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Abstract

Tettelin et. al. proposed a new method for clos-
ing the gaps in whole genome shotgun sequencing
projects. The method uses a multiplex PCR strat-
egy in order to minimize the time and effort re-
quired to sequence the DNA in the missing gaps.
This procedure has been used in a number of mi-
crobial sequencing projects including Streptococcus
pneumonige and other bacteria. In this paper we
describe a theoretical framework for this problem
and propose an improved method that guarantees
to minimize the number of steps involved in the gap
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closure procedures. In particular, given a collection
of n/2 DNA fragments we describe a strategy that
requires 0.75nlogn work in eight parallel rounds
of experiments, closely matching a corresponding
lower bound of 0.5n logn.

1. Introduction

Whole genome sequencing is a revolutionary ap-
proach to probing into the genetic make-up of
living organisms. The DNA of the first inde-
pendently living organism, H. influenze, was se-
quenced in 1995 by The Institute for Genomic Re-
search (TIGR) [7]. Since, over a hundred genomic
projects have been initiated, two dozens completed
including a major portion of the human genome.
Many complex organisms are also being sequenced,
including a variety of mammals, plants, and many
microbes and pathogens.

Shotgun sequencing is currently the most widely
used approach for whole genome sequencing [11].
It has been used in most microbial projects,
Drosophila as well as sequencing the Human
Genome at Celera and the mouse genome at the
Whitehead Institute. Shotgun sequencing involves
the generation of short DNA pieces providing a
redundant coverage of the genome. These DNA
fragments are subsequently assembled, in-silico, by
a computational algorithm. The typical genomic
assembler repeatedly merges DNA fragments with



similar (overlapping) ends into increasingly larger
fragments (contigs) until no more merging is pos-
sible or it is difficult to statistically justify a merge
based on the available information. Due to var-
ious technical problems related to both biology
(e.g., non-clonable sequences or coverage of DNA
libraries) and statistics of the sequence (e.g, re-
peats) some regions of the actual DNA sequence
are not covered by the contigs.

This problem creates gaps in the genomic se-
quence that are often difficult to close. There are
several techniques to link across such gaps. A
popular approach is using “primer walking”, how-
ever, this technique is not easily implementable
when the length of the gap is large. One power-
ful method to close a gap relies on a generating a
PCR product across the gap. This process requires
first producing unique primers at the end of each
gap- In particular, we need to choose primers that
correspond to regions outside repeats in the cur-
rently sequenced contigs (see Figure 1). Then the
PCR products are “walked” across the sequence
until they “meet” and create a reaction that can
be observed in a tube. In order to test whether
a particular pair of oriented contigs might be ad-
jacent in the genome, we need to place the two
primers corresponding to the two ends and the ge-
nomic sequence into a tube where the reaction can
be observed.

The obvious approach to combinatorial PCR will
test every pair of ends, thus, creating O(n?) tests
(tubes). For a large number of gaps this is not
feasible. An alternative approach was proposed
and implemented in the lab by [10]. The approach
is based on a multiplex PCR [5] where multiple
primers are pooled together and then tested simul-
taneously. To illustrate a simple version of multi-
plex PCR consider as an example the problem of
pairing N = 100 primers. The other critical pa-
rameter that we need to consider is the maximum
number or primers that can be placed in a tube.

In the example, we will assume this number is
K = 20. We first create 10 pools of primers, with
10 primers per pool. We subsequently pair each
pool using () tubes. In order to create this exper-
iment we assume we start from a state where each
primer is placed in a tube. Then we use pipetting
to create the pools. In this case we use 100 pipet-

ting operations to place the 100 primers into the 10
pools first. Then we use additional 90 pipettings to
place the mixed pools into the reaction tubes (45
tubes with two pools per tube) we need 90 pipet-
tings. The entire process requires 190 pipetting
operations.

This approach is hardly optimal in terms of
the number of reaction tubes required, and in
fact [10] propose a more sophisticated approach
based on block design (affine planes) which guar-
antees to minimize the number of tubes needed
for pairing all the primers. The multiplex PCR
method was used for the closing the sequence the
genomes of Streptococcus pneumoniae, Shewanella
putrefaciens, Staphylococcus aureus, and Chloro-
bium tepidum.

While the multiplex PCR approach has been
shown empirically very effective for small number
of gaps, it has not been analyzed using a precise
theoretical framework that allows to evaluate the
optimality or scalability of the technique for a large
number of gaps. For example, the number of gaps
in the Drosophila genomes is over 400. In many
cases a multiplex PCR method creates multiple re-
actions per tube, in which case we still need to con-
tinue the experiments to deconvolve the observed
results in order to check which primers exactly cre-
ated the reactions. In addition, each PCR reaction
experiment takes a substantial amount of time, e.g,
hours or even an entire day. Thus, another param-
eter to optimize in addition to number of tubes or
number of pipettings is the total time needed to
perform the experiment until all possible reactions
have been identified. In general, we expect that
future PCR experiments will be carried by robotic
devices where the overall time and the total work
are the main critical resources.

In this paper we develop a natural theoretical
framework for multiplex PCR that allows us to
formulate the problem in computational terms. In
particular, we provide a formalism that allows to
minimize the total number of PCR tests which we
refer to as work as well as attempting to minimize
the total completion time. We formulate a ver-
sion of the problem where the perform PCR ex-
periments in k parallel rounds and therefore the
time the entire process takes is proportional to the
number of rounds. Throughout log denotes log,
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Figure 1: A partially assembled DNA sequence with four gaps requires eight primers to be designed
for each end and subsequently “matched” to each other using PCR in order to identify the order and
orientation of the contigs in the genome



and In denotes log,.

2. Learning a Matching

We can think abstractly of our biological problem
as follows: Given n chemicals, each of which reacts
with at most one of the other n chemicals, deter-
mine exactly which pairs of chemicals react. A
“test” consists of putting a subset of the chemicals
in a tube and seeing if any of them react. Based on
the underlying biology, we can assume that there is
areaction in a tube iff at least one pair of chemicals
in the tube reacts by themselves.

We call a pair of chemicals that react a match.
We assume throughout that each chemical reacts
with at most one other, i.e., each chemical belongs
to at most one match. Given a collection of chem-
icals, the set of all matches among them is called
their matching.

3. Parallel Matching-Finding

Algorithm

We are given a set S of n chemicals and want to
find their matching. The following lemma is key
to obtaining a fast parallel algorithm.

Lemma 1 (Partition). If we partition S into
n/s subsets of size s the expected number of
matches internal to subsets is at most s/2. In par-
ticular, the expected number of subsets that contain
a match is at most s/2.

Proof: S contains at most n/2 matches. Thus
the probability that any particular pair is a match
is at most (n/2)/(3) = 1/(n — 1). There are
(n/s)(3) pairs in the n/s subsets of size s. Thus
the expected number of matches internal to them
is

(n/s)s((s =1)/2)/(n = 1) =

(1/2)n(s = 1)/(n - 1) < /2

since s < n. |

3.1. Finding a Bipartite Matching

In Figure 2, we solve a bipartite version of the
matching problem, which is interesting in its own
right. Given two sets A and B = {by,...,b,/2} of
size n/2 such that A contains no matches and B
contains no matches, find all matches between A
and B. We will reduce the general matching prob-
lem to the bipartite case.

Since £ < logn, this can be done in 1 round with
0.5n logn work.

3.2. Partitioning into Matchless

Subsets

In Figure 3 we reduce to the bipartite case by par-
titioning S into several subsets, each of which con-
tains no matches. The number ¢ was chosen so as
to minimize the number of tests performed by the
algorithm.

Step 1: We start by performing n%7 tests. By
the lemma, the expected number of pieces that
contain a match is (1/2)n%2. The brute force com-

parison takes time ("(;3) per piece. So the total ex-
pected work for step 1 is at most n%7 + (1/4)n%°.
The time for Step 1 is 2 rounds.

Step 2: We start by performing /n/c tests.
By the Partition Lemma, the expected number of
groups that contain a match is at most (1/2)+/cn.
For each group G that contains a match we perform
(*/520'2) tests to see which pairs of pieces in G con-
tain matches. This contributes at most (1/4)cn??
to the total work.

The expected number of pairs that contain a
match is also at most (1/2)y/cn by the lemma.
Matches between P; and P, can be found by our
bipartite algorithm with work 0.3n%2logn so this
contributes at most (3/20)/cn®®logn to the total
expected work.

The time for step 2 is 3 rounds

So Partition runs in 5 rounds with expected work
at most

0.25(c + 1)n%® + 0.15v/cn®®logn + n%7 + /en®>

3.3. Putting the Pieces Together

In Figure 4, we present our matching algorithm.



For each element a of A do in parallel
let £ = [log (n/2+1)]
/* let bit;(j) denote the ith bit in the binary representation of j */
for i := 0 to £ do
if a reacts with any b; such that bit;(j) = 1 then a; :=1else a; := 0
let 7 be the number whose binary representation is ay...aq
if 7 # 0 then a reacts with the element numbered ay,...ag

Figure 2: Procedure BipartiteMatch

Let ¢ =1In2.

Step 1: Partition S randomly into n®7 pieces of size n?-

for each piece P
if P contains a match then
by brute force, find all matches in P
remove all matches found

Step 2: Randomly combine pieces 1/cn®2 at a time to form y/n/c groups
for each group G
if G contains a match then
for each pair of pieces P;, P in G do
if there is a match in P; union P, then
find all matches between P; and Py
remove all matches found

Figure 3: Procedure Partition

Step 1: Perform procedure Partition v/logn times in parallel to produce
v/(1/c)nlogn subsets of size /cn each, none of which contains a match.

Step 2: For each pair Sy, S2 of subsets
test whether there is a match between S; and Ss

Step 3: For each pair ¢, j of chemicals
skip := false
for every subset I containing 4
for every subset J containing j
if no match was found between I and J then
skip := true
if not skip then
test whether i reacts with j

Figure 4: Algorithm Match



Step 1: 5 rounds and (0.25(c + 1)n%® +
0.15\/cn®8logn + n®7 + /en®®)y/logn work

Step 2: 1 round and (V (1/2" logm) - <
0.5(1/¢)nlogn work

Step 3: If i reacts with j then clearly we will
test it. This case results in n/2 tests.

If there is a single subset that contains both ¢
and j then no tests will be performed for the pair
i,]-

Otherwise, the probability that every I contain-
ing 4 reacts with every J containing j is at most
%. This requires a nontrivial analysis, which
we will present in the final version, because we do
not have complete independence on the tests. This
case results in (3)/n < n/2 tests.

Step 3 takes only 1 round.

Thus Algorithm match runs in 7 rounds and does
0.5(1/¢)nlogn + n + o(n) = (1/(2In2))nlogn +
n + o(n) work. This is asymptotically less than
0.72135n logn.

4. Lower Bound and a Serial

Algorithm

We prove that the matching problem requires
0.5nlogn — O(n) tests, even if they are performed
sequentially. Thus our parallel algorithm is within
a factor of In 2 of optimal. We also present a serial
algorithm that uses only 0.5nlogn + n tests, and
is therefore optimal up to first order.

4.1. Lower Bound

We will actually show the lower bound holds for
even for the simpler bipartite matching case de-
scribed in Section 3.1. We use a proof similar to
the Q(nlogn) lower bound for sorting.

Each experiment we perform produces only two
possible outcomes: we find a reaction or we don’t.
Let Si,i,...ii for ij € {0,1} be the set of matchings
on a bipartite graph that on the jth experiment
produces a reaction iff i; = 1.

Suppose we only need k experiments. This
means that for each 7 € {0, 1}, S7 has at most one
matching. The total number of possible matchings
is 2% or, equivalently k& > logm where m is the
number of matchings on a bipartite graph.

Each matching on a bipartite graph corresponds
to a permutation of the n/2 vertices in one side of
the graph. So we have m = Z!. By Stirling’s ap-
proximation to the factorial we have k > logm =
5 logn —0(n).

4.2. Optimal Serial Algorithm

Given a set {c1,...,c,} of chemicals, we will de-
termine their matching.

Algorithm SerialMatch
T = {}

for i := 1 ton do
T:=TU {Cz}
if there is a reaction in T then
T:=T— {Cz}
find which element ¢; in T reacts with c;
T:=T - {C]’}

End of Algorithm SerialMatch

The “find” step can be performed with logn par-
allel tests, using the binary representation trick
from our bipartite matching algorithm. The al-
gorithm takes (3/2)n rounds and makes a total of
n + (n/2)logn tests.

5. Simulation

We implemented our proposal in a simulation. We
wanted to see whether our theoretical analysis is
supported in an experimental setting as well as
providing lab biologists with an effective tool to
guide the experiments. The software is available
from the corresponding author by email request
(kasif@genome.wi.mit.edu). Our simulation sup-
ports the theoretical analysis. The observed work
is very close to the predicted estimates with rela-
tively little variance. The results are given in Fig-
ure 5.

6. Discussion

Combinatorial algorithm design has been playing
a consistently important role in sequencing, map-
ping, assembly, DNA chip design and analysis,
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linkage analysis, protein clustering and many other
problems [6, 9, 12, 8, 1]. In this paper we provided
a theoretical framework for analyzing the problem
of closing gaps in whole genomes. We also devised
an effective method with very good theoretical and
empirical performance (in a simulation). The gen-
eral problem addressed in the paper, namely effi-
ciently pairing of objects is related to a number of
other important problems in computational biol-
ogy. For example, screening experiments against
a DNA library requires efficient pooling strategies
[3, 2, 4]. DNA pooling of a rather different nature
has been also used in genetic tracking of genes for
complex traits. There are several open theoretical
questions.

e Can we solve the matching problem in time
anlogn + o(nlogn) for some a < 1/(21n2)?

e Can we make Step 2 of Algorithm Match de-
terministic (perhaps by using block designs)?

e Can we make the algorithms described in the
paper robust to errors that sometimes sneak
into experimental laboratory procedures? A
relatively simple solution to cope with false
negatives, namely missed reactions, is to retest
the primers that were not matched by a re-
cursive application of the algorithm we de-
scribed. This approach is naturally not op-
timal when the error is high. False posi-
tive errors, namely spurious reactions, can be
eliminated by retesting of the matched pairs.
Again, the efficiency of the solution will be
highly dependent on the relative error rate.
We expect the false positive rate to be small
assuming the primers are well designed. Once
we have a more accurate estimate on the num-
ber of errors in large-scale gap-closing proce-
dures we can adapt our algorithm to address
this problem.

e The problem we studied is theoretically equiv-
alent to the problem of learning read-once
monotone 2DNF formulas with only member-
ship queries. Is there a computational learn-
ing formalism that captures this problem es-
pecially with respect to the anticipated noise
in multiplex PCR procedures?

We also plan to implement our proposal in
the lab in one of the ongoing genome sequencing
projects. The previous version of multiplex PCR
is now used routinely at TIGR. However, the pre-
vious method relies on a heuristic procedure with
substantial human assistance in inspecting the re-
action tubes. For a large number of gaps, a robotic
implementation is essential. We believe the cur-
rent proposal is likely to result in an improved
overall procedure, especially if assisted by a fully
automated robotic installation similar to the ones
used at the Whitehead Institute and other major
genome centers.
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