)(Kdi/2) = ni/K vertices, and thus ni+1 ≥ (1−1/K)ni. It follows
that

|V (G∗)| ≥
(

1− 1
K

)k∗
n = n1+log2(1− 1

K ) .

If G∗ was created when the above loop was aborted due to ∆(Gi) ≤ Kd(Gi), then obviously the
obtained graph meets the claim of the theorem. Otherwise, G∗ was obtained after k∗ iterations. At
each such iteration i, we have ∆i+1 ≤ Kdi/2 and di ≤ ∆i/K, implying ∆i+1 ≤ ∆i/2. Therefore, in
this case

∆(G∗) ≤ ∆0 ·
(

1
2

)k∗
< n ·

(
1
2

)log2 n

= 1 ,

implying that G∗ has no edges and thus ∆(G∗) = d(G∗) = 0, and G∗ can again serve as the required
graph. 2
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2.2 Small c

Next we treat the more challenging case where the constant c in f(n, c) is very close to 1. Throughout
this subsection ε denotes a small positive real.

We start with several lemmas.

Lemma 2.3 Let G = (V,E) be a graph on n vertices with density p, and let ε > 0. Then G contains
an induced subgraph G′ of density p′ ≥ p, on a set of

n′ ≥ ε
2
ε

ln(1/p)n

vertices so that every set of t ≥ εn′ vertices of G′ spans at most
(
t
2

)
p′(1 + ε) edges.

Proof. Set G0 = G. For i = 0, 1, . . . repeat the following loop. Set

ni = |V (Gi)|, mi = |e(Gi)|, pi =
mi(
ni
2

) .
If Gi contains a subset Ui ⊆ V (Gi) of at least εni vertices such that eGi(U) ≥

(|Ui|
2

)
pi(1 + ε), then set

Gi+1 := Gi[U ], i := i+ 1.

Observe that after k iterations of the above loop, the density pk of the current graph Gk satisfies:
pk ≥ (1 + ε)kp0. Thus, if the loop is repeated at least 2

ε ln(1/p) times, we have:

pk ≥ (1 + ε)
2
ε

ln(1/p) · p > 1

– a contradiction. It follows that the above process concludes after less than 2
ε ln(1/p) iterations.

The resulting graph Gk has nk vertices and mk edges. Observe that at each iteration the number of
vertices of the new graph is at least an ε-proportion of the number of vertices of the previous graph.
Therefore,

nk ≥ εk|V (G)| ≥ ε
2
ε

ln(1/p)n.

We can thus take G′ = Gk, n′ = nk to complete the proof. 2

Lemma 2.4 Let G = (V,E) be a graph on |V | = n vertices with m = |E| edges and density p =
m/
(
n
2

)
≥ n−a, for some constant 0 < a < 1. Suppose that

every t ≥ εn vertices in G span at most
(
t

2

)
p(1 + ε) edges. (1)

Then for every subset U ⊆ V of cardinality |U | = εn in G, there are at most

εn2p(1 + 2
√
ε)

edges between U and its complement in G.
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Proof. Assume that U ⊂ V contradicts the above statement. Denote:

e1 = eG(U), e2 = eG(U, V − U), e3 = eG(V − U) .

Then e1 + e2 + e3 = m =
(
n
2

)
p.

Choose uniformly at random a subset X ⊂ V − U of cardinality |X| = x =
√
ε|V − U | =

√
ε(1− ε)n.

Then the expected number of edges of G spanned by U ∪X is:

E[eG(U ∪X)] = e1 +
x

|V − U |
e2 +

x(x− 1)
|V − U |(|V − U | − 1)

e3

> e1 +
x

n− εn
e2 +

x2

(n− εn)2

(
1− 1

x

)
e3

= e1 +
√
εe2 + εe3 −O(n) = e1 +

√
εe2 + ε(m− e1 − e2)−O(n)

≥ (
√
ε− ε)e2 + εm−O(n) ≥ (

√
ε− ε)εn2p(1 + 2

√
ε) + εm−O(n)

= (
√
ε− ε)ε(1 + 2

√
ε)n2p+

εn2p

2
−O(n) =: A .

On the other hand, by the assumption on G, every such set U ∪X satisfies:

eG(U ∪X) ≤
(
εn+

√
ε(1− ε)n
2

)
p(1 + ε)

≤ εn2p

2
(1 +

√
ε− ε)2(1 + ε) =

εn2p

2
(1 + 2

√
ε− ε− 2ε3/2 + ε2)(1 + ε)

=
εn2p

2
(1 + 2

√
ε+O(ε5/2)) =: B .

Let us compare the asymptotic (in small ε) behavior of the two quantities A and B defined above.
We have:

A =
εn2p

2
(1 + (2

√
ε− 2ε)(1 + 2

√
ε))−O(n)

=
εn2p

2
(1 + 2

√
ε+ 2ε− 4ε3/2)−O(n) .

Since n = o(n2p), we have that A > B for ε small enough – a contradiction. 2

Lemma 2.5 Let G = (V,E) be a graph on |V | = n vertices with m = |E| edges and density p =
m/
(
n
2

)
≥ n−a, for some constant 0 < a < 1. Suppose that (1) holds. Then G contains an induced

subgraph G∗ on at least (1 − ε − 2
√
ε)n > n/2 vertices with maximum degree ∆(G∗) ≤ (1 + 3

√
ε)pn

and minimum degree δ(G∗) ≥ (1− 2
√
ε)np. In particular, G∗ is c-nearly regular for c = (1 + 6

√
ε).

Proof. Let U be a set of εn vertices of highest degrees in G (ties are broken arbitrarily). Set
H = G[V −U ]. We claim that all vertex degrees in H are at most np(1 + 3

√
ε). If this is not so, then

the degrees of all vertices of U in G are at least np(1 + 3
√
ε), implying (through condition (1)):

eG(U, V − U) ≥ εn2p(1 + 3
√
ε)− 2eG(U) ≥ εn2p(1 + 3

√
ε)− ε2n2p(1 + ε)

> εn2p(1 + 2
√
ε) ,

6



for small enough ε, thus contradicting Lemma 2.4. Therefore, H is an induced subgraph of G on
|V (H)| = (1 − ε)n vertices, of maximum degree ∆(H) ≤ np(1 + 3

√
ε), still satisfying condition (1),

and having

|E(H)| ≥
(
n

2

)
p− ε2n2

2
p(1 + ε)− εn2p(1 + 2

√
ε)

≥
(
n

2

)
p− 2εn2p (2)

edges.

We now delete from H repeatedly vertices of degree less than np(1 − 2
√
ε), until there are no such

vertices, or until we have deleted 2
√
εn of them. Assume the latter case happens, and denote the set

of 2
√
εn deleted vertices by W . Then the set V (H)−W has |V (H)−W | = (1− ε − 2

√
ε)n vertices

and by (2) spans at least

eH(V (H)−W ) ≥ |E(H)| − 2
√
εn · np(1− 2

√
ε) ≥

(
n

2

)
p− 2εn2p− 2

√
εn2p(1− 2

√
ε)

=
(
n

2

)
p− 2

√
εn2p+ 2εn2p =

n2p

2
(
1− 4

√
ε+ 4ε

)
−O(np)

edges. On the other hand, by condition (1), the set V (H)−W satisfies:

eH(V (H)−W ) ≤
(

(1− 2
√
ε− ε)n

2

)
p(1 + ε) ≤ (1− 2

√
ε− ε)2(1 + ε)

n2p

2

=
n2p

2

(
1− 4

√
ε+ 3ε+O(ε3/2)

)
.

Comparing the above two estimates for eH(V (H)−W ) we get a contradiction for small enough ε.

It follows that the above deletion process stops before 2
√
εn vertices have been deleted. Denote the

resulting graph by G∗. Then G∗ has |V (G∗)| ≥ n − εn − 2
√
εn > n

2 vertices, has maximum degree
∆(G∗) ≤ np(1 + 3

√
ε) and minimum degree δ(G∗) ≥ np(1− 2

√
ε). Hence

∆(G∗) ≤ 1 + 3
√
ε

1− 2
√
ε
δ(G∗) < (1 + 6

√
ε)δ(G∗),

completing the proof of the lemma. 2

We are now ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. By Lemma 2.3 (with ε2

36 playing the role of ε), G contains an induced
subgraph G′ of density p′ ≥ p on

n′ ≥
(
ε2

36

) 72
ε2

ln(1/p)

· n =
(ε

6

) 144
ε2

ln(1/p)
· n

vertices, such that every set of t ≥ ε2

36n
′ vertices of G′ spans at most

(
t
2

)
p′(1 + ε2

36) edges. Since
p′ ≥ p > n−1/2 (as p > 0 is a constant and n is large), Lemma 2.5 implies that G′ contains an induced

subgraph G∗ on at least n′/2 vertices which is c-nearly-regular for c = 1 + 6
√

ε2

36 = 1 + ε, as needed. 2
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Proof of Theorem 1.3.

Set

ε0 =
ε2

36
, a =

ε0

3 ln(1/ε0)
.

Let G = (V,E) be a graph on n vertices. Denote by p = |E|/
(
n
2

)
the density of G. The average

degree of G is at most np and by Turán’s theorem G contains an independent set U of size n/(np+ 1).
Therefore we can assume that p ≥ n−a, as otherwise

n

np+ 1
≥ n

n1−a + 1
≥ (1− o(1))na = (1− o(1))n

ε0
3 ln(1/ε0)

= (1− o(1))n
ε2

108 ln(36/ε2) > n
ε2

250 ln(1/ε) ,

where here we used the assumption that ε is sufficiently small and n is sufficiently large. This gives
an induced 0-regular subgraph of G, and we can thus indeed assume that p ≥ n−a.

By Lemma 2.3 G contains an induced subgraph G′ of density p′ ≥ p on

n′ ≥ ε
2

ε0
ln(na)

0 · n = ε
2

3 ln(1/ε0)
lnn

0 · n = n1/3

vertices, in which the density of the induced subgraph on any set of at least ε0n
′ vertices does not exceed

p′(1 + ε0). By Lemma 2.5, G′ (and hence G) contains an induced subgraph on at least 0.5n′ ≥ 0.5n1/3

vertices, which is (1 + 6
√
ε0) = (1 + ε)-nearly regular, completing the proof. 2

Remark 2 Note that we have actually proved the following result, which is stronger than the assertion

of Theorem 1.3: Every graph on n vertices contains either an independent set of size at least n
ε2

250 ln(1/ε) ,
or a (1 + ε)-nearly regular induced subgraph on at least 0.5n1/3 vertices.

3 Upper bounds

3.1 The strictly regular case

Proof of Theorem 1.4. Set
k = Cn1/2 ln1/4 n ,

where C > 0 is a sufficiently large constant to be set later.

We will work with the following model of random graphs on n vertices which we denote by G(n, p̄).
Let p̄ = (p1, . . . , pn), where

pi =
1
4

+
i

2n
, i = 1, . . . , n .

Then G(n, p̄) is the probability space of graphs with vertex set [n] = {1, . . . , n}, where for each pair
1 ≤ i 6= j ≤ n, (i, j) is an edge of G(n, p̄) with probability pipj , independently of all other pairs.
Notice that the probability of each individual pair (i, j) to be an edge of G(n, p̄) is strictly between
1/16 and 9/16.
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Proposition 3.1 Let X1, . . . , Xt be independent Bernoulli random variables, where Pr[Xi = 1] =
ρi, i = 1, . . . , t. Let X = X1 + . . . + Xt. Assume that 1/16 ≤ ρi ≤ 9/16 for i = 1, . . . , t. Then for
every integer 0 ≤ s ≤ t, Pr[X = s] ≤ c0/

√
t, for some absolute constant c0 > 0.

Proof. For every 1 ≤ i ≤ t, we represent Xi as a product Xi = Yi · Zi, where {Yi, Zi} is a collection
of mutually independent Bernoulli random variables defined by Pr[Yi = 1] = 9/16, Pr[Zi = 1] = 16

9 ρi,
i = 1, . . . , t.

Set I0 = {1 ≤ i ≤ t : Zi = 1}. Since ρi ≥ 1/16 for all 1 ≤ i ≤ t, we have that Pr[Zi = 1] ≥ 1/9 and
E[|I0|] ≥ t/9. By standard large deviation arguments, |I0| ≥ t/10 with probability 1− o(1/

√
t). Thus

Pr[X = s] =
∑
I⊆[t]

Pr[I0 = I] · Pr[
∑
i∈I

Yi = s] =
∑
I⊆[t]

Pr[I0 = I]Pr[B(|I|, 9/16) = s]

≤ Pr[|I0| < t/10] +
∑
|I|≥t/10

Pr[I0 = I]Pr[B(|I|, 9/16) = s] .

Here B(n, p) denotes the binomial random variable with parameters n and p. From known estimates
on binomial random variables, we obtain that Pr[B(r, 9/16) = s] ≤ c√

r
≤ 4c√

t
for every r ≥ t/10, where

c > 0 is an absolute constant. Plugging this estimate into the inequality above, we get the claimed
result. 2

Lemma 3.2 Let U0 ⊆ [n] be a set of |U0| = k0 vertices. Then the probability that in G(n, p̄), with
p̄ as defined above, there is a set U ⊆ [n] such that U0 ⊆ U and G[U ] is a regular graph is at most

n
(
c1
k0

)k0/2
for some absolute constant c1 > 0.

Proof. Fix the degree of regularity d of the regular subgraph G[U ] (this can be done in n ways).
Now condition on all the edges/non-edges of G(n, p̄) besides those with both ends in U0.

Let U0 = {u1, . . . , uk0}. For each 1 ≤ i ≤ k0, denote the number of neighbors of ui outside U0 (after all
the edges connecting ui to the vertices outside U0 have been exposed) by di. Then in order for U0 to be
a part of a d-regular subgraph, the subgraph G[U0] should have degree sequence (d− d1, . . . , d− dk0).
We will estimate the probability of this event.

Expose the edges of G[U0] by first exposing the edges from u1 to U0 − {u1}, then from u2 to U0 −
{u1, u2}, etc. If vertex ui gets ti neighbors in {u1, . . . , ui−1}, then ui should have d− di− ti neighbors
in {ui+1, . . . , uk0}. Recall that all edge probabilities in G(n, p̄) are between 1/16 and 9/16. Thus
Proposition 3.1 applies, and the probability of the latter event is at most c0/

√
k0 − i. Multiplying

these probabilities for i = 1, . . . , k0, we derive that the probability that U0 is a part of a d-regular
graph is at most

k0−1∏
i=1

c0√
k0 − i

=
(c0)k0−1√
(k0 − 1)!

≤
(
c1

k0

)k0/2
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where c1 > 0 is an absolute constant and the last inequality follows by applying the Stirling formula.
Since the above estimate is valid for every choice of edges and non-edges having at most one vertex in
common with U0, we can lift the conditioning, thus arriving at the claimed estimate. 2

We can now complete the proof of Theorem 1.4. Fix a pair of vertices 1 ≤ a < b ≤ n (this can be
done in at most n2 ways) and denote b− a = t > 0. The probability in G(n, p̄) that there exists a set
U of size |U | = k, such that U = (u1 < . . . < uk/4 = a < . . . < u3k/4 = b < . . . < uk) and G[U ] is a
regular graph is at most (

t

k/2− 1

)
· n
(

c1

k/2 + 1

)k/4
by Lemma 3.2 (choose U0 = U ∩ [a, b] in at most

(
t

k/2−1

)
ways, and then apply Lemma 3.2 to the set

U0). The latter quantity is at most

n

(
et

k/2

)k/2( c1

k/2 + 1

)k/4
≤ n

(
8c1e

2t2

k3

)k/4
= o

(
1
n2

)
for all t ≤ c2k

3/2, with c2 being a sufficiently small constant. We can thus assume that t ≥ c2k
3/2.

Let U = (u1 < . . . < uk/4 = a < . . . < u3k/4 = b < . . . < uk). Denote the first (smallest) k/2 vertices
of U by U1, and the last k/2 vertices by U2. Observe that if G[U ] is a regular graph, then both induced
subgraphs G[U1] and G[U2] have the same average degree. This is highly improbable. Indeed, by the
definition of G(n, p̄) the probability of each pair inside U1 to become an edge is strictly less than the
probability of each pair inside U2 to become an edge. In addition, since b − a = t, the probability of
each pair i, j ∈ U1 with i, j ≤ a to be an edge is less than the probability of each pair i′, j′ ∈ U2 with
i′, j′ ≥ b to be an edge by Ω(t/n) - this is because in this case(

1
4

+
i′

2n

)(
1
4

+
j′

2n

)
−
(

1
4

+
i

2n

)(
1
4

+
j

2n

)
≥ Ω

(
i′ + j′ − i− j

2n

)
= Ω

(
t

n

)
.

It follows that the expected number of edges inside U2 exceeds that inside U1 by Ω
(
k2t
n

)
. By Chernoff’s

Inequality (c.f., e.g., [1], Appendix A), we obtain that the probability that G[U1] and G[U2] have the
same average degree in G(n, p̄) is at most exp{−c3k

2t2/n2} for some absolute constant c3 > 0.

Thus, recalling our assumption on t we derive that the probability that there is U as above for which
G[U ] is a regular graph is at most(

n

k

)
e−

c3k2t2

n2 ≤
(en
k

)k
e−

c3c22k5

n2 =
(
en

k
e−

c3c22k4

n2

)k
.

Finally, as k = Cn1/2 ln1/4 n we can choose C > 0 to be large enough so that the above expression is
o(1/n2). This completes the proof of Theorem 1.4. 2
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3.2 The nearly regular case

Proof of Proposition 1.5. We will prove that for every (large) n there exists a graph G on n

vertices in which every K-nearly regular induced subgraph has at most 7Kn/ log n vertices.

Assume first that n is of the form n = (s+1)2s for a positive integer s. Notice that s = (1−o(1)) log2 n.
Take a set V of n vertices and partition it into s+ 1 disjoint equally sized subsets V0, . . . , Vs, |Vi| = 2s.
Now we define G as follows. For i = 0, . . . , s the set Vi spans 2s−i disjoint cliques of size 2i each. There
are no edges between the cliques inside Vi and no edges between distinct subsets Vi 6= Vj in G.

Assume now that a subset U ⊆ V spans a graph G[U ] satisfying: δ(G[U ]) = d, ∆(G[U ]) ≤ Kd.
Observe that the degrees of all vertices from Vi in G are 2i−1, and thus if 2i−1 < d, then U ∩Vi = ∅.
Let now 2i ≥ d + 1. Since ∆(G[U ]) ≤ Kd, U has at most Kd + 1 vertices in each clique spanned by
Vi, implying |U ∩ Vi| ≤ 2s−i(Kd+ 1). Therefore:

|U | =
s∑
i=0

|U ∩ Vi| =
∑

i:2i≥d+1

|U ∩ Vi| ≤
s∑

i=dlog2(d+1)e

2s−i(Kd+ 1) < (Kd+ 1)2s−dlog2(d+1)e+1

≤ 2(Kd+ 1)
d+ 1

2s =
2(Kd+ 1)
d+ 1

n

s+ 1
≤ (2 + o(1))K

n

log n
,

implying the desired result.

For n not of the form n = (s+ 1)2s, choose a minimal s satisfying (s+ 1)2s ≥ n. Let n′ = (s+ 1)2s.
It is easy to verify that n′ ≤ 3n. Now we can apply the above construction to create a graph G′ on
n′ vertices in which every K-nearly induced subgraph has at most (2 + o(1))Kn′/ log n′ ≤ 7Kn/ log n
vertices, and then take G to be an arbitrary induced subgraph of G′ on exactly n vertices. 2

4 Open Problems

The most intriguing open problem is that of obtaining a better estimate for f(n, 1). In particular, the
conjecture of Erdős, Fajtlowicz and Staton that f(n, 1)/ lnn tends to infinity as n tends to infinity
remains open. The values of f(n, 1) for n ≤ 17 have been determined by the authors of [5] and
by McKay, and these are indeed larger than the bounds that follow from the corresponding Ramsey
numbers.

Our upper and lower bounds for f(n, c) for c > 1 are also rather far from each other, and it will be
nice to understand the behavior of this function better.

One can also study a variant of the problems considered here that deals with not necessarily induced
subgraphs. Of course, every graph contains a regular subgraph on all vertices (the subgraph with no
edges), and hence in this case it is natural to look for regular or nearly regular subgraphs with a large
number of edges. For every two positive integers n,m with m ≤

(
n
2

)
and a real c ≥ 1, let g(n,m, c)

denote the largest g so that every graph with n vertices and m edges contains a (not necessarily
induced) c-nearly regular subgraph with at least g edges. The problems of determining or estimating

11



the behavior of this function seems interesting. Here we can establish tighter estimates than the ones
obtained for the induced case.

Consider first the case c = 1. Since the complete graph on n vertices can be covered by n matchings
(and by (n− 1) for even n), it follows that g(n,m, 1) ≥ m/n, since every graph with m edges contains
a matching of size at least m/n. The star K1,n−1 shows that for some values of m and n this is
essentially tight, and that g(n,m, 1) = 1 for all 1 ≤ m < n. By a simple application of Szemerédi’s
Regularity Lemma it can be shown (see [8]) that for every fixed p > 0 there is a δ = δ(p) > 0 so that
g(n, pn2, 1) ≥ δn2. This bound was significantly improved by Rödl and Wysocka [9], who proved that
every graph with n vertices and pn2 edges contains an r-regular subgraph with r ≥ αp3n for some
positive constant α.

For a larger constant c observe, first, that complete bipartite graphs show that for m ≥ n, g(n,m, c) ≤
O(c(m/n)2) = O(cd2), where d = 2m/n is the average degree of a graph with n vertices and m

edges. Indeed, a complete bipartite graph Kk,n−k with k ≤ n/2 has average degree d = Θ(k). Every
c-nearly-regular subgraph in it has minimum degree at most k, and hence maximum degree at most
ck. Thus it cannot have more than k · ck = ck2 edges. Therefore, for every fixed c > 1 there exists
some C = C(c) so that g(m,n, c) ≤ C(m/n)2 for all m > n. We can show that for c > 2 this is tight,
up to a constant factor; namely, for any c > 2 there is a b = b(c) > 0 so that g(n,m, c) ≥ b(m/n)2 for
all m > n. For simplicity we present the proof only for c = 5, the proof for any other c > 2 is similar.

Theorem 4.1 Let G = (V,E) be a graph with |V | = n vertices, |E| = m > n edges and average degree
d = d(G) = 2m/n. Then G contains a 5-nearly regular subgraph with at least d2

212 edges.

Proof. We apply the method of Pyber in [7], together with a few extra twists. Clearly we may
assume that d ≥ 26. First omit from G repeatedly vertices of degree smaller than d/2, as long as
there are such vertices. As this process can only increase the average degree, it ends with a nonempty
graph G′ with minimum degree at least d/2. Now take a spanning bipartite subgraph of G′ with
the maximum number of edges. It is easy and well known that the degree of every vertex in this
bipartite subgraph is at least half its degree in G′, giving a bipartite graph H with minimum degree
at least d/4. Put H1 = H. Let A and B denote the two vertex classes of H, where |A| ≥ |B|. Let
A1 ⊆ A be a nonempty subset of A which satisfies |NH1(A1)| ≤ |A1| and A1 is minimal with respect
to containment (subject to the condition above and to being nonempty). Clearly there is such an A1,
as |NH1(A)| ≤ |A| and |NH1(v)| ≥ d/4 > 1 for all v ∈ A. Put NH1(A1) = B1 and note that by the
minimality of A1, |A1| = |B1|. By the minimality, again, and by Hall’s theorem, there is a matching
M1 saturating A1 and B1. Let H2 be the graph obtained from H1 by deleting all edges of M1. Now let
A2 ⊆ A1 be a nonempty, minimal subset of A1 satisfying |NH2(A2)| ≤ |A2|. As before, there is such
a set, as |NH2(A1)| ≤ |NH1(A1)| = |A1|. The minimality shows, again, that in fact |NH2(A2)| = |A2|,
and that there is a matching M2 saturating A2 and NH2(A2) = B2. Proceeding in this manner we
define a sequence of sets

∅ 6= Ad/4 ⊆ Ad/4−1 ⊆ · · · ⊆ A2 ⊆ A1 ⊆ A
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and
∅ 6= Bd/4 ⊆ Bd/4−1 ⊆ · · · ⊆ B2 ⊆ B1 ⊆ B

where |Ai| = |Bi| for all i, and a sequence of pairwise edge-disjoint matchings Md/4, · · · ,M2,M1, where
Mi is a perfect matching between Ai and Bi. Note that indeed this process does not terminate before
these d/4 phases, as initially all degrees in H are at least d/4, and with the omission of each matching
the degrees drop by 1.

For convenience we assume, from now on, that d is a power of 2 (otherwise, simply consider only the
first d′/4 sets Ai, Bi and matchings Mi, where d′ > d/2 is the largest power of 2 that does not exceed
d). Note that |Ad/8| > d/8, since every vertex of Bd/4 is incident with an edge of each of the matchings
Mi for d/8 ≤ i ≤ d/4, and all these edges are incident with vertices of Ad/8. We consider two possible
cases.

Case 1: For every i, 0 ≤ i ≤ log2 d− 4,

|Ad/2i+4 | > 2|Ad/2i+3 |.

In this case,

|A1| > 2log2 d−3|Ad/8| ≥
d2

64
,

and the matching M1 is a regular subgraph with more than d2/64 edges, supplying the desired result
(with room to spare).

Case 2: There is an i, 0 ≤ i ≤ log2 d− 4, such that

|Ad/2i+4 | ≤ 2|Ad/2i+3 |.

In this case, take the minimum i for which this holds. Then

|Ad/2i+3 | > 2i|Ad/8| ≥ 2i−3d.

Let H ′ be the graph consisting of the d
2i+4 matchings Mj for d

2i+4 ≤ j < d
2i+3 . The vertices of H ′ are

all those saturated by the largest matching among those, namely M d

2i+4
. Then the maximum degree

in H ′ is exactly d
2i+4 (as every vertex of Ad/2i+3 has that degree), and the average degree is at least

half of that, since each of the d
2i+4 matchings Mj above is of size at least half that of the largest one,

which is spanning. As in H ′ the degree of every vertex of Ad/2i+3 is exactly d
2i+4 , the total number of

edges of H ′ is at least

|Ad/2i+3 | ·
d

2i+4
≥ 2i−3d · d

2i+4
= 2−7d2.

Thus, H ′ is a graph with maximum degree that exceeds the average degree by a factor of at most
K = 2. We can now apply Proposition 2.1 with K = 2 and α = 0.4 to conclude that H ′ contains a
K/α = 5-nearly regular subgraph with at least

K − 2Kα
2K − 4α

|E(H ′)| ≥ 1
6

2−7d2

edges, completing the proof. 2
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[2] F. R. K. Chung and R. L. Graham, Erdős on Graphs: His Legacy of Unsolved Problems,
A. K. Peters, Ltd., Wellesley, MA, 1998.
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