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ABSTRACT
We investigate the complexity of the outer face in arrange-
ments of line segments of a fixed length ` in the plane, drawn
uniformly at random within a square. We derive upper
bounds on the expected complexity of the outer face, and es-
tablish a certain phase transition phenomenon during which
the expected complexity of the outer face drops sharply as
a function of the total number of segments. In particular
we show that up till the phase transition the complexity of
the outer face is almost linear in n, and that after the phase
transition, the complexity of the outer face is roughly pro-
portional to

√
n. Our study is motivated by the analysis of

a practical point-location algorithm (so-called walk-along-
a-line point-location algorithm) and indeed, it explains ex-
perimental observations of the behavior of the algorithm on
arrangements of random segments.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Boundary representations; Curve, surface, solid, and
object representations; G.3 [PROBABILITY AND STA
TISTICS]: Probabilistic algorithms; F.1.2 [Modes of Com-
putation]: Probabilistic computation; F.2.2 [Nonnumerical
Algorithms and Problems (E.2-5, G.2, H.2-3)]: Com-
putations on discrete structures; Geometrical problems and
computations
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1. INTRODUCTION
Given a finite collection C of line segments in the plane,

the arrangement A(C) is the subdivision of the plane into
vertices, edges and faces induced by C. A vertex is either a
segment endpoint or an intersection point of two segments;
an edge is a maximal relatively open connected portion of
a segment not meeting any vertex, and a face is a maximal
open connected region of the plane not containing any ver-
tex or edge. Arrangements are similarly defined for other
types of curves in the plane or for (hyper)surfaces in higher
dimensions. They have been intensively studied in combi-
natorial and computational geometry, and have numerous
applications (see, for example, the surveys [1], [15], and the
book [21]). For a more recent survey on using arrangements
in practice see [13].

In this paper we investigate arrangements of random seg-
ments, and concentrate on the specific family of random
arrangements defined as follows: Let S denote a unit square
in the plane. Fix an integer n and a real positive length
`. Let C be a collection of n oriented line segments, all of
length `, where each s ∈ C is chosen independently by first
choosing the location of an endpoint of s uniformly at ran-
dom in S , and then choosing an orientation for s uniformly
at random on the unit circle Γ. Thus, a segment in C may
protrude through the boundary of S . For simplicity we call
these segments valid segments, and denote the first and sec-
ond endpoints of s as the source and target of s, respectively.
Let Cn

` denote the probability space of all such collections
C. Note that Cn

` = (S × Γ)n, with the uniform (Lebesgue)
measure.

An arrangement of a finite number of bounded curves
has a unique unbounded face, which we call the outer face.
We focus on the following combinatorial quantity associated
with the outer face. Let f(C) denote the number of seg-
ments in C that appear on the boundary of the outer face of
A(C). Notice that a segment may contribute several edges
to the boundary of the outer face, but we count it in f(C)
only once. Let f(n, `) denote E[f(C)], where the expecta-
tion is over C ∈ Cn

` . We obtain sharp bounds for f(n, `)
and for several related quantities. (By the standard theory
of planar arrangements (see, e.g., [21]), the upper bound on
the actual complexity (number of edges) of the outer face is
O(f(C)α(f(C))), where α(·) is the inverse Ackermann func-
tion.)

Our study is motivated by an experimental inspection



of point-location strategies in planar subdivisions. Point-
location queries are a basic operation on arrangements [5,
Chapter 6]: Given a query point q, we wish to efficiently
report the cell (vertex, edge, or face) of the arrangement
containing q. There are various classical point-location data
structures that support queries in time that depends log-
arithmically on the complexity of the arrangement, namely
the overall number of its vertices, edges, and faces; see for ex-
ample [4], [11], [17], [18], and [19]. However, in practice one
often prefers a mechanism that does not require extra pre-
processing (beyond the initial construction of the arrange-
ment, because, in spite of their optimal asymptotic perfor-
mance, these structures tend to be cumbersome to construct
in practice). A typical practical solution is to “walk” on the
arrangement from some initial point in some known cell to-
wards the query point. For example we start with a point
vertically above the query point, in the outer face. If we let
ρ denote the vertical ray emanating from the query point
upwards, then a typical “walk” step is to compute a face
edge that intersects the ray ρ closest to the query point and
to advance toward the query point, by switching to the face
on the other side of the edge, and keep iterating the search
for an “exit edge” within this face. See, e.g., [7] for details of
the special case of a walk point-location in triangulations.

While this technique may sound too wasteful from a the-
oretical point of view, its advantage is that the search over
the edges of the current face is very simple to implement,
requires no extra data structure, and runs very efficiently
and robustly. Still, the efficiency depends on the number of
edges the “walk” algorithm has to inspect, and its success
depends on this number being small.

As a first approximation towards bounding the number
of inspected edges, we consider only the first step, in which
we search over the edges of the outer face, and seek a sharp
bound on the expected number of these edges, under the
random model that we assume. Notice that typically, an
arrangement induced by many random segments within this
model, has a single giant face (the outer face) and many
other smaller sized faced.

Figure 1 depicts the number of segments that appear on
the outer face of A(C), for a random C ∈ Cn

` , where ` = 0.08
is fixed and n is a parameter between 0 and 10000, averaged
over ten runs for each n. For small values of n, f(n, `) grows
linearly; then there is a sharp drop, and then f(n, `) starts
growing again but at a much slower rate than before.

It is not difficult to give an informal interpretation of this
phenomenon. However in this paper we strive to analyze
this and related phenomena more precisely. Moreover, with
the increase of interest in the experimental study of algo-
rithms, we anticipate that analyses of the type given here
could be helpful in guiding and understanding the practical
performance of a variety of algorithms on arrangements and
on other geometric structures, constructed on random input
sets.

Related work.
Before stating our precise findings, we first review some

related results. Bose and Devroye [2] proved that the num-
ber of triangles visited in the straight line walk algorithm,
in the special case of a Delaunay triangulation of uniformly
distributed points in a compact convex set in the plane, is
O(|pq|√n), where |pq| is the length of the segment we tra-
verse and n is the number of points in the triangulation.
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Figure 1: The average number of segments that ap-
pear on the outer face of C ∈ Cn

` (the “size” of the
face, solid graph) and the complexity of the face
(dashed graph), averaged over ten runs for each n,
where ` = 0.08 is fixed and n is a parameter between
0 and 10000.

Devroye et al. [9] presented a simple walk algorithm for
point-location queries in Delaunay triangulations of n ran-
dom points in the plane, with expected time O(n1/3).

Devillers et al. [7] compared the run-time of common walk-
ing techniques for random point-location queries in general
triangulations in R

2, R3 and R
d.

Flato et al. [12] described the Arrangement package1 of
Cgal (Computational Geometry Algorithms Library), with
several point-location strategies that it implements. Our
paper was motivated by the experimental results in that
work.

Devroye and Toussaint [10] and later Golin et al. [14]
showed a related result for the complexity of the convex
hull of the intersection points of random lines in the plane.
Both papers prove that an arrangement of n lines chosen
at random from the plane (using natural models) has a ver-
tex set whose convex hull has constant (expected) size (the
worst-case bound is Θ(n)).

Summary of results.
In this paper we prove the following theorems:

(i) The outer face complexity undergoes a rapid phase
transition.

Theorem 1.1. [Sparse arrangements] For any ε > 0
there exists some constant c1 = c1(ε) > 0 such that for every
` > 0 and c1d 1

`2
e > n ≥ 0,

f(n, `) ≥ (1 − ε)n. (1)

Theorem 1.2. [Critically dense arrangements] There
exist constants c2 > 0 and C2 > C1 > 0, such that, for each
0 < ` < 1 and n = d c2

`2
e,

C1

√
n ≤ f(n, `) ≤ C2

√
n. (2)

1The Arrangement package and many more can be down-
loaded from http://www.cgal.org.



(ii) The outer face complexity is asymptotically a frac-
tional power.

Theorem 1.3. [Asymptotic complexity] For any ` > 0,

f(n, `) = Θ(n1/2+o(1)) as n→∞.

Outline of the paper.
We start with an analysis of the complexity of the outer

face before the phase transition (Section 2), proving Theo-
rem 1.1. We present a refined analysis of the phase transition
in Section 3, proving Theorem 1.2. In Section 4 we prove
Theorem 1.3, concerning the behavior beyond the phase
transition. We conclude with experimental results in Sec-
tion 5.

As a corollary, we can conclude that for sufficiently small
segment length `, the expected run-time of the “walk-along-
a-line”point-location strategy, as a function of the number of
segments, exposes analogue phase transition characteristics;
We omit the details for lack of space. The details will appear
in the full version of the paper.

2. SPARSE ARRANGEMENTS — BEFORE
THE PHASE TRANSITION

In this section we prove Theorem 1.1. Recall that Cn
`

denotes the probability space of n random line segments
of fixed length ` in the unit square S , as described in the
Introduction, and that f(n, `) denotes the expected number
of segments in C that appear on the boundary of the outer
face of A(C), over C ∈ Cn

` .

Theorem 1.1. [Sparse arrangements] For any ε > 0
there exists some constant c1 = c1(ε) > 0 such that for every
` > 0 and c1d 1

`2
e > n ≥ 0,

f(n, `) ≥ (1 − ε)n. (1)

Proof. To prove the theorem we bound the expectation
of the complementary quantity, namely the expected number
of segments that do not show up on the boundary of the
outer face, showing that this value is ≤ εn.

Let ε > 0, ` > 0 be given, and assume that n ≤ µd 1
`2
e

where 0 < µ = µ(ε) < 1 will be determined later. If ` ≥ 1
then obviously n = 0 and the proof follows. Assume that
` < 1. Consider a fixed set C ∈ Cn

` . We call a segment s ∈ C
internal if s does not appear on the closure of the outer face
of A(C). Observe that for each internal segment in A(C)
there exists some circular sequence < si1 , si2 , . . . , sik > of
k ≥ 4 distinct segments, such that each adjacent pair of
segments (sij , sij+1

) intersect, and such that s is disjoint
from the closure of the outer face of A({si1 , si2 , . . . , sik}).
We call such a sequence a closed chain of length k and s is
considered internal to this chain.

For a fixed tuple of distinct indices (i1, i2, . . . , ik), and
another index ik+1, let V(i1,i2,...,ik;ik+1) be the following in-
dicator random variable

V(i1,i2,...,ik;ik+1) =

8

>

>

<

>

>

:

1 if < si1 , si2 , . . . , sik > is a closed
chain and sik+1

is internal to the
chain,

0 otherwise.

Put Wk :=
P

V(i1,i2,...,ik;ik+1), where the sum extends
over all tuples (i1, i2, . . . , ik) and indices ik+1, as above for
k fixed. Notice that, since < si1 , si2 , . . . , sik > is a closed

chain, the source point of sij+1
is within a disc of radius 2`

centered at the source point of sij , for each j < k. Also,
since sik+1

is internal to the chain, the source point of sik+1

is within a disc of radius (k/2)` centered at the source of
si1 . Thus

E[Wk] ≤ n!

(n − k)!
(n − k)(π(2`)2)

k−1
π((k/2)`)2.

Let Ek denote the expected number of segments that are
bounded by some closed chain of length k. The expected
number of internal segments is at most

Pn−1
k=4 Ek, and we

have Ek ≤ E[Wk]/2k (each closed chain contributes 2k dif-
ferent tuples to the sum Wk). Observe that this is a rather
weak estimate, because a segment may be counted many
times on the right-hand side, once for each enclosing chain,
but only once on the left-hand side. Hence

n−1
X

k=4

Ek ≤
n−1
X

k=4

n!

(n − k)!2k
(n − k)(π(2`)2)

k−1
π((k/2)`)2

≤
n−1
X

k=4

µk(2/`2)
k
/(2k) · n(4π)k−1`2(k−1)π(k/2)2`2

≤ n

n−1
X

k=4

(8πµ)kk/32.

Notice that the last quantity is independent of `.
If, say, 8πµ ≤ 2/5 then the last sum is bounded by twice

the first summand. Hence, the right-hand sum is at most

n 2·(8πµ)44
32

. Letting c1 = min(2/5, 4
√

4ε)/8π completes the
proof.

Note that, as intuitively expected, c1 decreases with ε.

3. THE PHASE TRANSITION
In this section we prove Theorem 1.2.

Theorem 1.2. [Critically dense arrangements] There
exist constants c2 > 0 and C2 > C1 > 0, such that, for each
0 < ` < 1 and n = d c2

`2
e,

C1

√
n ≤ f(n, `) ≤ C2

√
n. (2)

We proceed with several definitions and lemmas. Recall
that S denotes the unit square. Let A = A(C), C ∈ Cn

` ,
be an arrangement of n random segments, as defined above.
Given a parameter k, we let G = G(k) denote the partition
of S into a grid of k × k equal squares.

An m-boundary sequence in G is a sequence (ζ1, ζ2, . . . , ζm)
of distinct G-squares with ζ1 incident to the boundary of S
and with each pair of adjacent squares (ζi, ζi+1) sharing a
common edge.

An exposed m-boundary sequence in G, relative to A, is
an m-boundary sequence in G with all the squares in the
sequence intersecting the outer face of A.

A square that belongs to at least one exposed m-boundary
sequences is called an exposed square. The squares that are
incident to the boundary edges of S are the boundary squares
of G and the other squares are internal. A G-square ζ is said
to be well bounded in an arrangement of segments if the
arrangement induced by the segments with sources inside ζ,
has an outer face disjoint from ζ. See Figure 2.

Roughly speaking, we argue as follows: Given 0 < ` ≤ 1,
let n = dµ/`2e, where µ > 0 is a parameter to be determined



Figure 2: Example of a well bounded square — the
solid segments (drawn as arrows emanating from
their source points) completely separate the shaded
square from the outer face.

later, and take k = max(b1/`c, 1). Then, for a random ar-
rangement A = A(C), C ∈ Cn

` , and for a fixed square ζ in
G = G(k), the expected number of segments with sources in
ζ is

n

k2
≥ µ

`2
· `2 = µ.

Therefore, by controlling the value of µ, we can ensure that,
with high probability, a fixed grid square contains many seg-
ment sources, and therefore (using Lemma 3.1 below) is well
bounded with high probability. That is, the subset of seg-
ments with sources within a fixed grid square induces an
arrangement that, with high probability, completely sepa-
rates the square from the outer face of A(C). This implies
that only a small fraction of the squares of G are expected to
intersect the outer face. Furthermore, with µ large enough,
we can bound the probability that a fixed m-boundary se-
quence is exposed relative to A by am, for an appropriate
constant a < 1/3. Since the overall number of m-boundary
sequences is O(k · 3m), it follows that the expected number
of exposed m-boundary sequences, summed over all m ≥ 1,
is O(k). This in turn provides a trivial upper bound of
O(k) = O(1/`) = O(

√
n) on the expected number of exposed

squares. Since any segment that meets such a square must
have its source in a nearby square, and since the expected
number of segments in any square is O(1), one can deduce
that the expected number of segments that contribute to the
outer face is only O(

√
n).

In more detail, the proof proceeds as follows.

Lemma 3.1. For each 0 < p < 1 there exists µ1 = µ1(p),
such that the following statement holds. Suppose ` > 0,
k = max(b1/`c, 1) and let ζ be a 1/k×1/k square. Consider
a random collection of µ1 segments, each of length `, where
each segment is chosen by picking its source uniformly at
random in ζ, and by choosing its orientation uniformly at
random on the unit circle. Then, the probability that ζ is
well bounded in the arrangement formed by these segments
is at least p.

Proof. Since each of the segments is of length at least
1/(2k) and ζ is a 1/k×1/k square, we can arrange a subset of
µ0 = O(1) segments in some fixed pattern (e.g., µ0 = 25 as
shown in Figure 2) to separate ζ from the outer face. Since

a small perturbation of each segment still yields a config-
uration that keeps ζ disjoint from the outer face, we con-
clude that there is some (small) probability p0 for ζ to be
well bounded. Now a standard amplification argument im-
plies that the probability of ζ to be well bounded is at least
1 − (1 − p0)

m, for µ1 = mµ0. This can be made > p if we
choose m (and µ1) sufficiently large.

For each grid square ζ, define the indicator random vari-
able

Zζ =



1, if the square ζ is not well bounded,
0, otherwise.

By taking µ sufficiently large, with n = dµ/`2e, as above, we
can ensure, using Lemma 3.1, that E[Zζ ] is sufficiently small
for each square ζ. Recall that if a grid square ζ is exposed
then there exists some m-boundary sequence (ζ1, ζ2, . . . , ζm =
ζ), for some m ≥ 1, such that Zζi = 1, for each 1 ≤ i ≤ m.

Lemma 3.2. For any constant 0 ≤ a < 1
3
, the following

statement holds:
If for every m-boundary sequence (ζ1, . . . , ζm)

Pr

2

4

^

1≤i≤m

Zζi = 1

3

5 ≤ am, (3)

then the expected number of exposed squares is at most 4ak
1−3a

.

Proof. Denote by Em the expected number of exposed
squares that have a witness boundary sequence of length m.
Let Ym < 4k · 3m−1 denote the total number of boundary
sequences of length m. By (3), the expected number of
exposed squares is at most

∞
X

m=1

Em ≤
∞
X

m=1

Ymam ≤ 4k

3

∞
X

m=1

3mam =
4ak

1 − 3a
.

Lemma 3.3. There exists a constant b > 0 so that if
0 < ` ≤ 1 and n > b/`2 then for every m-boundary sequence
(ζ1, ζ2, . . . , ζm), the inequality (3) holds with a = 1/4.

Proof. By Lemma 3.1 there exists some µ such that for
a fixed grid square with µ random segments whose sources
are chosen uniformly in it, the probability that the square
is not well bounded is at most, say, 1

256
.

Suppose b > 2µ and n ≥ db/`2e. Each square ζ that
satisfies Zζ = 1 is classified as being either of type A, if
ζ contains fewer than µ segment sources, or of type B, if
ζ contains at least µ segment sources while not being well
bounded.

Clearly, for any m ≥ 1, if some fixed m-boundary sequence
(ζ1, . . . , ζm) is such that all its squares are exposed, then it
contains either (at least) m′ = dm/2e squares of type A, or
(at least) m′ squares of type B. We proceed to show that
the probability of each of these two events is small. To this
end, it is convenient to consider the following procedure for
generating the random segments in the collection C. Each
segment s ∈ C is chosen, randomly and independently, in
two steps. In the first step, select the G(k)-square containing
the source of s, where all k2 choices are equally likely. In
the second step, choose the precise location of the source
inside the selected grid-square, as well as the direction of
the segment. Obviously this is equivalent to the original



way of generating our random collection. This equivalent
description is, however, more convenient for what follows.

The probability that there are at least m′ squares of type
A in our fixed m-boundary sequence can be bounded by
examining the results of the random choices in the first step
for all segments. Indeed, there are

`

m
m′

´

< 2m possible ways
to choose m′ squares among those of the sequence, and the
probability that each of them contains less than µ sources
of segments is at most the probability that in the union of
all of them there are fewer than m′µ such sources. This is
at most the probability that the value of a binomial random
variable with parameters n and P = m′/k2 is less than half
its expectation. By Chernoff’s Inequality this is bounded by

e−nP/8 ≤ e−bm/16,

which is less than 1/16m provided, say, b > 50. Multiplying
this estimate by the number of possible choices for the m′

“uncrowded” squares of the sequence, we conclude that the
probability of this event is smaller than 1/8m.

We next claim that the probability that there are at least
m′ squares of type B in our fixed m-boundary sequence is
at most

 

m

m′

!

„

1

256

«m/2

<
1

8m
.

Indeed, there are
`

m
m′

´

ways to select m′ squares in the se-
quence. Fixing m′ squares, consider our two-step choice
of the segments in the collection C. The probability that
all these squares are of type B is at most the conditional
probability that this happens, assuming that each of them
contains at least µ sources of segments by the end of the
first step. But this conditional probability depends only on
the choices in the second step, and in the second step this
is the intersection of m′ mutually independent events, each
having probability at most 1/256, by Lemma 3.1 and the
choice of µ. This proves the claim and completes the proof
of the lemma, as 1

8m + 1
8m ≤ 1

4m (with room to spare for all
m > 1).

Proof [of Theorem 1.2]. Take k = b 1
`
c, and construct

the k×k grid partition G = G(k) of S . By Lemmas 3.2 and
3.3, there is a positive constant b, such that if n ≥ b/`2 then
the expected number of exposed grid squares is at most 4k.
It is convenient to prove the theorem with c2 = b + 1. We
first prove the upper bound. Note that, since ` < 1,
n = dc2/`2e is at least db/`2e + 1. For a fixed random seg-
ment s in our collection C, the probability that s intersects
the outer face is at most the probability that its source q
lies within distance ` from a grid square ζ which is exposed
in the random arrangement of all segments in C besides s,
and then q lies in a square adjacent to ζ. Therefore, the
probability that s intersects the outer face is at most

1

k2

X

ζ∈G(k)

X

ζ′∈G(k),ζ′∩ζ 6=∅

Pr
˘

ζ′ is exposed in C \ {s}
¯

≤ 9

k2

X

ζ∈G(k)

Pr
˘

ζ is exposed in C \ {s}
¯

.

The last sum is precisely the expected number of exposed
squares in C \ {s} which, by Lemmas 3.2 and 3.3, is at most
4k. It follows that the probability that s intersects the outer
face is at most 36/k. By linearity of expectation, the ex-
pected number of segments that intersect the outer face is

M = M(`, ε)

0
0

1

1ε
ε

1 − ε

1 − ε

ε

√
2ε`
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a-co
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regu
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Figure 3: An illustration of M(`, ε) for some `, ε > 0.
For example, the two dashed vertical lines at the
top separate the region above the square into regu-
lar points (middle section) and near-a-corner points
(side sections).

at most

36n

k
=
l c2

`2

m 36

k
= O(k) = O(

√
n).

This establishes the upper bound.
The proof of the lower bound is simpler. The probability

that the source of a fixed segment lies in a boundary grid
square ζ, and no source of any other segment lies in any
square intersecting ζ, is at least

4k − 4

k2

„

1 − 6

k2

«n−1

= Ω

„

1

k

«

.

By linearity of expectation, the expected number of such
segments is Ω(n/k) = Ω(k) = Ω(

√
n). The lower bound

follows, since any such segment intersects the outer face.

Note that the constants in the proof can be easily im-
proved, but we make no attempts to optimize them here.

4. DENSE ARRANGEMENTS — BEYOND
THE PHASE TRANSITION

In this section we prove Theorem 1.3.

Theorem 1.3. [Asymptotic complexity] For any ` > 0,

f(n, `) = Θ(n1/2+o(1)) as n→∞.

Outline of the proof.
We estimate the probability, over C ∈ Cn

` , that a small
disc external to S is well bounded in A(C), as a function of
n, as n tends to infinity. Using this estimation we bound
the probability over C ∈ Cn

` that a certain narrow shell of
intersecting discs which surrounds S is well bounded within
A(C). Also, by taking the radii of the discs sufficiently small,
the expected number of segments that are internal to this
virtual strip and contribute to the outer face is o(n1/2). On
the other hand, we estimate the number of segments that
intersect this strip by O(n1/2+o(1)). Summing up these two
expectations gives the required result. The major complica-
tion here is the analysis of the situation near the corners of
the square.

We begin with several definitions and lemmas. Define
m(t) := min(t, 1 − t). Given ` > 0, ε > 0, let M = M(`, ε)



M(`, ε)

ρ(q)q

p = φ(q)

θ∗

s∗
s′

s′′

Figure 4: Bounding a regular point from one side.
The segments s∗ and s′ bound q from the left and
from the right, respectively; the segment s′′ does
not bound q at all. Note that the segment s∗ is
incident to both q and the boundary of S, and forms
an extremal angle with respect to pq.

denote the subset of S consisting of the points (x, y) that
satisfy the following inequalities: m(x) ≥ ε, m(y) ≥ ε

and m(x)m(y) ≥
√

2` ε3/2. See Figure 3 for an illustration.
For each point q ∈ R

2, let φ(q) denote the projection of q
onto M, namely the point in M that is closest to q. We say
that a point q within distance less than or equal to ` from
S is regular (resp., near-a-corner or non-regular) if φ(q) lies
on one of the straight (resp., hyperbolic) arcs of ∂M.

Notice that if 0 < ε < ε0 = min(1/(8`), 1/2), then M has
positive area, ∂M is smooth, except for 8 points, and both
regular and non-regular points exist.

Recall that a valid segment is a segment of length ` with
source in S . Given a point q outside S , define the ray ρ(q)
as the ray normal to ∂M through q, external to M, with
origin at φ(q). A point q is bounded from the right by a
valid segment s, if the source of s lies to the right of ρ(q),
and s intersects ρ(q) further away than q from φ(q). More
generally, a subset of points is bounded from the right by s, if
s bounds each of the points in the set from the right. These
and other definitions extend by symmetry to bounding from
to the left. A subset of points is well-bounded within S if
each of the points in the subset is well-bounded within S .
See Figure 4 for an illustration.

Lemma 4.1. For any ` > 0, 0 < ε < min(`/4, 1/(8`)),
n ≥ 15000`/ε3, and for any point q at distance ` from
M = M(`, ε), let D = Dq(δ) denote the disc of radius

δ = ε3/2/(60
√

`) centered at q. Then

Pr

»

D is well bounded in A(C ∪ ∂S)

–

≥ 1/2,

over C ∈ Cn
` .

Proof. We split the proof into two parts, depending on
whether: (i) q is a regular point, or (ii) q is a near-a-corner
point.

Part (i): Assume that `, ε, n, and δ satisfy the above con-
ditions. Let q be a regular point, and let D = Dq(δ) denote
the disc of radius δ centered at q. Recall that C is drawn
uniformly at random from Cn

` . Since ε < min(`/4, 1/(8`)),
M has positive area. Fix a Euclidean coordinate system
by setting p = φ(q) as the origin and the normal ray ρ(q)

M(`, ε)

T

y = ` + ε/2

y = `

y = ε

r

θ

S

q
D

p

Q

R

L

Figure 5: Bounding a regular point. L and R are the
left uppermost and right lowest segments in F+(θ).

through q as the positive y-axis; hence, y(q) = `. Let T
denote the line y = `+ε/2, and r the intersection point of T
with the y-axis. See Figure 5 for an illustration. It is useful
to extend the definition of bounding a point as follows: A
point q is strongly bounded from the right-hand side by a
valid segment s, if q is bounded from the right-hand side by
s, and s intersects T to the left of r. As before, a set of
points is strongly bounded from the right-hand side by s, if s
strongly bounds each of the points in the set from the right-
hand side. Notice that S is well bounded in A(∂S). There-
fore in order to show that D is bounded within A(C ∪ ∂S),
it suffices, as is easily checked, to find two valid segments
s1, s2 ∈ C, which strongly bound D from the right-hand and
the left-hand sides, respectively.

We claim that the probability that a valid segment s
strongly bounds D from the right-hand side is greater than
ε3/(5000`). Let θ∗ denote the maximal angle attained be-
tween the positive y-axis and a valid segment of length `
that bounds q from the right- (resp., left-)hand side. It can
easily be verified that

` cos θ∗ = ` − ε
` sin θ∗ =

√
2`ε − ε2.

For any θ in the range [0, θ∗], let F+(θ) (resp., F−(θ))
denote the locus of valid segments, which form an angle θ
with the positive y-axis, and strongly bound D from the
right- (resp., left-)hand side, namely these segments bound
each point in D from the appropriate side and intersect T
on the opposite side of r.

For each fixed θ in the range [θ∗/3, θ∗/2], the locus of
source points (x, y) of segments in F+(θ) forms a parallelo-
gram Q, given by the inequalities:

y ≤ ε (the source point of s belongs to S);
y ≥ (` + ε/2) − ` cos θ (the target point of s is above T );
y ≤ (` + ε/2) − x cot θ (s intersects T to the left of r); and
y ≥ (` + δ/ sin θ) − x cot θ (q is bounded from the right-
hand side by s).

See Figure 5 for an illustration. Notice that if q is a regular



point, then Q is completely contained in S . Since (i) θ∗/3 ≤
θ ≤ θ∗/2 < π/4, (ii) 0 < ε < min(`/4, 1/2) and (iii) for any
0 ≤ θ ≤ π/4, 1

4
tan θ ≤ tan(θ/3), we obtain

r

2ε

`
≤
r

2ε

` − ε
≤

√
2`ε − ε2

` − ε
= tan θ∗ ≤

p

2`(`/4)

` − `/4
< 1,

and
1

4

r

2ε

`
≤ 1

4
tan θ∗ ≤ tan(θ∗/3) ≤ tan θ.

Similarly, since 1− cos(θ/2) ≤ (1− cos θ)/3, for any 0 ≤ θ ≤
2π/3, we have

` − ε
3
≤ ` cos(θ∗/2) ≤ ` cos θ,

p

ε
`
≤

√
2ε`−ε2

`
= sin θ∗ ≤ θ∗,

and
1

4

r

2ε

`
≤

√
2`ε − ε2

3`
=

1

3
sin θ∗ ≤ sin θ ≤ θ.

Since
δ

sin θ
≤ ε3/2

8
√

2`
/

 

1

4

r

2ε

`

!

= ε/4,

we conclude that Q is non-empty, with area greater than or
equal to

(ε − (` +
ε

2
− ` cos θ))(

ε

4
tan θ) >

ε5/2

100
√

`
.

Since this holds for each θ in (θ∗/3, θ∗/2), the probability p
for D being bounded from the left- (resp., right-)hand side

is at least θ∗

6·2π
times the above quantity, that is

p ≥ θ∗

12π
· ε5/2

100
√

`
≥
p

ε/`

12π
· ε5/2

100
√

`
≥ ε3

5000`
.

Since (1 − x)(1/x) < 1/e for any 0 < x < 1, and since C was
drawn uniformly at random from Cn

` , with n ≥ 15000`/ε3 ,
it follows that the probability that D is not well bounded is

at most 2(1 − p)n ≤ 2(1 − p)3/p < 2/e3 < 1/2, proving the
first part of the lemma.

Part (ii): Suppose that `, n, ε, M, δ and q satisfy the
conditions stated in the lemma, with q being a near-a-corner
point. Let D = Dq(δ) denote the disc of radius δ centered
at q. Assume, without loss of generality, that q is near the
origin o, and set p = (xp, yp) as the projection φ(q) onto M.
We assume further, without loss of generality, that ε ≤ xp ≤
yp ≤

√
2ε`. As before, fix a Euclidean coordinate system by

setting p as the origin and the normal ray ρ(q) through q as
the positive yp-axis. Let T denote the line yp = ` + ε/4 and
r the intersection point of T with the yp-axis. See Figure 6
for an illustration. A point q is strongly bounded from the
right-hand side by a valid segment s, if q is bounded from
the right-hand side by s, and s intersects T to the left of
r. Let N denote the segment pq and set 0 < ξ < π/2 as
the angle between N and the x-axis. It follows by standard
properties of hyperbolas that ξ is also the angle between the
segment op and the positive y-axis, i.e.

(sin ξ, cos ξ) =
(xp, yp)

p

xp
2 + yp

2
.

Let CH(p1 . . . pk) denote the convex hull of the point set
{p1, . . . , pk}. Set θ∗ = min(θ∗+, θ∗−) where θ∗+ (resp., θ∗−)

a+
b+

c+

d+

o

R+

L+

M(`, ε)

∂M

S

ξ
N

q D
θ

r
t+

T

p = (xp,yp)

Figure 6: Strongly bounding a near-a-corner point
from the right-hand side. The dark regions repre-
sent the loci of source points in F+(θ).

denotes the maximal angle attained between a valid segment
of length ` that bounds q from the right- (resp., left-)hand
side, and the positive yp-axis. We claim that by the defini-
tion of S and M, the circle of radius

p

xp
2 + yp

2 centered
at p contains both the origin and the intersection points of
the xp-axis with ∂S . If ξ = 45o, then θ∗ = θ∗+ = θ∗−, and
since xp ≤ yp then the origin is to the left of the positive yp-
axis. Thus by moving the origin along this circle toward the
positive yp-axis, θ∗+ increases while θ∗− decreases, proving
that θ∗ = θ∗+ ≤ θ∗−, that is

` cos(ξ + θ∗) = ` cos ξ − xp.

Since 0 < ξ < ξ+θ∗ < π/2 and (by smoothness of the cosine
function) ` cos(ξ + θ∗) = `(cos ξ − sin(ξ + λθ∗)θ∗), for some
0 ≤ λ ≤ 1, then

`(cos ξ−sin(ξ+θ∗)θ∗) ≤ ` cos ξ−xp ≤ `(cos ξ−sin ξ·θ∗). (4)

Thus

θ∗ ≤ xp/(` sin ξ) =
p

xp
2 + yp

2/` <
p

2(2`ε)/` = 2

r

ε

`
.

(5)

On the other hand, since
1

2

r

ε

`
=

ε
p

2(2`ε)
≤ sin ξ <

π

2
,

we have sin(ξ + θ∗) < 5 sin ξ,

and using Inequality (4) again we obtain that

2

5

r

ε

`
≤
p

xp
2 + yp

2

5`
≤ xp

5` sin ξ
≤ xp

` sin(ξ + θ∗)
≤ θ∗. (6)

For any θ in the range [0, θ∗), let F+(θ) (resp., F−(θ))
denote the locus of valid segments, that form angle θ with
the positive yp-axis, and strongly bound D from the right-
(resp., left-) hand side, namely bound D from the appropri-
ate side and intersect T on the opposite side of r. For each



fixed θ in the range [θ∗/3, θ∗/2], the locus of source points
of segments in F+(θ) (resp., F−(θ)) forms a convex region
CH(a+b+c+o∗d+) (resp., CH(a−b−c−o∗d−)), given by the
following constraints:

1. the source of s is inside S ;

2. s intersects T ;

3. the segment s intersects T on the left- (resp., right-)
hand side of r; and

4. s bounds D from the right- (resp., left-)hand side.

Notice that, The segment L+ = a+t+ (resp., L− = a−t−)
is the closest segment to p in F+(θ) (resp., F−(θ)) with
both segments L± tangent to D and |L±| = `; The segment
R+ = b+r (resp., R− = b−r) is contained in F+(θ) (resp.,
F−(θ)) with both segments R± parallel to L± respectively,
|R+| = |R−| = ` and both a+b+ and a−b− parallel to the xp-
axis; Both points c+ and c− are contained in ∂S and both
segments b+c+ and b−c− are parallel to the yp-axis; The
point d+ (resp., d−) coincides with the intersection point of
the segment L+ (resp., L−) and ∂S ; and The point o∗ is an
optional extra corner for the F+(θ) (resp., F−(θ)) convex
region, that is added at the origin if c+ and d+ (resp., c−

and d−) lie on different sides of S .
Since |a±b±| = |t+r| = |t−r| = (ε/4) tan θ − δ, it follows,

using Inequality (6), and the definitions of θ and δ, that

˛

˛a±b±
˛

˛ =
ε

4
tan θ − δ ≥ ε

4
· 2

15

r

ε

`
− ε3/2

60
√

`
≥ ε

60

r

ε

`
.

It is easy to verify that if θ∗/3 < θ < θ∗/2, then
` sin ξ(θ∗/2) ≤ `(cos(ξ + θ∗) + sin ξ(θ∗/2)) − (` cos ξ − xp)
≤ `(cos(ξ + θ∗) + sin(ξ + λθ∗)θ∗/2) − (` cos ξ − xp)
≤ ` cos(ξ+θ∗/2)−(` cos ξ−xp) ≤ ` cos(ξ+θ)−(` cos ξ−xp),
for some 1/2 ≤ λ ≤ 1 and

r

ε

2`
=

ε√
2ε`

≤ xp

yp
≤ tan ξ.

If we let (u, v) denote the endpoint of N when rotated
around q by θ∗/2 degrees counterclockwise, then it follows
from the definition of θ∗ and simple geometric considerations
that

|b+c+| ≥ xp − u − |qr| ≥ ε/2 − ε/4 = ε/4.

Hence, for each θ within this range, the probability that a
valid segment strongly bounds D from the right-hand side,
is greater or equal to the area of the right angle triangle

CH(a+b+c+), that is ε
60

p

ε
`

ε
8

= ε5/2

500`
.

For the analogous result concerning F−(θ), note that
CH(a−b−c−o∗d−) contains the triangle CH(a−b−w) where
w = o∗ if c− and d− lie on different sides of S , or with
w = c− otherwise. In both cases w is further away than
c+ (resp., c−) from a+b+ (resp., a−b−), hence we have the
same lower bound of area(CH(a+b+c+)).

The probability, in Cn
` , that q is bounded from any partic-

ular side by a valid segment, is greater than or equal to θ∗

6·2π

times the lower bound on the area of CH(a+b+c+), namely
it is greater than

θ∗

12π
· ε5/2

500`
≥ 2

5

p

ε/`

12π

ε5/2

500`
≥ ε3

7500`
.

Since C ∈ Cn
` are drawn independently and n ≥ 15000`/ε3 ,

the second part of the lemma follows as in Part (i).

Q = M⊕ D(`)

S ⊕ D(`)

p

M

S

0
0
ε

√
2ε`

2
√

2ε`

Figure 7: The Minkowski sum Q of M with a disc
of radius ` (excluding S) is colored green. Any
valid segment with non-regular target that inter-
sects the boundary of Q must have its source within
the L-shaped (dark) region.

Lemma 4.2. For any ` > 0, 0 < ε < min(`/4, 1/(8`)),
n ≤ `/ε3, and for any regular point q at distance ` from
M = M(`, ε),

we have Pr

»

q is well bounded in A(C)

–

≤ 1/2,

over C ∈ Cn
` .

We proceed by constructing a special threshold curve that
encloses M and satisfies the following properties:

1. the expected number of segments that intersect this
curve is O(nε3/2(− log ε)) and Ω(nε3/2), where the seg-
ments are drawn within our familiar random model;

2. Lemma 4.1 applies uniformly to any sufficiently small
disc centered anywhere along this curve; and

3. the length of the curve is at most 4 + 2π`.

Lemma 4.3. For any ` > 0 and 0 < ε < min(`/4, 1/(8`))
let Q = Q(`, ε) denote the Minkowski sum of M = M(`, ε)
with the disk of radius ` centered at the origin. Then the
expected number of segments in C, with C drawn uniformly
at random from Cn

` (n, ` fixed), that intersect the boundary

of Q is O(nε3/2(− log ε)) and Ω(nε3/2) as ε ↓ 0.

By Lemmas 4.1 and 4.3, the boundary of Q = Q(`, ε) sat-
isfies the desired threshold properties. See Figure 7 for an
illustration of Q.

We also use the following variant of Lemma 3.1.

Lemma 4.4. For each 0 < p < 1 there exists µ = µ(p),
such that the following statement holds. Suppose ` > 0,
k = max(b1/`c, 1) and let ζ be a 1/k × 1/k square within
S. Consider a random collection of µk2 segments, each of
length `, where each segment is chosen by picking its source
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Figure 8: The two depicted surfaces are outer face complexity (higher) and number of segments on the face
(lower), drawn as a function of the total number of segments and the segment length.

uniformly at random in S, and by choosing its orientation
uniformly at random on the unit circle. Then, the probability
that ζ is well bounded in the arrangement formed by these
segments is at least p.

Proof [Theorem 1.3]. Suppose n0 = dc1 max `2, `−4e,
where c1 is a parameter to be fixed later, n > 3n0dlog2 ne,
and suppose that C is drawn uniformly at random from Cn

` .
Let ε = 15000`n−1/3, M = M(`, ε) and δ = ε3/2/(60

√
`).

Fix some sequence of points (p1, p2, . . .), of smallest possi-
ble size, which goes around M and satisfies distM(pi) = `
and dist(pi, pi+1) < δ cyclically. Let (d1, d2, . . .) be the
corresponding sequence of discs of radii δ centered at the
respective points pi. Let k = max(b 1

`
c, 1), and split S

into the grid G(k) of k by k squares. Using Lemma 4.4,
there exists some m > 0 such that each fixed square in the
grid is well bounded in Cm

` , with probability greater than
or equal to 1/2. By setting c1 = 4km and drawing the
n > 3n0dlog2 ne ≥ 3c1dlog2 ne > 3mdlog2 ne segments in S ,
in 3dlog2 ne phases, revealing m or more new segments in
each phase, we get that the probability a fixed grid square
is not well bounded, is at most (1/2)3 log2 n = 1/n3. In par-
ticular, the probability that S is not well bounded in Cn

` ,
is at most 4k/n3 ≤ 1/n2, by considering only the bound-
ary grid squares. Note that from the lower bound on n

ε ≤ min((15000`3)
−1/3

, (15000/`3)
−1/3

) ≤ min(1/(8`), `/4).
If S is well bounded in A(C), then, using Lemma 4.1, we
deduce that each fixed disc di is not well bounded in A(C)
with probability less than or equal to (1/2)3 log2 n = 1/n3,
and that any of the discs {di} is not well bounded in A(C)
with probability less than or equal to ((4 + 2π`)/δ)/n3 ≤

O(k)
√

n/n3 < 1/n2. Using Lemma 4.3, the probability that
a single segment will protrude out of the ring of discs ∪di

is O(ε3/2(− log ε)). It follows that the expected number of
segments on the outer face is at most

n(1/n2 + 1/n2 + O(ε3/2(− log ε))) = O(n1/2+o(1)).

For a lower bound, set ε = 3
p

`/n. By Lemma 4.3 we have
the right number of segments outside Q. Using Lemma 4.2
at least half of these segments contribute to the outer face
and the theorem follows.

We can also show that, if we let fdisc(n, `) denote the anal-
ogous function of f(n, `) for a disc, namely the segments
source points are drawn uniformly at random within a unit
disc, then

Theorem 4.5. For any ` > 0, fdisc(n, `) = Θ(n1/2), as
n→∞.

The proof follows on the same lines as in the previous proof.

5. EXPERIMENTS
We now present actual measurements obtained experi-

mentally for (i) the number of segments on the outer face,
and (ii) the face complexity, averaged over ten runs, where
we let the number n of segments go up till 1000 and the
segment length ` range between 0.01 and 0.2. The experi-
mental results were generated using the Cgal Arrangements

package [22] with the Gmpq
2 number type. The results are

2http://gmplib.org.



summarized in Figure 8. We defer a full description of the
implementation and the measures we took to speed up the
experiments to the full version of the paper.
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