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Abstract

For a collection of (not necessarily distinct) matchingsM = (M1,M2, . . . ,Mq) in a hypergraph,
where each matching is of size t, a matching M of size t contained in the union ∪t

i=1Mi is called a
rainbow matching if there is an injective mapping from M to M assigning to each edge e of M a
matching Mi ∈M containing e.

Let f(r, t) denote the maximum k for which there exists a collection of k matchings, each of size
t, in some r-partite r-uniform hypergraph, such that there is no rainbow matching of size t.

Aharoni and Berger showed that f(r, t) ≥ 2r−1(t − 1), proved that equality holds for r = 2 as
well as for t = 2 and conjectured that equality holds for all r, t. We show that in fact f(r, t) is
much bigger for most values of r and t, establish an upper bound and point out a relation between
the problem of estimating f(r, t) and several results in additive number theory, which provides new
insights on some such results.

1 Introduction

A matching in a hypergraph is a collection of pairwise disjoint edges. For a collection of (not necessarily
distinct) matchings M = (M1,M2, . . . ,Mq) in a hypergraph, where each matching is of size t, a
matching M of size t contained in the union ∪t

i=1Mi is called a rainbow matching if there is an
injective mapping from M to M assigning to each edge e of M a matching Mi ∈M containing e.

Let f(r, t) denote the maximum k for which there exists a collection of k matchings, each of size
t, in some r-partite r-uniform hypergraph, such that there is no rainbow matching of size t.

Aharoni and Berger [1] showed that f(r, t) ≥ 2r−1(t− 1) for all r, t > 1, proved that equality holds
for r = 2 as well as for t = 2 and conjectured that equality holds for all r, t > 1.

Conjecture 1.1 ([1]) For every integers r, t > 1, f(r, t) = 2r−1(t− 1).

In this note we observe that this question is closely related to a well studied problem in additive
number theory. Using this relation we show that the conjecture is false for every pair (r, t) with t ≥ 3
odd and r ≥ 4 as well as for t = 4, 6, 8 and all sufficiently large r and for every even t ≥ 10 and
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r ≥ 4. In addition, we describe a probabilistic lower bound for f(r, t) showing that for all sufficiently
large t and all r, f(r, t) > 2.71828r−1, and prove a (much bigger) upper bound: f(r, t) ≤ trt(t−1)

t! . We
conclude by pointing out that the known value of f(2, t) provides a new graph theoretic proof of an
old result of Erdős, Ginzburg and Ziv, and by discussing several extensions and open problems.

2 The lower bound

In this section we describe two methods that provide lower bounds for f(r, t). The first is based
on a simple connection of the problem to a question in additive number theory, and the second is
probabilistic. Both methods suffice to provide counter-examples to Conjecture 1.1.

2.1 The first construction

Let g(n, t) denote the least integer p so that any sequence of at least p (not necessarily distinct)
elements of the abelian group Zn

t contains a sub-sequence of exactly t elements whose sum (in Zn
t ) is

zero. Equivalently, this is the minimum number p so that any set of at least p lattice points in Zn

contains a subset of exactly t points whose centroid is also a lattice point.
The problem of determining or estimating g(n, t), suggested by Harborth in [17] received a con-

siderable amount of attention. In particular it is known that 2n(t − 1) + 1 ≤ g(n, t) ≤ (t − 1)tn + 1
([17]), g(3, 3) = 19 ([17], [8]), g(4, 3) = 41 ([20], [9], [8], [18]), g(5, 3) = 91 ([12], [11]), g(n, 3) > 2.217n

for all sufficiently large n ([11], improving [15]), g(n, t) ≥ 1.125bn/3c(t − 1)2n + 1 for every odd t ≥ 3
and every n ([13]), g(n, 3) ≤ 2 · 3n

n ([19]), g(n, t) = o(nt) for any fixed t, as n tends to infinity ([6]),
and g(n, t) ≤ c(n)t ([6]).

Theorem 2.1 For all r, t > 1, f(r, t) ≥ g(r − 1, t)− 1.

Proof. By the definition of g, there is a sequence S of |S| = g(r − 1, t) − 1 members of Zr−1
t

containing no sub-sequence of t terms that sum to zero. Using this sequence, we define a collection of
|S| matchings, each of size t, in an r-uniform r-partite hypergraph on the vertex classes A1, A2, . . . , Ar,
where each Ai is a copy of Zt. Note that each matching will be a perfect matching.

For each element s = (s1, s2, . . . , sr−1) ∈ S let Ms be the matching whose i-th edge , for 0 ≤ i < t,
is (s1 + i, s2 + i, . . . , sr−1 + i, i), where the addition is in Zt, and where for each j, 1 ≤ j ≤ r, the
j-th coordinate of the vector is interpreted as an element of Aj . This defines a family of |S| perfect
matchings in our hypergraph. A rainbow matching here corresponds to a choice of t distinct members
s(1), s(2), . . . , s(t) of the sequence S, and an edge from each matching Ms(i) such that these t edges form
a perfect matching. As these edges have to cover the last vertex class Ar, it follows that there is a
permutation σ ∈ St so that the rainbow matching consists of the edges (s(i)1 +σ(i), s(i)2 +σ(i), . . . , s(i)r−1+
σ(i), σ(i)), 1 ≤ i ≤ t.

This implies that for every j, 1 ≤ j ≤ r − 1, the t numbers s(i)j + σ(i) form a permutation of Zt,

and hence in Zt the two sums
∑t

i=1(s(i)j + σ(i)) and
∑t

i=1 σ(i) are equal. Thus
∑t

i=1 s
(i)
j = 0 for all
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1 ≤ j ≤ r − 1, and the sum of the sub-sequence s(1), . . . , s(t) is zero in Zr−1
t , contradicting the choice

of the sequence S. It follows that there is no rainbow matching, completing the proof. 2

The above proposition, together with the known lower bounds for the function g(n, t) imply that
f(4, 3) ≥ 18, f(5, 3) ≥ 40, f(6, 3) ≥ 90, and f(r, 3) > 2.216r for all sufficiently large r, showing that
the assertion of Conjecture 1.1 fails for these values of the parameters. The known bounds also show
that for every fixed odd t, f(r, t) ≥ 1.125b(r−1)/3c(t − 1)2r−1 which is strictly larger than (t − 1)2r−1

for all r ≥ 4. It is easy to check that for every t > 2 and every r, f(r, t) ≥ f(r, t − 1), as one can
simply take a large collection of matchings, each of size t, with no rainbow matching of size t, and add
the same edge, disjoint from all existing edges, to each of the matchings. This suffices to show that
f(r, t) exceeds (t− 1)2r−1 for all even values of t ≥ 10 and r ≥ 4 as well as for t = 4, 6, 8 and all large
values of r.

The function f(r, t) is likely to be much bigger than g(r − 1, t) − 1, and indeed it is known, for
example, that for every t = 2a which is a power of 2 g(r− 1, 2a) = 2r−1(2a − 1) + 1 (see [17]) while as
mentioned above f(r, t) is bigger by an exponential factor for all such t ≥ 4 and large r.

2.2 A probabilistic construction

In this subsection we describe a simple probabilistic lower bound for f(r, t), using the so-called alter-
ation method (c.f., e.g., [7], chapter 3). For fixed large t and r > b log t for an appropriate absolute
constant b this bound is better than the ones given in the previous subsection.

Theorem 2.2 For any real number p ∈ (0, 1), f(r, t) ≥ p · tr−1 − (t!)r−1pt. Therefore, for every ε > 0
and t > t0(ε), f(r, t) > (e− ε)r−1, where e = 2.718281828.. is the basis of the natural logarithm.

Proof. As before, all our matchings are perfect matchings in an r-partite r-uniform hypergraph on
the classes of vertices A1, A2, . . . , Ar, where each Ar is a copy of Zt. Every edge of this hypergraph
is represented by a vector s = (s1, s2, . . . , sr) ∈ Zr

t , where the jth coordinate is an element of Aj .
For each vector s = (s1, s2, . . . , sr−1, 0) ∈ Zr

t whose last coordinate is 0, let Ms denote the matching
consisting of the t edges (s1 + i, s2 + i, . . . , sr−1 + i, i), (0 ≤ i < t), where the addition is in Zt. LetM
be a random collection of matchings obtained by picking each matching Ms for s as above, randomly
and independently, with probability p, to be a member ofM. Let X = X(M) be the random variable
counting the number of matchings in M, and let Y = Y (M) be the random variable counting the
number of rainbow matchings in the union of all edges of M. The expectation of X is clearly ptr−1.

We claim that the expectation of Y is at most (t!)r−1pt. Indeed, the total number of perfect
matchings in the complete r-partite r-uniform hypergraph on the sets Ai is exactly (t!)r−1. Some
of these matchings cannot be rainbow matchings in the union of our randomly selected matchings,
as they contain two edges that belong to the same matching Ms for some s. Note, crucially, that
for each matching that may become a rainbow matching, the probability that it lies in the union
of the chosen matchings is precisely pt, as each edge of it belongs to a different Ms and hence the
choices are independent. This proves, by linearity of expectation, that the expected value of Y is
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at most (t!)r−1pt. Applying linearity of expectation again we conclude that the expectation of the
difference X − Y is at least ptr−1 − (t!)r−1pt. Thus, there is a choice of the collection M for which
X(M) − Y (M) ≥ ptr−1 − (t!)r−1pt. Fix such an M, and for each rainbow matching M it contains
omit from the collection an arbitrary matching that contributes an edge to M . This gives a collection
of at least ptr−1 − (t!)r−1pt matchings with no rainbow one, as needed.

We can now choose p optimally in order to maximize the bound obtained. This is given by
p =

(
1

t[(t−1)!]r−1

)1/(t−1) (but in fact even choosing p = (t!)−(r−1)/t gives the same asymptotic result.)
Plugging this value of p and using Stirling’s formula we conclude that as t tends to infinity the bound
obtained is at least e(1+o(1))(r−1) − 1. As for r ≤ 1

2 log t, say, the lower bound f(r, t) ≥ 2r−1(t − 1),
proved in [1], exceeds er−1, the desired estimate follow for all sufficiently large t and all r. This
completes the proof. 2

3 The upper bound

In this section we prove an upper bound for f(r, t). The proof is probabilistic and applies to matchings
in general, not necessarily r-partite, r-uniform hypergraphs. Let F (r, t) denote the maximum k for
which there exists a collection of k matchings, each of size t, in some r-uniform hypergraph, such that
there is no rainbow matching of size t. Obviously F (r, t) ≥ f(r, t) for all r and t, and it is not difficult
to see that F (r, t) ≤ ( rr

r! )
tf(r, t) ≤ ertf(r, t). Indeed, given a collection M of matchings, each of size

t, in an arbitrary r-uniform hypergraph H = (V,E), take a random partition V = V1 ∪ V2 ∪ . . . ∪ Vr

of V into r pairwise disjoint sets, and let M′ consist of all matchings in M in which every edge
intersects each Vi exactly once. Let H ′ be the hypergraph consisting of all edges in all matchings in
M′. Then H ′ is r-partite and the expected number of matchings in M′ is exactly ( r!

rr )t|M|. If there
is no rainbow matching in ∪M∈MM , then there is no rainbow matching in ∪M ′∈M′M

′, implying that
f(r, t) ≤ ( r!

rr )tF (r, t).

Theorem 3.1 For every r and t,

f(r, t) ≤ F (r, t) ≤ trt(t− 1)
t!

.

Proof. LetM be a collection of matchings in an r uniform hypergraph, where each matching M ∈M
is of size t. Let H = (V,E) be the hypergraph consisting of all edges in all matchings M ∈ M , and
let c : V → [t] = {1, 2, . . . , t} be a random function, assigning to each vertex v ∈ V , randomly and
independently, a uniformly chosen color c(e) ∈ [t]. Call a matching M ∈ M multicolored if for every
i ∈ [t] it contains exactly one edge in which all r vertices are colored i. Note that for each M ∈M, the
probability that M is multicolored is exactly t!

trt , as there are t! ways to distribute the colors among
the edges, and once this is done, the probability that each vertex saturated by the matching gets the
color assigned to its edge is 1

trt .

By linearity of expectation, the expected number of multicolored matchings in M is |M| · t!
trt . If

|M| > trt(t−1)
t! then this expectation exceeds t − 1, and hence there exists a coloring in which there
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are at least t multicolored matchings M1,M2, . . . ,Mt ∈ M. Fix such a coloring, and let ei ∈ Mi be
the edge of Mi in which all vertices are colored i, (1 ≤ i ≤ t). Then the matching {e1, e2, . . . , et} is a
rainbow matching. This shows that any collection of more than trt(t−1)

t! matchings contains a rainbow
matching, implying that F (r, t) ≤ trt(t−1)

t! , as needed. 2

It is worth noting that the upper bound in the above Theorem can be slightly improved by coloring
the vertices randomly by some t′ > t colors, calling a matching multicolored if there is a set T of t of
the colors, so that for each i ∈ T there is an edge of the matching in which all vertices are colored
i. It is easy to check that here, too, a collection of t multicolored matchings must contain a rainbow
matching, and one can choose the optimal value of t′ to (slightly) improve the upper bound.

4 Concluding remarks and open problems

• The authors of [1] defined, for r and t ≥ s, f(r, s, t) to be the maximum k for which there exists a
collection of k matchings, each of size t, in some r-partite r-uniform hypergraph, such that there
is no matching of size t in which there are at least s edges that belong to distinct matchings.
Thus f(r, t, t) is exactly the function f(r, t) considered in the previous sections. They showed
that f(r, s, t) ≥ 2r−1(s − 1), and that equality holds for r = 2 and for s = t = 2. The upper
bound proved in Section 3 can be modified to yield improved upper bounds for this function
when s < t (although in general these are still far from the lower bound). Indeed, given a
collection M of matchings, each of size t, in an r-uniform hypergraph H = (V,E), consider a
random coloring of V by s colors, where each vertex, randomly and independently, is colored
i with probability pi, where

∑s
i=1 pi = 1, pi ≥ 0. Let q1, q2, . . . , qs be positive numbers whose

sum is t. Call a matching M ∈ M q-multicolored if it contains exactly qi monochromatic edges
of color i ∈ [s] = {1, 2, . . . , s} for every i ∈ [s]. Note that a collection S of s q-multicolored
matchings always contains a matching of size t using at least one edge of each matching in S.
By choosing the numbers qi and the probabilities pi optimally and by computing the expected
number of q-multicolored matchings we get an upper bound for f(r, s, t) (and in fact for F (r, s, t)
which is defined in the obvious way.) Here, too, one can use more than s colors and more than
one vector (q1, . . . , qs) to improve the estimate in some cases. As an example, for t > s = 2 and
any r one can take p1 = 1/t, p2 = (t − 1)/t, q1 = 1, q2 = t − 1 and conclude that f(r, 2, t) ≤
F (r, 2, t) ≤ ( tt

(t−1)t−1 )r.

• The connection between the function f(r, t) and problems in additive number theory, described in
Section 2, leads to some new insights about problems in additive combinatorics using the known
results about f(r, t). In particular, one can get a new proof of an old theorem of Erdős, Ginzburg
and Ziv [14], that asserts that any sequence of 2t − 1 elements of Zt contains a subsequence of
exactly t terms whose sum in Zt is zero. (In the notation of Section 2, this is the known fact that
g(1, t) = 2t − 1.) There are several known proofs of this result, see [5] for five such proofs. A
common feature of all these proofs is that they first establish the result for all prime values of t
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and then use the fact that the validity of the result for t1 and t2 implies its validity for the product
t1t2. Here is a new short proof, based on the result of [1] (following [10]), that f(2, t) = 2t−2 for
all t. Note that the proof in [1], [10] is graph theoretic, based on an alternating path argument,
and works directly for all (prime or non-prime) t.

Given a sequence a1, a2, . . . a2t−1 of elements of Zt, define a familyM = {M1, . . . ,M2t−1} of 2t−1
perfect matchings in a bipartite graph on the color classes A1, A2 where each Ai is a copy of Zt.
The matching Mi is defined from ai as in Section 2, that is, Mi = {(ai +j, j) ∈ A1×A2 : j ∈ Zt},
where addition is in Zt. Since f(2, t) = 2t−2, there is a rainbow matching, implying that there is a
set I ⊂ {1, 2, . . . , 2t−1}, |I| = t, and a bijection σ : I → Zt so that the edges (ai+σ(i), σ(i)), i ∈ I
form a perfect matching. In particular, the elements ai + σ(i), i ∈ I, form a permutation of Zt,
implying that in Zt,

∑
i∈I(ai + σ(i)) =

∑
j∈Zt

j and hence in Zt,
∑

i∈I ai = 0, as needed.

Note that the argument works for any abelian group of order t. It may seem that the above
proof gives a stronger result than the Erdős-Ginzburg-Ziv Theorem, as it does not only supply
a subsequence of t terms whose sum is zero, but in fact it provides a subsequence to which one
can add a permutation of the elements of Zt and get a permutation. However, by an old result
of M. Hall [17], these two assertions are equivalent in any abelian group, that is, a sequence of
t elements in an abelian group of order t can be expressed as the pointwise difference of two
permutations if and only if the sum of its elements is zero. The proof in [17] is also based on an
alternating path argument. Note that for prime t the assertion of Hall’s Theorem can be easily
deduced from a special case of Theorem 1.2 in [4].

• In [1] it is proved that f(r, 2) = 2r−1, using a special case of the main result of [2]. It is interesting
to note that this is also equivalent to the assertion of Corollary 1.2 in [3]. This corollary asserts
that the largest n for which the complement of a perfect matching of n edges can be covered by r
subgraphs, each being a vertex disjoint union of complete graphs, is 2r−1. To see the equivalence,
let the edges of the missing matching be {ai, bi}, and let the subgraphs be H1, . . . ,Hr, where
Hi is the disjoint union of cliques Ci,1, . . . , Ci,qi . Put Vi = {Ci,1, . . . , Ci,qi} and consider the sets
Vi as the vertex classes of an r-partite, r-uniform hypergraph. For each edge {ai, bi} as above,
let Mi = {ei, fi} be a matching of size 2 in this hypergraph, where ei consists of all vertices
Ci,ji with ai ∈ Ci,ji and fi consists of all vertices Ci,ji with bi ∈ Ci,ji . There is no rainbow
matching here, since for every i 6= j, ei and fj intersect (as the edge aibj has to belong to
some subgraph Hi). This gives a correspondence between families of matchings of size 2 without
a rainbow matching, and coverings of complements of graph-matchings by subgraphs that are
disjoint unions of cliques, showing that indeed the fact that f(r, 2) = 2r−1 is equivalent to the
covering result stated above. The proofs in [2], [3] apply linear algebra tools based on some
simple properties of exterior algebra.

• The problem of determining f(r, t) or obtaining better estimates for it remains open. In partic-
ular, it seems interesting to determine the asymptotic behaviour of f(r, 3) (which is exponential
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in r) more accurately, and to decide whether or not for any fixed r there is a constant c(r) so
that f(r, t) ≤ c(r)t for all t.
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