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Abstract

A faithful (unit) distance graph in Rd is a graph whose set of vertices is a finite sub-
set of the d-dimensional Euclidean space, where two vertices are adjacent if and only if
the Euclidean distance between them is exactly 1. A (unit) distance graph in Rd is any
subgraph of such a graph.

In the first part of the paper we focus on the differences between these two classes of
graphs. In particular, we show that for any fixed d the number of faithful distance graphs
in Rd on n labelled vertices is 2(1+o(1))dn log2 n, and give a short proof of the known fact
that the number of distance graphs in Rd on n labelled vertices is 2(1−1/bd/2c+o(1))n2/2. We
also study the behavior of several Ramsey-type quantities involving these graphs.

In the second part of the paper we discuss the problem of determining the minimum
possible number of edges of a graph which is not isomorphic to a faithful distance graph
in Rd.

1 Introduction

1.1 Background

We study the differences between the following two well-known notions of (unit) distance
graphs:

Definition 1. A graph G = (V,E) is a (unit) distance graph in Rd, if V ⊂ Rd and E ⊆ {(x, y) :
x, y ∈ V, |x− y| = 1}, where |x− y| denotes the Euclidean distance between x and y.

Definition 2. A graph G = (V,E) is a faithful (unit) distance graph in Rd, if V ⊂ Rd and
E = {(x, y) : x, y ∈ V, |x− y| = 1}.
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We say that a graph G is realized as a (faithful) distance graph in Rd, if it is isomorphic to
some (faithful) distance graph in Rd. Denote by D(d) (Dn(d)) the set of all labelled distance
graphs in Rd (of order n). Similarly, denote by FD(d) (FDn(d)) the set of all labelled faithful
distance graphs in Rd (of order n).

Distance graphs appear in the investigation of two well-studied problems. The first is the
problem of determining the chromatic number χ(Rd) of the d-dimensional space:

χ(Rd) = min{m ∈ N : Rd = H1 ∪ . . . ∪Hm : ∀i, ∀x, y ∈ Hi, |x− y| 6= 1}.

The second is the investigation of the maximum possible number f2(n) of pairs of points at
unit distance apart in a set of n points in the plane R2. Distance graphs arise naturally in the
context of both problems. Indeed,

χ(Rd) = max
G∈D(d)

χ(G) = max
G∈FD(d)

χ(G),

f2(n) = max
G∈Dn(2)

|E(G)| = max
G∈FDn(2)

|E(G)|.

Thus, in the study of these two extremal problems it does not matter whether we consider
distance graphs or faithful distance graphs. However, there is a substantial difference between
the sets D(d) and FD(d). This difference is discussed in the theorems that appear in what
follows.

1.2 The main results

The first theorem provides some classes of graphs that are (or are not) distance or faithful
distance graphs in Rd. A surprising aspect of Theorem 1.1 is that for any d there are bipartite
graphs that are not faithful distance graphs in Rd.

Theorem 1.1. 1. Any d-colorable graph can be realized as a distance graph in R2d.
2. Let d ∈ N and d > 4. Consider the graph K ′ = Kd,d −H, where H is a matching of size

d− 3. Then the graph K ′ is not realizable as a faithful distance graph in Rd.
3. Any bipartite graph with maximum degree at most d in one of its parts so that no three

vertices of degree d in this part have exactly the same set of neighbors is realizable as a faithful
distance graph in Rd.

The next theorem shows that in any dimension d there are far more distance graphs than
faithful distance graphs.

Theorem 1.2. 1. For any n, d ∈ N, n > 2d, we have |FDn(d)| 6
(
n(n−1)
nd

)
. Therefore, for any

fixed d, |FDn(d)| = 2(1+o(1))dn log2 n.
2. (A. Kupavskii, A. Raigorodskii, M. Titova, [6]). For any fixed d ∈ N we have |Dn(d)| =

2(1− 1
[d/2]

+o(1))n2

2 .

By simple calculations one can obtain the following corollary from the upper bound in part
1 of Theorem 1.2:
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Corollary 1.3. 1. If d = d(n) = o(n), then we have |FDn(d)| = 2o(n
2).

2. If d = d(n) 6 cn, where 0 < c < 1/2 and H(c) < 1/2 (here H(z) = −z log2 z − (1 −
z) log2(1− z) is the binary entropy function), then there exists a constant c′ = c′(c) < 1/2 such
that |FDn(d)| 6 2c

′n2(1+o(1)).

As proved by B. Bollobás [2], with high probability the random graph G(n, 1/2) has chro-
matic number (1 + o(1)) n

2 log2 n
. By part 1 of Theorem 1.1, any k-colorable graph is realiz-

able as a distance graph in R2k. It means that if d = d(n) > c n
log2 n

, where c > 1, then

|Dn(d)| = (1 + o(1))2
n(n−1)

2 . In other words, for such d almost every graph on n vertices can be
realized as a distance graph in Rd. This is very different from the behaviour of faithful distance
graphs, as shown in Corollary 1.3.

We next consider the following extremal problem.

Problem 1. Determine the minimum possible number g(d) of edges of a graph G which is not
realizable as a faithful distance graph in Rd.

An intriguing question here is whether or not for any d > 4, g(d) =
(
d+2
2

)
. In other words,

does Kd+2 have the minimal number of edges among the graphs that are not realizable as
faithful distance graphs in Rd, d > 4. Interestingly, this is not the case in R3, since the graph
K3,3 is not realizable as a faithful distance graph in R3 and it has fewer edges than K5.

We restrict our attention here to bipartite graphs, studying the following problem.

Problem 2. Determine the minimum possible number g2(d) of edges of a bipartite graph K
which is not realizable as a faithful distance graph in Rd.

Note that the minimum number of vertices such a K can have equals 2d, as follows from
parts 2 and 3 of Theorem 1.1.

Theorem 1.4. For any d > 4 we have
(
d+2
2

)
6 g2(d) 6

(
d+3
2

)
− 6.

Remark.
After completing this manuscript we learned that some of the questions discussed here have

already been studied by Erdős and Simonovits in [4] and by Maehara in [7]. It seems that
Maehara was unaware of the paper [4]. We proceed with a brief comparison between the the
results of these two papers and our results here. Part 3 of Theorem 1.1 slightly improves the
bipartite case of Theorem 2 from [7], which states the following: if a graph G has maximum
degree d and χ(G) = k, then G is faithful distance in RD, where D =

(
k
2

)
(d + 1). In part 2

of Theorem 1.1 we present a graph which is not realizable as a faithful distance graph in Rd.
Constructions of such graphs can be found in both papers [4] and [7]. The construction of Erdős
and Simonovits (given in Proposition 1 of [4]) is similar to the construction we use, however, it
is slightly worse in terms of the number of vertices and edges (the smallest known construction,
which is used in the proof of the upper bound in Theorem 1.4, is a bipartite graph with parts
A = {a1, . . . , ad}, B = {b1, . . . , bd} and the set of edges E = {(ai, bj) : i > j}∪{(ai, bj) : i 6 3}).
The graph used by Maehara is much bigger than both graphs used by us and by Erdős and
Simonovits. Note that our graph is in some sense best possible, as follows from the assertion
of part 3 of Theorem 1.1).
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The main results of both papers [7] and [8] establish bounds on the dimension in which a
graph can be realized as a faithful distance graph in terms of the maximum degree and the
chromatic number (see Theorem 2.8 in the present paper). Similar bounds were already proved
by Erdős and Simonovits (see Theorem 6 in [4]), and their bound differs from the bound of Rödl
and Maehara only by 1 (Erdős and Simonovits prove that any graph with maximum degree k
can be realized as a faithful distance graph in R2k+1, while Rödl and Maehara prove that such
graphs can be realized in R2k, the proofs rely on similar constructions).

A question analogous to Problem 2, for distance graphs instead of faithful distance graphs,
was asked in [4] (problem 5 in [4]).

1.3 More on the difference between distance and faithful distance
graphs

We study two Ramsey-type quantities related to distance and faithful distance graphs.

Definition 3. The (faithful) distance Ramsey number RD(s, t, d)
(
RFD(s, t, d)

)
is the minimum

integer m such that for any graph G on m vertices the following holds: either G contains an
induced s-vertex subgraph isomorphic to a (faithful) distance graph in Rd or its complement Ḡ
contains an induced t-vertex subgraph isomorphic to a (faithful) distance graph in Rd.

The quantity RD(s, s, d) is studied in [6], where the following theorem is proved:

Theorem 1.5 (A. Kupavskii, A. Raigorodskii, M. Titova [6]). 1. For every fixed d ∈ N greater
than 2 we have

RD(s, s, d) > 2( 1
2[d/2]

+o(1))s.

2. For any d = d(s), where 2 6 d 6 s/2, we have

RD(s, s, d) 6 d ·R
(⌈

s

[d/2]

⌉
,

⌈
s

[d/2]

⌉)
,

where R(k, `) is the classical Ramsey number, which is the minimum number n so that any
graph on n vertices contains either a clique of size k or an independent set of size `.

Note that it is in fact not difficult to improve the upper bound to

R

(⌈
s

[d/2]

⌉
,

⌈
s

[d/2]

⌉)
+ 2s,

but for our purpose here this improvement is not essential and we thus do not include its proof.
By the previous theorem the bounds for RD(s, s, d) are roughly the same as for the classical

Ramsey number R
(⌈

s
[d/2]

⌉
,
⌈

s
[d/2]

⌉)
:

s

2[d/2]
(1 + o(1)) 6 logRD(s, s, d) 6

2s

[d/2]
(1 + o(1)),

where the o(1)-terms tend to zero as s tends to infinity.
What can we say about RFD(s, s, d)? It turns out that RFD(s, s, d) is far larger than

RD(s, s, d). Using Theorem 1.2 we can prove the following result:
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Proposition 1.6. 1. For any d = o(s) we have RFD(s, s, d) > 2(1+o(1))s/2.
2. For d 6 cs, where c < 1/2 and H(c) < 1/2, there exists a constant α = α(c) > 0 such

that RFD(s, s, d) > 2(1+o(1))αs.

It is worth mentioning that, if d = cs for a sufficiently small c > 0, the quantity RFD(s, s, d)
grows exponentially, while the quantity RD(s, s, d) grows linearly (this follows from part 2 of
Theorem 1.5).

The final (possible) difference between D(d) and FD(d) we point out is the following. Fix
an l ∈ N and consider the distance graphs from D(d) and FD(d) that have girth greater than
l. What can we say about the chromatic number of such graphs?

Theorem 1.7 (A. Kupavskii, [5]). For any g ∈ N there exists a sequence of distance graphs in
Rd, d = 1, 2, . . . with girth greater than g, such that the chromatic number of the graphs in the
sequence grows exponentially in d.

In the analogous problem for faithful distance graphs the situation is less understood. All
we can prove here is the following

Proposition 1.8. For any g ∈ N there exists a sequence of faithful distance graphs in Rd, d =
1, 2, . . . , with girth greater than g such that the chromatic number of the graphs in the sequence
grows as Ωg

(
d

log d

)
.

2 Proofs

2.1 Proof of Theorem 1.1

1. Two circles are orthogonal if they lie in orthogonal two-dimensional planes. Choose d
pairwise orthogonal circles of radius 1/

√
2 with a common center. The distance between any

two points from different circles equals 1. Embed each color class into one circle.
2. Suppose the graph K ′ can be realized as a faithful distance graph in Rd. Denote both

the vertices of K ′ and the points in the space that correspond to them by the same letters.
Let A = {ai}, B = {bi} be the parts of K ′, where |A| = |B| = d, and the edges (ai, bi), where
i ∈ {4, . . . , d}, are not present in the graph. Then a1, a2, a3 are the vertices that are connected
to all vertices of B. In any faithful distance realization of K ′ the vertices a1, a2, a3 must be
affinely independent. Indeed, they cannot lie on the same line since otherwise there will be no
points at unit distance from all of them.

The points bj must lie on the (d − 3)-dimensional sphere S in the (d − 2)-dimensional
subspace, orthogonal to the plane containing a1, a2, a3. The sphere S has the same center as
the circle, circumscribed around the triangle a1, a2, a3.

Now we show that bi is affinely independent of the points bj, j < i. For i 6 3 this is clear for
the same reason as for the points a1, a2, a3. For i > 4, consider the sphere Si = S∩aff{bj, j < i},
where by aff{x1, . . . , xl} we denote the affine hull of the points x1, . . . , xl. The sphere Si is
contained in the sphere with the center in ai and unit radius, because all points bj, j < i, are
connected to ai. But if the point bi lies in aff{bj, j < i}, then bi ∈ Si. Thus, we are forced to
draw an edge (ai, bi), which is forbidden.
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Since each bi is affinely independent of bj, j < i, we obtain d affinely independent points in
Rd−2 — a contradiction.

3. Let K be an arbitrary bipartite graph with parts A = {ai}, B = {bj} satisfying the
condition maxi deg(ai) 6 d, and such that no three vertices from A of degree d have the same
set of neighbors. We introduce the following notation: a sphere S ′ is complimentary to the
sphere Sf of dimension f 6 (d− 2) in the space Rd if S ′ is formed by all points of Rd that are
at unit distance apart from the points of Sf . For a set of points X we use the notation S(X)
for the sphere of minimal dimension that contains all points from X (if one exists), and S ′(X)
for the sphere, complimentary to S(X) (again, if one exists).

We realize K as a faithful distance graph in Rd. First embed all points of B in the space Rd

so that the diameter of B is smaller than 1 and all points lie in a sufficiently general position:
(a) No k points of B lie in a (k − 2)-dimensional plane , k = 1, . . . , d.
(b) No d+ 1 points lie on a unit sphere.
(c) There are no two subsets B1, B2 of B, both of size d, such that the distance between some
of the points of S ′(B1), S

′(B2) is 1 (note that S ′(Bi) consists of two points).
(d) There are no two subsets B1, B2 of B, such that S ′(B1) ⊂ S(B2). Moreover, if B1 is of
size d, then S ′(B1) ∩ S(B2) = ∅.
All the forbidden positions of the points from B may be expressed as zero sets of certain
polynomials, so we can avoid all of them.

Next we embed the set A. Each point ai is connected to ni 6 d points from B. Denote this
set by Bi. By (a) the points from Bi form a (ni − 1)-dimensional simplex with circumscribed
sphere S of radius r < 1/

√
2. Consider a sphere S ′(Bi). The dimension of S ′(Bi) is d− ni > 0.

First we embed all the points of A that have d neighbors in B one by one. For each such
point ai there are two possible points in Rd with which it can coincide and at most one of them
is already occupied. Condition (b) guarantees that we do not get any extra edges between a
and points not from Bi. Condition (c) guarantees that we cannot get an edge between the
vertices ai, aj ∈ A of degree d.

The remaining points of A can now be embedded, one by one, in the following way. We
embed the point ai onto S ′ in such a way that the distance between ai and the points from
B\Bi is not unit, ai does not coincide or at unit distance apart from any previously placed aj
and ai does not fall into S(Bl) for any l. This can be done since any sphere of unit radius with
center in any of the points from B\Bi can intersect S ′(Bi) only by a sphere S ′′ ⊂ S ′(Bi) of
smaller dimension due to (a), and the same holds for spheres with centers in aj due to the fact
that no aj fall into S(Bl). This is, in turn, possible due to (d), out of which we get that for
any k, l the sphere S ′(Bk) ∩ S(Bl) is a sphere of strictly smaller dimension than S ′(Bk).

Remark. Condition (b) can be satisfied just by choosing points on a sphere of radius smaller
than 1, and conditions (c), (d) can be satisfied by additionally requiring that for some small ε
all the points are ε-flat with respect to some hyperplane γ, that is, all the hyperplanes deter-
mined by points of the set B form an angle with γ which is smaller than ε and all the pairwise
distances between the points are at most εr, where r is the radius of the sphere on which the
points lie. For (c) we additionally require that r is not close to 1/2 in terms of ε. This will be
used use in the proof of Theorem 1.4.
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2.2 Proof of Theorem 1.2

1. Let P1, . . . , Pm be m real polynomials in l real variables. For a point x ∈ Rl the zero
pattern of the Pj’s at x is the tuple (ε1, . . . , εm) ∈ {0, 1}m, where εj = 0, if Pj(x) = 0 and εj = 1
if Pj(x) 6= 0. Denote by z(P1, . . . , Pm) the total number of zero patterns of the polynomials
P1, . . . , Pm.

The upper bound in part 1 of the theorem is a corollary of the following proposition ([10,
Theorem 1.3]):

Proposition 2.1 (L. Rónyai, L. Babai, M.K. Ganapathy [10]). Let P1, . . . , Pm be m real poly-
nomials in l real variables, m > l, and suppose the degree of each Pj does not exceed k. Then
z(P1, . . . , Pm) 6

(
km−(k−2)`

`

)
.

Associate a family of n(n − 1)/2 polynomials Pij in dn real variables with an arbitrary
labelled distance graph G of order n in Rd as follows. Denote by (vi1, . . . , v

i
d) the coordinates

of the vertex vi in the distance graph. For each unordered pair {i, j} of vertices of the graph
define a polynomial Pij that corresponds to the square of the distance between the pair vi, vj
minus 1:

Pij = −1 +
d∑
r=1

(vir − vjr)2.

It is easy to see that each labelled distance graph in Rd corresponds to a zero pattern of
the polynomials P12, . . . , P(n−1)n. It is also clear that different distance graphs correspond to
different zero patterns, since this pattern specifies the set of (labelled) edges in the graph. Thus
the number of labelled faithful distance graphs of order n in Rd is at most the number of zero
patterns of the above polynomials. All we are left to do in order to establish the upper bound
in part 1 is to substitute k = 2, l = dn,m = n(n−1)

2
in Proposition 2.1.

The lower bound follows from part 3 of Theorem 1.1 by taking a bipartite graph with classes
of vertices B of size, say, n/ log n and A of size n− |B|, so that any vertex of A has exactly d
neighbors in B and no two vertices of A have exactly the same set of neighbors. This implies
that

|FDn(d)| > |A|!
((|B|

d

)
|A|

)
,

supplying the desired asymptotic bound.
2. This was proved in [6]. Here we present a short proof of this fact using the following

proposition from [6] and a theorem from [3]:

Proposition 2.2 (A. Kupavskii, A. Raigorodskii, M. Titova [6]). The graph K3, . . . , 3︸ ︷︷ ︸
[d/2]+1

is not

realizable as a distance graph in Rd.

Theorem 2.3 (P. Erdős, P. Frankl, V. Rödl, [3]). Let G be a graph, χ(G) = r > 3. Then the
number Fn(G) of labelled graphs of order n, not containing a copy of G, satisfies: Fn(G) =

2(1− 1
r−1

+o(1))n2

2 .
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Applying the above we get

|Dn(d)| 6 Fn

(
K3, . . . , 3︸ ︷︷ ︸

[d/2]+1

)
= 2(1− 1

[d/2]
+o(1))n2

2 .

On the other hand, by part 1 of Theorem 1.1

|Dn(d)| > 2(1− 1
[d/2]

+o(1))n2

2 ,

since any [d/2]-partite graph of order n is realizable as a distance graph in Rd.

2.3 Proof of Theorem 1.4

We first prove the upper bound. It is easy to check that in the proof of part 2 of Theorem 1.1
the edges (ai, bj), i, j > 3, i < j are not used, and thus their presence or absence does not affect
the validity of the proof. In particular, the bipartite graph K ′′ with parts A = {a1, . . . , ad}, B =
{b1, . . . , bd} and the set of edges E = {(ai, bj) : i > j} ∪ {(ai, bj) : i 6 3} is not realizable as a
faithful distance graph in Rd. The number of edges in this graph is

(
d+3
2

)
− 6, establishing the

bound g2(d) 6
(
d+3
2

)
− 6.

Remark. The following bipartite graph is also not realizable as a faithful distance graph
in Rd: H = (A ∪ B,E), A = {a1, . . . , ad+2}, B = {b1, . . . , bd+2}, E = {(ai, bj) : i > j}. This
graph has

(
d+3
2

)
edges.

We proceed with the proof of the lower bound. Consider a bipartite graph G = (A∪B,E),
where A = {a1, . . . , an+s}, B = {b1, . . . , bm}. Suppose that the vertices of A are ordered in such
a way that deg(ai) 6 deg(aj) if i < j. Suppose also that deg(an+1) = deg(an+s) = m, deg(an) <
m.We provide sufficient conditions for G to be realizable as a faithful distance graph in Rd. Re-
call the following notation: a sphere S ′ is complimentary to a sphere Sf of dimension f 6 (d−2)
in the space Rd, if S ′ is formed by all points of Rd that are at unit distance apart from the
points of Sf .

Here is an outline of the proof. The general goal is to find a good realization for the set B.
Having such a realization, the vertices of A will be placed on the corresponding complimentary
spheres using a general position argument, in a similar way to that described in the proof of part
3 of Theorem 1.1. To find the realization, we want the points of B to satisfy the analogues of the
conditions (a), (b), (c), (d). Conditions (b), (c), (d) are technical and can be satisfied without
difficulties in this case (see the remark following the proof of Theorem 1.1). The main difference
is concerning condition (a): we cannot simply place all vertices of B in a sufficiently general
position, since there may be vertices in A of a very high degree, and we may get unexpected
edges.

In most cases we try to place the vertices of B on a sphere, and, as we have already seen
in the proof of part 2 of Theorem 1.1, if the vertices of a part of a bipartite graph lie on a
sphere then there is a tight connection between the presence of certain edges and the affine
independence of certain vertices.

We begin with all points of B on the circle and start to modify the realization so that it is
getting closer and closer to the desired one. To be more precise, we treat each vertex v of A as
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a condition on vertices of B, which states that the vertices not connected to v must be affinely
independent from the vertices that are connected to v. We consider the vertices one by one in
an increasing order according to the degree. Suppose that at some step the degree of the vertex
considered v from A is D, and the dimension of the sphere on which B currently lies is d. If
D > d, then we add one dimension and move points not connected to v into that new direction.
If D 6 d, then we do not add the dimension and rearrange all the points of B, so that they now
lie in a general position on the sphere. In both cases the condition is satisfied. We also keep
track of the “ε-flat” condition from the remark, moving vertices into the new direction just a
little. This approach allows us to estimate the total number of edges in the graph needed so
that this algorithm ends with a sphere of dimension at least d. At the last step we embed all
the vertices from A, and the fact that all the conditions are satisfied allows us to get exactly
the edges needed.

We proceed with the detailed proof. We treat vertices an+1, . . . , an+s separately, so we have
cases depending on s. First we find a specific realization of the set B on a k-dimensional sphere
Skr of radius r. The dimension k and radius r will be defined later. Define the set system
H, H = {H1, . . . , Hn}, where the set Hi is the subset of indices of vertices from B that are
connected to the vertex ai. Note that some sets may coincide, and that |Hi| 6 |Hj|, i 6 j.

Let X = {x1, . . . , xm} be a set of points in Rd. We will denote by l-condition the condition
xi /∈ aff{xj : j ∈ Hl} for all i /∈ Hl. By Hl we denote the set of all i-conditions, i 6 l. We use
the notation (B,H) for the set B of vertices and the set H of conditions (here we are slightly
abusing notation, identifying sets of indices with the conditions they impose). We say that
(B,H) is realizable in Sd, if there is a set of distinct points X = {x1, . . . , xm} ⊂ Sd such that
X satisfies all the conditions from H and such that X is ε-flat with respect to some plane that
passes through the center of Sd for some small fixed ε, say, ε = 0.01.

Choose k to be the minimal dimension such that (B,H) is realizable in Sk.
Next, we find a faithful distance realization for G. We consider several cases.

s > 3 : Fix some 0 < r < 1 and find a realization of (B,H) on the sphere Skr described
above. We have to find a proper point yi for each vertex ai from A. Embed the points
yn+1, . . . , yn+s on the complimentary sphere S of Skr . Next, choose yi, i 6 n, on the complimen-
tary sphere Si to the minimal sphere that contains the points yj, j ∈ Hi. It is clear that if
the dimensions of S, Si are at least 1 (they are at least circles), then, using a standard general
position argument, we can find distinct points yi that are at unit distance apart precisely from
the points xj, j ∈ Hi. Indeed, in this case we do not need conditions (b), (c) at all since all
the vertices of A have at least a one-dimensional sphere as a possible position, and condition
(d) is satisfied due to the ε-flatness. It follows that if d > k + 3, then we can find the desired
realization.

On the other hand, if d 6 k + 2 then it is clear that there is no faithful distance realization
of G in Rd. Indeed, the points yn+1, yn+2, yn+3 are in general position, and all the points of
X lie on the (d − 3)-dimensional sphere, complimentary to the circle circumscribed around
yn+1, yn+2, yn+3. But there is no such realization of (B,H), since d− 3 < k.

s = 2 : This case is similar to the case s > 3, with the only difference that we need S to
be zero-dimensional. We additionally require r < 1/2, so that the diameter of S is bigger than
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1, and the condition (c) is satisfied. Condition (b) is again redundant, since we may need it
only for the vertices a1, . . . , an, and they have an at least one-dimensional sphere as a possible
position. As a result, we need the following inequality: d > k + 2. This bound is tight for the
same reasons.

s = 0 or 1 : We find a realization of (B,H) on the sphere Sk1 . If s = 1, then we place yn+1

in the center of the sphere Sk1 . The rest of the points yi are placed almost as in the case s > 3.
We have to make sure that no plane aff{xj : xj ∈ Hi} contains the center of the sphere Sk1 ,
otherwise there may be no room for yi. The existence of such realization again follows from
the general position argument. Then the conditions (c), (d) are satisfied. As for the condition
(b), all the points from X lie on the unit sphere Sk1 , and any other unit sphere intersects Sk1
in a hypersphere, and since the affine independence conditions are satisfied, we do not get any
extra edges between vertices ai and bj.

One would expect that in this case we can find a faithful distance realization of G if d > k+1.
This is not exactly the case. If d = k + 1 and for some i, j, l we have Hi = Hj = Hl and
Si = Sj = Sl consists of two points, then we cannot find room for all of ai, aj, al.

In this case we have to modify slightly the construction of X. We choose k to be a minimum
dimension such that there are points X = {x1, . . . , xm} ⊂ Sk1 that satisfy the conditions from
H and are ε-flat. Suppose there exists a configuration X such that for all triples i1, i2, i3, for
which we have Hi1 = Hi2 = Hi3 , the dimension of the complimentary sphere to the sphere
circumscribed around xj, j ∈ Hi1 , is at least one. Then this X is the desired construction, and
G is realizable as a faithful distance graph in Rk+1. If not, then G is realizable in Rk+2. This
is tight for s = 1. It is unclear whether this is is tight for s = 0 or not, since the points of B
need not lie on the sphere.

It seems hard to find the minimum dimension k in which we can realize (B,H). But,
nevertheless, we can use a simple realization algorithm that provides a relatively good upper
bound on k, as describe next. Consider the conditions one by one and modify the set X so
that it satisfies the conditions that were already considered. Next we describe the realization
of (B,H) on the k-dimensional sphere. Note that if we find a realization on the sphere of some
radius, then, using homothety, we can change the radius to any desired prescribed positive
value.

• In the zero step we take points x01, . . . , x0m in general position on the circle. No conditions
are considered at this step.

• In step l we find such X l = {xlj, j = 1, . . . ,m} ⊂ Skl that satisfies the conditions Hl. In
this step we get one additional condition (l-condition). We have two possibilities.

|Hl| > kl−1 + 1 If |Hl| > kl−1 + 1, then we put kl = kl−1 + 1 and modify the set
X l−1 = {xl−11 , . . . , xl−1m } in the following way. Initially, the first (kl − 1) coordinates of xli
are just the coordinates of xl−1i , and we put the last coordinate of xli to be equal to 0. If
i ∈ Hl, then we rotate the point by the angle equal to f(l, ε) into that new direction, and
if i /∈ Hl, then we rotate the point by the same angle into the opposite direction. In that
case the l-condition is satisfied, and if we choose |f(l, ε)| decreasing rapidly enough, then
the ε-flatness condition is also satisfied.
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|Hl| 6 kl−1 Recall that |Hi| 6 |Hj| if i 6 j. If |Hl| 6 kl−1, then |Hi| 6 kl−1, where
i 6 l. We put kl = kl−1 and find a set of m points in Skl in general position that are
ε/2-flat. Then the conditions from Hl are satisfied.

Using this algorithm we can estimate how many edges the graph G should have so that
(B,H) cannot be realized in Sk.

Lemma 2.4. If (B,H), H = {H1, . . . , Hn}, cannot be realized on the sphere Sk then
∑n

i=1 |Hi| >(
k+3
2

)
− 3.

Proof. If (B,H) cannot be realized in the sphere Sk, then it cannot be realized in Sk using the
described algorithm. The proof is by induction. For k = 1 we need at least one set Hi to be
of cardinality at least three, so the condition is satisfied. Consider a pair (B,H) that cannot
be realized in Sk using the described algorithm. Find the minimum l, l < n, such that (B,Hl)
cannot be realized in Sk−1. Such l exists since at each step of the algorithm we increase the
dimension by at most 1. By induction,

∑l
i=1 |Hi| >

(
k+2
2

)
− 3. Then, surely, (B,Hl) can be

realized in Sk. Consequently, |Hn| > k + 2, otherwise |Hi| 6 k + 1, i = 1, . . . , n, and (B,Hl)
can be realized in Sk. Then

∑n
i=1 |Hi| >

(
k+2
2

)
− 3 + (k + 2) >

(
k+3
2

)
− 3.

Modifying the proof slightly, we can get the following generalization:

Lemma 2.5. Consider a sequence |H1|, . . . , |Hn|. Choose a subsequence i1 < . . . < is of 1, . . . , n
of maximal length with the following properties: |Hij | > j + 2, j = 1, . . . , s and each ij is the
minimal number that satisfies this property. Then, if s 6 k − 1, (B,H) is realizable in Sk.

Next we return to the bipartite graph G. We want to estimate the number of edges G
should have so that G is not realizable as a faithful distance graph in Rd. We again consider
several cases depending on s:

s > 3 : In this case (B,H) cannot be realized on Sd−3r , so by Lemma 2.4 we have
∑n

i=1 |Hi| >(
d
2

)
− 3. Moreover, |Hn+1| = . . . = |Hn+s| = m, so

∑n+s
i=n+1 |Hi| = sm > 3m. But, on the other

hand, m > d, since otherwise the graph G is realizable in Rd by part 3 of Theorem 1.1. So

n+s∑
i=1

|Hi| >
(
d

2

)
− 3 + 3d =

(
d+ 3

2

)
− 6.

s = 2 : In this case (B,H) cannot be realized on Sd−2r , so by Lemma 2.4
∑n

i=1 |Hi| >(
d+1
2

)
− 3. We have m > d + 1 since otherwise there are m points on Sd−2r forming a simplex,

and, consequently, satisfying the conditions H. Similarly to the previous case we obtain

n+2∑
i=1

|Hi| >
(
d+ 1

2

)
− 3 + 2(d+ 1) =

(
d+ 3

2

)
− 4.

s = 1 : In this case we have two possibilities. Assume first that for any triple i1, i2, i3, for
which we have Hi1 = Hi2 = Hi3 , we also have |Hi3| < d. Then for any such i1, i2, i3 and in
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any realization of the set B in the space Rd the dimension of the complimentary sphere to the
sphere, circumscribed around xj, j ∈ Hi1 is at least 1. Consequently, (B,H) cannot be realized
on Sd−11 , and by Lemma 2.4 we have

∑n
i=1 |Hi| >

(
d+2
2

)
− 3. Similarly to the previous case we

obtain that m > d+ 2. So
∑n+1

i=1 |Hi| >
(
d+3
2

)
− 3.

Next we assume that there is a triple i1, i2, i3 for which we have Hi1 = Hi2 = Hi3 and
|Hi3| > d. Note that the pair (B,H) can be realized on Sfr if and only if the pair (B,H′)
can be realized on Sfr , where H′ = {Hi, i = 1, . . . , n, i 6= i2, i 6= i3}. On the other hand,
(B,H) cannot be realized on Sd−2r , so

∑n
i=1 |Hi| >

(
d+1
2

)
− 3 + 2|Hi2 |. Again, m > d + 1. So∑n+1

i=1 |Hi| >
(
d+4
2

)
− 8.

s = 0 : We again have two possibilities. If there is a triple i1, i2, i3 for which we have
Hi1 = Hi2 = Hi3 and |Hi3| > d, then we obtain

∑n
i=1 |Hi| >

(
d+1
2

)
− 3 + 2|Hi2| >

(
d+3
2

)
− 6.

Suppose that for any triple i1, i2, i3, for which we have Hi1 = Hi2 = Hi3 , we also have |Hi3| <
d. If we apply the previous technique directly, we obtain the bound

∑n
i=1 |Hi| >

(
d+2
2

)
− 3.

To get a better bound we modify the realization algorithm. Note that in this case we have
additional flexibility which is not taken into account by the algorithm: the algorithm produces
a set X that lies on the sphere, and we do not need it in this case.

Suppose the set B contains a vertex, say b1, of degree 3, which is connected to ai1 , ai2 , ai3 .
Then we exclude b1 out of B, and apply the usual algorithm for (B\{b1},H), where H is
modified in such a way that element {1} is excluded out of its sets. Suppose this pair can be
realized on Sd−1r , where r is sufficiently small. Then we try to choose an appropriate position
for the vertices yi1 , yi2 , yi3 so that yi1 , yi2 , yi3 do not lie on one line and form a triangle with
a radius of a circumscribed circle less than one. We surely can guarantee that yi1 , yi2 , yi3 are
in general position, if at least one of the spheres Sij (the geometric place of the point yij),
j = 1, 2, 3 is not zero-dimensional. Suppose all of them are zero-dimensional. It means that
|Hij | > d, j = 1, 2, 3. We apply Lemma 2.5 and obtain that

∑n
i=1 |Hi| >

(
d+2
2

)
. Indeed, there

are different cases, when some of ij, j = 1, 2, 3, fall into the maximal sequence, and in any case
it is clear provided that d > 2 (note that the optimal bound given in Lemma 2.4 can only be
obtained when the sequence of |Hi| is a progression 3, 4, . . . , d+1 and when all |Hi| are present).

We choose points yi1 , yi2 , yi3 in general position and such that the plane aff{yi1 , yi2 , yi3} does
not contain the center O of the sphere that contains all xi. This is possible since the center of
the sphere Sij coincides with the center of the sphere that contains xl, l ∈ Hij , while the plane
that contains xl, l ∈ Hij , does not contain O. So the centers of the spheres Sij are different
from O. Then it is not difficult to prove that we can choose yi1 , yi2 , yi3 so that the radius of the
circumscribed circle around them is less than 1. If we view Sd−1r as a point, then the points
on Sij are just some unit vectors going out of Sd−1r . We can choose a hyperplane π that passes
through Sd−1r with the following condition: there are affinely independent points yij ∈ Sij that
lie at distance > c apart from π and in the same half-space, where c > 0 is an absolute constant.
Then, if we move a point u from the sphere Sd−1r orthogonally to π inside the half-space that
contains yij , at some moment the distance between u and yij will be equal to 1 − c′, for any
c′ 6
√

1− c2. Since we can choose r sufficiently small and c can be chosen independently of r,
we can find yi1 , yi2 , yi3 with the desired properties.

Next we just choose the point x1 in Rd in such a way that |yijx| = 1, j = 1, 2, 3 and that the
sphere of radius 1 with center in x1 does not contain x2, . . . , xm and Si, i 6= i1, i2, i3. After that we
choose appropriate points yi, i 6= i1, i2, i3. This means that G is realizable in Rd, a contradiction.
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Thus, the pair (B\{b1},H) is not realizable in Rd, and
∑n

i=1 |Hi| >
(
d+2
2

)
−3+deg(b1) =

(
d+2
2

)
.

Suppose next that the set B does not contain vertices of degree 3, but contains a vertex,
say b1, of degree 4, which is connected to ai1 , ai2 , ai3 , ai4 . We argue as in the previous case,
and try to find appropriate yi1 , yi2 , yi3 , yi4 that are in general position. If there are no such yij ,
then we have two possible reasons for that. The first is that three out of the spheres Sij are
zero-dimensional, and then we can interchange the roles of the parts A and B. In this case we
get three sets of equal size, and can conclude as above that

∑n
i=1 |Hi| >

(
d+2
2

)
. The second is

that none of the spheres Sij are two dimensional, so we have at least s one-dimensional spheres
and (4 − s) zero-dimensional spheres, where s > 2. In any case, applying Lemma 2.5, we get
that

∑n
i=1 |Hi| >

(
d+2
2

)
.

If there are yi1 , yi2 , yi3 , yi4 in general position, then again one can show that they can be
chosen in such a way that the radius of the circumscribed sphere around them is less than 1,
and the reasoning goes as for the case of a vertex of degree 3. Finally, we get the estimate∑n

i=1 |Hi| >
(
d+2
2

)
− 3 + deg(b1) =

(
d+2
2

)
+ 1.

Suppose now that the smallest degree of a vertex in B is 5. Then we interchange the roles
of parts A and B, form a set system HB = {HB

1 , . . . , H
B
m} analogous to the way we formed the

set system H and apply Lemma 2.5. As the first two elements of the increasing sequence we
get |HB

1 |, |HB
2 | > 5 instead of |HB

1 | = 3, |HB
2 | = 4, and we finally get

∑n
i=1 |Hi| =

∑m
i=1 |HB

i | >(
d+2
2

)
. This completes the proof of Theorem 1.4. �

2.4 Proof of Proposition 1.6

Having the statement of Theorem 1.2, the proof of both parts is merely a slight modifica-
tion of the proof of the lower bound for the classical Ramsey number. Indeed, by a simple
probabilistic argument one can show that if

(
m
s

)
21−(s

2)|FDs(d)| < 1, then RFD(s, s, d) > m.
For the proof of part 1 of Theorem 1.6 we use part 2 of Theorem 1.2, and obtain the

inequality ms2−(1+o(1))s
2/2 < 1, which holds for m = 2(1+o(1))s/2. For the proof of part 2 of

Theorem 1.6 we use part 3 of Theorem 1.2, and obtain the inequality ms2−(1/2−c
′+o(1))s2 < 1.

Thus, we can choose α = 1/2− c′.

2.5 Proof of Proposition 1.8

We use the following theorem from [1]:

Theorem 2.6 (D. Achlioptas, C. Moore, [1]). Given any integer l > 3, let k be the smallest
integer such that l 6 2k log k. Then with high probability the chromatic number of the random
l-regular graph is k, k + 1 or k + 2.

We also need a theorem from [9]:

Theorem 2.7 (B.D. McKay, N.C. Wormald, B. Wysocka, [9]). For (l − 1)2g−1 = o(n), the
probability that a random l-regular graph has girth greater than g is

exp

(
−

g∑
r=3

(l − 1)r

2r
+ o(1)

)
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By Theorem 2.7 we get that for any fixed l, g ∈ N the random l-regular graph has girth
> g with probability bounded away from 0. Thus, by Theorem 2.6, a random l-regular graph
satisfies, with positive probability, the condition on the chromatic number from Theorem 2.6
and also has girth greater than g. Consider such a graph G with l = [d/2]. Then χ(G) =
d

4 log d
(1 + o(1)). Finally, we use the following theorem from [8]:

Theorem 2.8 (H. Maehara, V. Rödl, [8]). Any graph with maximum degree k can be realized
as a faithful distance graph in R2k.

Applying Theorem 2.8 to the graph G, we obtain the statement of Proposition 1.8.

3 Additional Problems
Problem 2 seems to be quite challenging, and is probably the most interesting question

among the ones stated in this paper.
Theorem 1.4 supplies relatively tight bounds on g2(d), but it will be interesting to determine

the exact value. We believe that the graph that provides the upper bound in Theorem 1.4 is
optimal.

More generally, we suggest the following problem:

Problem 3. Determine the minimum possible number gk(d) of edges of a k-colorable graph G
which is not realizable as a faithful distance graph in Rd.

It seems interesting to find any non-trivial examples of graphs that are not faithful distance
graphs in Rd and have a small number of edges. We do not know any example except for
bipartite graphs similar to the one that gives the upper bound in Theorem 1.4. Is there any
non-trivial example whose number of edges is between that of Kd+2 and this upper bound ?

Recall the distance Ramsey numbers discussed in Section 1. Can we determine the minimum
fD = fD(s), such that RD(s, s, fD) = s? In other words, fD(s) is the smallest possible d, such
that for any graph G on s vertices either G or its complement Ḡ can be realized as a distance
graph in Rd.

We can show that fD(s) = (1
2

+ o(1))s. The lower bound follows by considering the graph
G which is a clique on ds/2e vertices (and bs/2c isolated ones.) The upper bound follows from
the fact (proved by an iterative application of the classical Ramsey theorem) that the vertices
of any graph G on s vertices can be partitioned into O(s/ log s) = o(s) pairwise disjoint sets,
each spanning either a clique or an independent set of G. This implies that either G or Ḡ can
be colored properly by (1

2
+ o(1))s colors so that at least s/2 color classes are of size 1. The

argument in the proof of Theorem 1.1, part 1 can be easily modified to show that any graph
that has a proper coloring with a color classes of size 1 and b bigger color classes can be realized
as a distance graph in Ra+2b, implying the desired upper bound.

A similar question can be asked for the function fFD(s) whose definition is obtained from
that of fD by replacing distance Ramsey numbers by faithful distance Ramsey numbers. It
seems harder to determine the asymptotic behaviour of fFD(s). We suggest the following

Problem 4. Determine fD(s) and fFD(s).
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