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Abstract

The broadcast throughput in a network is defined as the average number of messages that can be
transmitted per unit time from a given source to all other nodes when time goes to infinity.

Classical broadcast algorithms treat messages as atomic tokens and route them from the source to
the receivers by making intermediate nodes store and forward messages. The more recent network coding
approach, in contrast, prompts intermediate nodes to mix and code together messages. It has been shown
that certain wired networks have an asymptotic network coding gap, that is, they have asymptotically
higher broadcast throughput when using network coding compared to routing. Whether such a gap exists
for wireless networks has been an open question of great interest. We approach this question by studying
the broadcast throughput of the radio network model which has been a standard mathematical model to
study wireless communication.

We show that there is a family of radio networks with a tight Θ(log logn) network coding gap, that
is, networks in which the asymptotic throughput achievable via routing messages is a Θ(log logn) factor
smaller than that of the optimal network coding algorithm. We also provide new tight upper and lower
bounds showing that the asymptotic worst-case broadcast throughput over all networks with n nodes is
Θ( 1

logn
) messages-per-round for both routing and network coding.

1 Introduction

Broadcasting, that is, transmitting one or multiple messages from a source to some or all nodes in a network,
is one of the most important network communication primitives. It is particularly interesting in multi-hop
wireless networks: While wireless communication is of broadcast-type on a local level (transmissions reach
all close-by nodes), collision and interference make global broadcasts over multiple hops challenging.

The radio network model [8] was designed to capture these characteristics and has become one of the
standard mathematical models to study wireless network communication. In this model, communication
occurs in synchronous rounds in which each node in a network, represented by a graph G, can decide to
send a packet or listen. Nodes that listen receive the packet of a sending neighbor if there is exactly one
sending neighbor. On the other hand, if two or more neighbors of a node v send simultaneously, then their
transmissions collide (i.e., interfere) at v and are useless for v.

In this paper we study what broadcast throughput is possible in radio networks. That is, we want to know
how many messages per round can a source broadcast to all nodes on average as time (and the number of
messages) goes to infinity. In addition to determining the optimal broadcast throughput we also want to
know whether any coding is necessary to achieve it.

The reason for differentiating coding and non-coding approaches is due to the following historical devel-
opments: The classical way of transmitting multiple messages over a networks is routing, that is, messages
are regarded as atomic tokens and routed from the source to the receivers by making intermediate nodes
store and forward messages. It was long known that routing can achieve the optimal throughput for point-to-
point communications. However it was not until 2000 that Ahlswede et al. [2] discovered that the broadcast
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throughput of a network can be increased by having intermediate nodes code messages together. This network
coding approach has since let to both fundamental new insights and simple, distributed and throughput-
optimal broadcast algorithms for many settings. Wireless networks, in particular, have become a popular
setting to study the impact of network coding and both positive and negative results have been reported.

The situation is similarly open for broadcast in the radio network model. Classical broadcast algorithms
achieve a Θ(1/ log2 n) messages-per-round throughput in any n-node network. Over the past few years,
broadcast algorithms with Θ(1/ log n) messages-per-round throughput have emerged, all of which employ
network coding. See Section 1.1 for related work. This prompts several questions: How much (if any)
advantage can network coding provide over routing in radio networks? What is the optimal worst-case
broadcast throughput in radio networks? Is network coding necessary to achieve this throughput?

We address these questions and show that there is a family of radio networks with a tight Θ(log log n)
network coding gap, that is, networks in which the asymptotic throughput achievable via routing messages
is a Θ(log log n) factor smaller than that of the optimal network coding algorithm. Surprisingly, we also
provide new tight upper and lower bounds showing that the asymptotic worst-case broadcast throughput
over all networks with n nodes is Θ(1/ log n) messages-per-round for both routing and network coding.

1.1 Related Work

We present a brief review of the closely related work, divided into three parts: broadcast problem in radio
networks, network coding advantage, and network coding in wireless networks.

Broadcast in Radio Networks: The study of broadcast in radio networks has a long line of history,
dating back to 1985 work of Chalamatac and Kutten[8]. As a result of about 20 years of research, worst-case
optimal single-message broadcast time complexity is well-understood: Θ(D log n

D + log2 n) for unknown-

topology [20, 9, 3, 22, 5] and Θ(D+ log2 n) for known topology [21, 11, 3], where D is the network diameter.
Peleg [30] provides a nice survey.

For multiple-message broadcast, a summary with a focus on throughput is as follows1: Bar-Yehuda et
al. [6] used the Decay broadcast protocol of [5] to get a k-message broadcast algorithm with dependency
of O(k log2 n) rounds on the number of messages k, i.e., throughput of Ω(1/ log2 n) messages-per-round.
This routing-based throughput remained the best known for about two decades, recurring in many papers2,
until recently where network coding was shown to achieve dependency O(k log n) [19, 14], i.e., throughput
of Ω(1/ log n) messages-per-round. A routing-based Ω(1/ log n) throughput was claimed in [27] but its
correctness was disproved [31].

Network Coding Advantage: Since its introduction in [2], network coding has become a well-studied
subfield of information theory. Most related are studies that study the network coding gap (i.e., the ratio of
the optimal throughput using network coding to that of routing) for different network models (see, e.g., [25,
1, 24, 15]). This network coding gaps are often deeply connected to combinatorial or graph theoretical
problems. In wired undirected networks, using a classical edge-disjoint spanning trees result of Tutte and
Nash-Williams, Li et al. [25] show this gap to be at most a constant of 2. On the other hand, for directed
wired networks, Agarwal and Charikar [1] show the coding gap to exactly correspond to the integrality
gap of the (directed) Steiner-tree LP and use an integrality gap result of Halperin et al. [17] to prove an
Ω((log n/ log log n)2) bound on the coding gap for directed networks. Whether the gap for directed wired
networks is polylogarithmic or even polynomial in n is a major open question. Recently, Censor-Hillel et
al.[7] show a tight gap of Θ(log n) for the model where in each round, each node can send one packet to all
of its neighbors (no collisions).

Network Coding in Wireless Networks: Whether network coding offers advantages in wireless networks
has become a question of both practical and theoretical interest. A prominent example is the work of Katti et
al. [18] which implemented a network coding strategy for practical wireless networks and reported significant
constant factor throughput improvements. Following [18] many papers have studied different aspects of

1We remark that, quite a few papers study multi-message broadcast without considering any packet size bounds. This is
completely irrelevant to the case in this paper and thus, we do not mention them here.

2Some of these papers are about the also-widely-studied gossiping problem, a.k.a., all-to-all broadcast, which from the
worst-case throughput point of view, is equivalent to an n-message broadcast problem.
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network coding in wireless networks, such as, energy-efficiency, robustness to packet losses, dynamic networks,
etc. (e.g. [29, 10, 15]).

2 Setup

2.1 Model

We consider the well-studied radio network model, first introduced by Chlamtac and Kutten [8]. The con-
nections in this model are presented by a graph G = (V,E) with |V | = n. The communication occurs in
synchronous rounds where in each round, each node either transmits a packet with length B = Θ(log n)
bits or listens. Each node receives a packet if and only if it is listening and exactly one of its neighbors is
transmitting a packet. In particular, if two or more neighbors of a node v transmit simultaneously, their
transmissions interfere (collide) at v and v does not receive anything.

2.2 Problem Statement

Broadcast Problem: We study the k-message broadcast problem in which one source node broadcasts k
messages to all other nodes. Formally an instance of the k-message broadcast problem consists of a graph
G, a source node s and k messages consisting of B bits each. The messages are initially only known to the
source s and the goal is to deliver all messages to all nodes of G in as few rounds as possible.

We emphasize that, we use the term message to indicate the blocks of information related to the problem
that originally reside in the source node, and we use the term packet to indicate the blocks of information
that are transmitted by nodes throughout the algorithm. The difference becomes more clear as we next
define routing-based algorithms and network coding algorithms.

Routing-Based Algorithms: In a routing-based algorithm, messages are viewed as (atomic) tokens and
nodes can only store and forward them. Each packet contains therefore exactly one message. It is easiest to
think of routing algorithms in the following way: In each round r, each node v has a buffer which contains
all the messages that v has received by the end of round r − 1. Initially, these buffers are empty except for
source’s buffer which contains all k messages. In each round r, for each node v, if v transmits a packet p,
then packet p has to be equal to one of the messages that is in the buffer of node v in that round. When a
node w receives a packet, the related message gets added to the buffer of w.

Network Coding Algorithms: In contrast to routing based algorithms, in network coding algorithms,
packets can be different from messages and each packet can contain (partial) information about many
messages, as long as the total length of the packet is B bits. More precisely, in each round r, each node v
has a buffer which contains all the packets that v has received by the end of round r − 1. Again, initially,
these buffers are empty except for source node’s buffer which contains all the k messages (as k packets). In
each round r, for each node v, if v transmits a packet p, then packet p can be any function of all the packets
that are in the buffer of v in that round, subject to the condition that p contains at most B bits. Note that
routing-based algorithms are a special case of network coding algorithms.

Broadcast Throughput: For a given graph G and a source node s, the routing-based broadcast throughput
is defined3 as limk→∞

k
TRk (G,s)

, where TRk (G, s) is the smallest number of rounds required for broadcasting

k messages from source s to all nodes in G, when using routing-based algorithms. Similarly, the network
coding broadcast throughput is defined as limk→∞

k
TNCk (G,s)

, where TRk (G, s) is the smallest number of rounds

required for broadcasting k messages from source s to all nodes in G, when using network coding algorithms.

The network coding gap for a graph G and source node s is defined as limk→∞
TRk (G,s)

TNCk (G,s)
.

We remark that when looking at throughput there is no difference between distributed and centralized
algorithms since the time to learn the topology is independent from the number of messages k to be broadcast.
Similarly the existence of randomization, IDs and collision detection becomes irrelevant as well.

3It is easy to see that the limits in the definitions of throughput exist. See Proposition A.1 in Appendix A.
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2.3 Broadcast on Bipartite Networks

We next define broadcast problem on bipartite networks and argue that studying bipartite networks is enough
for understanding the worst-case broadcast throughput in general graphs.

Bipartite Networks: In a bipartite network H = (V,E), set of vertices V is composed of two disjoint
nonempty sets A and B, which are each an independent set of H. We call the nodes in A and B respectively
senders and receivers. We often use numbers 1 to η to identify senders and thus have A = {1, 2, . . . , η}. Note
that B corresponds to a set of subsets of A, one subset for each receiver u, representing simply neighbors
of u. Without loss of generality, we can assume that each subset appears only once as if two receivers have
the same sender neighbors, they always receive the same packets and thus, studying just one is enough for
understanding the throughput problem.

Bipartite Broadcast Problem: We define the k-message broadcast problem on bipartite networks as all
senders initially have all the k messages and the goal is to deliver all messages to all receivers. Bipartite
Broadcast Throughput is defined similarly.

Next, we argue that studying worst-case bipartite broadcast throughput is enough for understanding the
worst-case broadcast throughput in general graphs (up to constant factors).

Theorem 2.1. For both routing and network coding, the worst-case optimal throughput on n-node bipartite
networks is, up a constant factor, equal to the worst-case optimal throughput on general graphs with n + 1
nodes.

The rough idea is as follows: each bipartite broadcast problem can be turned into an almost-equal general
broadcast problem by just adding one source s and connecting it to all senders A. The converse relation is
by decomposing each graph into bipartite networks where, for each d, nodes at distances d and d + 1 from
source define one bipartite network. By pipelining over these bipartite networks, a high-throughput bipartite
broadcast algorithm gives a high throughput general broadcast algorithm. The proof for Theorem 2.1 is
elementary and in order to preserve the flow of the paper, we have deferred it to Appendix A.

3 Overview and Our Results

In this section, we give an overview of the structure of related known upper and lower bounds, which will
be helpful for understanding our approach. After that, we state our results formally.

3.1 Background

When trying to transmit information in a bipartite network, there is a dichotomy between reaching receivers
with small and large degrees. In particular, when many senders transmit, one would expect to reach receivers
with small degrees while causing collisions for receivers with large degrees. On the other hand, fewer senders
transmitting leads to fewer collisions for receivers with large degrees but might miss many small-degree
receivers.

As we see next, this dichotomy is very apparent in both upper and lower bounds. In particular, all known
algorithms divide senders into Θ(log n) degree-ranges, where the degrees of receivers in a degree-range are
equal, up to a constant factor. Similarly, impossibility results, such as [3], show this degree-range division
to be essentially necessary.

Upper Bound for Broadcasting One Message: An easy solution for transmitting one message in a
bipartite network is the Decay protocol [5], which works as follows:

Algorithm 1 Decay protocol

1: for i = 1 to Θ(logn) do
2: for j = 1 to Θ(logn) do
3: with probability 1

2i
do Transmit msg m;

4: otherwise remain silent
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It is easy to see that in each iteration of the inner loop, each receiver that has degree in [2i−1, 2i] 4

receives the message with constant probability. Repeating this Θ(log n) times leads to each such receiver
receiving the message with high probability and thus, each complete run of the inner-loop covers one receiver
degree-range. The outer loop then covers all receiver degrees from 1 to n.

Lower Bound for Broadcasting One Message: The question is of course whether the Θ(log2 n) rounds
of the Decay protocol can be improved. In a technically challenging lower bound, Alon et al. [3] showed that
delivering the message to all receivers of each fixed degree-range requires Θ(log n) rounds in the worst case.
Furthermore, their proof shows that transmissions aimed at different degree-ranges essentially do not help
each other. This completes the Θ(log2 n) round lower bound.

Upper Bounds for Broadcasting Multiple Messages: When trying to transmit k > 1 messages, there
are two easy ways to extend the Decay-Protocol.

Firstly, one can repeat the Decay-Protocol for each of the k messages. For example, repeating the inner-
loop of the Decay for each of the k messages delivers all messages to all receivers within degree-range in
Θ(k log n) rounds. Repeating this for each of the log n degree-ranges leads to a Θ(k log2 n) round complexity
or, differently phrased, to a throughput of Θ(1/ log2 n) messages-per-round.

Secondly, to speed this up, one could apply the inner-loop for each message only once instead of Θ(log n)
times. This results in each receiver receiving each message with constant probability and it is easy to see that
for k = Ω(log n) messages, each receiver will receive a constant fraction of all messages, with high probability.
Unfortunately, each receiver might receive a different set of messages. Indeed, for many networks it is quite
likely that no message is received by all receivers. Forward-error-correcting codes [26] offer an easy solution
to this problem. For any k messages one can, for example, create 100k coded messages of equal length such
that the original messages are decodable from any subset of k coded messages. Therefore, using coding in
the inner loop one can broadcast k messages using 100k rounds to all receivers of a degree-range. Again,
iterating this over all log n degree-ranges leads to a total of Θ(k log n) rounds for a throughput of Θ(1/ log n)
messages-per-round in any bipartite network (see Appendix B). That is, a throughput of Θ(1) for each
degree-range.

3.2 Our Results

The first (small) contribution of this paper is to give a simple and direct proof showing that the above coding
approach is optimal in a worst-case network:

Theorem 3.1. There exists a radio network where for any k, broadcasting k messages requires at least
Ω(k log n) rounds. That is, the throughput for any broadcast algorithm is O(1/ log n) messages-per-round.

The proof is very intuitive: For each degree-range, one can deliver at most Θ(1) messages-per-round and
transmissions to each of the Θ(log n) different degree-ranges do not help each other (much).

With the throughput of network coding fully understood, the main question remaining is whether this
Θ(1) messages-per-round throughput per degree-range can also be achieved with routing. Given the prior
work, the two most plausible answers to this question, which both would be interesting, are as follows:

The first case is that, it is possible to assign uncoded messages to senders such that a constant fraction
of messages is received by all receivers. This would lead to a Θ(1/ log n) messages-per-round throughput for
any (bipartite) network using only routing. This would show that routing is asymptotically as efficient as
network coding.

The second plausible case is that, it is not possible to transmit k messages to all receivers of a fixed
degree-range in less than the Θ(k log n) rounds if one only forwards uncoded messages. If this is true for
each of the log n degree-ranges individually, then, following the argument line of [3] and Theorem 3.1, one
would expect that again transmissions for separate degrees can not help each other much. This would lead
to an O(1/ log2 n) messages-per-round bound on the throughput of routing and would show that network
coding is strictly necessary for asymptotically optimal broadcast algorithms in radio networks.

4Throughout the paper, we use notation [p, q] with integers p < q as a shorthand for set {p, p + 1, . . . , q}.

4



We show neither of these to be the case. For networks with receivers of one degree-range, we show that
routing can achieve a throughput of at most O(1/ log log n) messages-per-round. This stands in contrast
to the Θ(1) messages-per-round throughput of network coding for such networks and proves an Ω(log log n)
network coding gap in such networks:

Theorem 3.2. There exist bipartite networks with n nodes where all receivers have degrees in range [d/2, 2d],
for d > n0.01, and for which the broadcast throughput of any routing algorithm is at most O(1/ log log n)
messages-per-round. For any such network, the network coding throughput is Θ(1) messages-per-round.

It turns out that this Θ(log log n) gap is tight for bipartite graphs with one degree-range:

Theorem 3.3. For any bipartite network with n nodes such that all receivers have degrees in range [d/2, 2d],
there exists a routing scheme with throughput Θ(1/ log log n).

Lastly, we show that, surprisingly, this Θ(log log n) bound does not add up for different degree-ranges
and the gap disappears (asymptotically) for the worst-case over all n-node graphs:

Theorem 3.4. For any bipartite network G with n nodes there exists a routing scheme with throughput
Ω(1/ log n) messages-per-round.

4 Network Coding

In this section, we sketch the proof of Theorem 3.1 (stated in Section 3.2). Smaller details appear in
Appendix C.

As discussed in Section 3 our proof follows the spirit of the Ω(log2 n) lower bound of [3] for broadcasting
a single message in a bipartite network. The intuition of the proof is that it is essentially unavoidable to aim
at different degree ranges in different rounds. In particular, in a random bipartite network with different
receiver degrees any round in which an α fraction of senders is sending will effectively only be useful for
receivers of degree around 1

α . More precisely, the probability (and thus the number) of receptions is dropping
exponentially as receiver degrees go away from 1

α :

Proof Sketch for Theorem 3.1. We show that there exists a bipartite network H with less than n nodes such
that in each round, regardless of which nodes transmit, at most O( 1

logn ) fraction of receivers receive a packet.

Since at the end each receiver should receiver at least Ω(kB) bits, that is, Ω(k) packets. The Ω(k log n) lower
bound then follows.

To prove the existence of H, we use the probabilistic method [4] by looking at a family of random bipartite
graphs where we have η =

√
n senders and m = η logn

2 receivers. Receivers are divided into logn
2 equal-size

classes. The receivers of the ith class are each independently connected to exactly 2i randomly chosen senders.
For each fixed subset A′ ⊆ A of senders, let XA′ be the random variable equal to the number of receivers that
receive a packet when senders A′ transmit. Using simple probability calculations, we get that for any A′ ⊆ A,
E[XA′ ] ≤ 10η = O( m

logn ). Most importantly, this is because, in the receiver class with degrees roughly 1
|A′| ,

the expected number of receptions is Θ(η) and as we move to other classes of receivers—i.e., larger or smaller
degrees—the expected number of receptions decreases exponentially. Due to the independence of edges of
different receivers, we can use a Chernoff bound and infer that Pr[XA′ > 20η] ≤ e−3η. Then, we can union
bound over all A′ ⊆ A to get that Pr[@A′ ⊆ A s.t. XA′ > 20η] ≥ 1 − (2η · e−3η) ≥ 1 − e−2η. Thus, there
exists a bipartite graph H in this family such that transmission of no set of senders in one round can deliver
packets to more than 20η = O( m

logn ) receivers.

We remark that Theorem 3.1 can also be obtained from the proof of the Ω(n log n) gossip lower bound
proof of Gasienec and Potapov [12], which itself is achieved by a reduction to the Ω(log2 n) lower bound of
[3]. The proof presented here is more direct, simpler, and shorter than the proof of [3]. Consequent to a
preliminary writeup [13] of Theorem 3.1, Newport [28] uses it to present a simpler and stronger proof of the
optimal distributed single-message broadcast lower bound of [23].
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5 Routing

In this section, we study the worst-case optimal routing throughput. In particular, in Section 5.1, we present
solitude transmission schedules (STS), which are simple concepts that provide a more crisp and manageable
way for working with routing algorithms in the bipartite networks. In Section 5.2, we use STSs to present
a network with network coding advantage of Θ(log log n). Finally, in Section 5.3, we use STSs to present
worst-case throughput optimal routing algorithms.

5.1 Solitude Transmission Schedules

On bipartite networks, each routing-based algorithm is simply a transmission schedule, which we formally
define next. Consider a bipartite network H = (V,E) with senders A and receivers B. A (routing-based)
transmission schedule S for H is a sequence which for each round r, determines mutually disjoint sets Tmr
for messages m ∈ {1, . . . , k}, where Tmr ⊆ A is the set of senders that transmit message m in round r. The
size of a transmission schedule S, denoted by |S|, is simply the number of rounds that it has.

Even though transmission schedules are cleanly defined concepts, the fact that one needs to consider
all the k messages in all rounds makes the task of studying transmission schedules extremely cumbersome.
To go away from this issue, we define solitude transmission schedules which allow us to zoom in on the
transmissions and the receptions of one message, while transmissions of other messages are regarded as
“noise”. We show in Lemma 5.2 and Lemma 5.3 that, while STSs allow us to only work with one message
(which is significantly simpler), they capture the throughput well.

Definition 5.1. A Solitude Transmission Schedule (STS) S is a sequence (i1, A1), (i2, A2), . . .,
(i|S|, A|S|) which for each round r, determines a set of senders Ar ⊆ A and one specific sender ir ∈ Ar;
sender ir transmits the message (of interest) and senders in Ar \ {ir} transmit “noise”. A receiver node u
of a bipartite network H receives the message if and only if there exist a round r such that the only neighbor
of u that is in set Ar is sender node ir. We say that STS S covers H if using S in H, all receivers receive

the message. We define the weight of an STS S to be W (S) =
∑|S|
r=1

1
|Ar| .

First, we show that high-throughput transmission schedules lead to low-weight STSs:

Lemma 5.2. Let H be an arbitrary bipartite networks. If there is a transmission schedule S for H that has
throughput at least x, then there exists an STS S ′ that covers H and has W (S ′) ≤ 1

x .

Proof. For each round r of S, let Tr =
⋃
m∈{1,...,k} T

m
r . In S, we charge each message m by Ψ(m) =∑|S|

r=1 |Tmr |/|Tr|. We have

∑
m∈{1,...,k}

Ψ(m) =
∑

m∈{1,...,k}

|S|∑
r=1

|Tmr |/|Tr|

=

|S|∑
r=1

( ∑
m∈{1,...,k}

|Tmr |/|Tr|
)

=

|S|∑
r=1

1 = |S|.

Since S has throughput at least x, we get that
∑
m∈{1,...,k}Ψ(m) = |S| ≤ k

x and thus, there exists a message

m∗ such that Ψ(m∗) ≤ 1
x . We transform S into an STS S ′ by focusing on m∗, using the following steps:

(i) remove all the rounds in which m∗ is not transmitted by any sender, (ii) for any round r such that
|Tm∗r | ≥ 1, split round r into |Tm∗r | separate rounds where in each of those |Tm∗r | rounds, a different node
of Tm

∗

r transmits message m∗ while every other node in Tr transmits ‘noise’. It is easy to see that since S
delivers m∗ to every receiver, S ′ covers H. Also, W (S ′) = Ψ(m∗) ≤ 1

x .

Next, we show (almost) the converse: Using a combinatorial packing argument, we prove that low-weight
STSs, with a small additional symmetry-type requirement, can be actually turned into high-throughput
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transmission schedules. Later in Section 5.3, we use Lemma 5.3 to get high-throughput routing-based
transmission schedules.

Lemma 5.3. Let H be an arbitrary bipartite network with η senders. Suppose there is an STS S on η
senders of weight w such that a random permutation of S covers H with probability p. Then, there exists a
routing algorithm for H that achieves throughput of exactly p/w.

Proof. Let S = ((i1, A1), . . . , (i|S|, A|S|)) be the promised STS. We design a transmission schedule Snew that
tries to transmit η! messages (one message mπ for each permutation π of the set of senders {1, 2, . . . , η})
in η!w rounds, such that for η! p messages, each of these messages is successfully delivered to all receivers.
Thus, even if the η! − η! p unsuccessful messages are ‘noise’ (or empty), still η! p messages are delivered
successfully to all receivers, in η!w rounds. For large number of messages k, repeating the schedule of these
successful messages dk/η! pe times leads asymptotically to the promised routing throughput of p/w.

We first declare which senders transmit in which rounds of Snew and then make the assignment of what
message is transmitted by each transmitting sender.

For each ` ∈ [1, η], let n` be the number of rounds r of S such that |Ar| = `. For each ` ∈ {1, . . . , η}, for
each set A′ of ` senders, we assign n`(η − `)!(`− 1)! = n`

η!

`(η`)
rounds in Snew where in each of these rounds,

exactly nodes of A′ transmit. Hence, as claimed, the total number of rounds of Snew is∑
`

(
η

`

)
n`

η!

`
(
η
`

) = η!
∑
`

n`
`

= η!
∑
r

1

|Ar|
= η!w.

We now determine which message is transmitted by each transmitting sender in each round using a
greedy procedure. For each round t of Snew, let Tt be the set of senders that transmit in round t. Also, for
each round t of Snew and each sender i ∈ Tt, let Mt(i) be the message assigned to i for transmission in round
t. Initially, Mt(i) = null for all i ∈ Tt. We iterate one by one through all permutations π of {1, 2, . . . , η}
and through all rounds r ∈ {1, . . . , |S|} of STS S, and each time, we search for a round t in transmission
schedule Snew such that the set of transmitting senders Tt is exactly π(Ar) and for which the sender π(ir)
has not been assigned a message for transmission yet, i.e., Mt(i) = null. We then assign the sender π(ir) to
transmit the message mπ at round t of Snew.

Algorithm 2 Assigning messages to transmitting senders

1: for each permutation π of set {1, 2, . . . , η} do
2: for r ∈ {1, . . . , |S|} do
3: Find a round t of Snew such that:

Tt = π(Ar) and Mt(π(ir)) = null.
4: Mt(π(ir))← mπ.

It is clear that if the find procedure in Line 2 of the algorithm always succeeds, then for the produced sched-
ule Snew, the STS associated with Snew and each messagemπ is exactly π(S) = ((π(i1), π(A1)), . . . , (π(ir), π(Ar))).
If π(S) is one of the permutations of S that cover H, then the message mπ is delivered to all receivers. Since
there are η! p such covering permutations, this is also the number of messages that gets delivered to all
receivers.

To complete the proof, we show that the find procedure in Line 2 of the algorithm always succeeds. If
the greedy assignment is searching for a round t such that Tt = A′, where |A′| = `, and where specific sender
i ∈ A′ has M(i) = null, then the greedy assignment is processing a permutation π′ and a round r′ of S such
that π′(ir′) = i, π′(Ar′) = A′, and |Ar′ | = `. For each of the n` values of r′ for which |Ar′ | = `, there are
exactly 1(` − 1)!(n − `)! permutations π′ such that π′(r′) = i and π′(Ar′) = A′. Thus, over the course of
the greedy assignment, such a (A′, i)-find request is made exactly n`(`− 1)!(n− `)! times. This corresponds
exactly to the n`(η− `)!(`− 1)! number of rounds the set A′ is transmitting. Hence, Line 2 of the algorithm
will always succeed and, in fact, at the end, there will remain no Mt(i) = null for any i ∈ Tt.

5.2 An Ω(log log n) Network Coding Gap

Here, we use STSs to present a network with network coding advantage of Θ(log log n) (that is, to prove
Theorem 3.2):
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We first present the key part of this theorem as Theorem 5.4, which proves the existence of (almost) fixed-
receiver-degree bipartite networks with optimal routing throughput of O(1/ log log n) messages-per-round.
After that, with a simple comparison to network coding which achieves throughput of Θ(1) messages-per-
round in such networks, we prove Theorem 3.2.

Theorem 5.4. There exist a bipartite network H with |A| = η senders and |B| = η6 receivers, where all
receiver nodes have degree in range [ 9η

20 ,
11η
20 ] and any routing-based broadcast algorithm has throughput at

most O( 1
log log η ) messages-per-round on H.

Proof. Using Lemma 5.2, we get that to prove Theorem 5.4, it suffices to show that there is a bipartite
network H with the described properties such that there is no STS with weight at most 99 log log η

100 that covers
H. In order to do this, we consider a random distribution over a family of bipartite graphs G where we
have |A| = η senders and |B| = η6 receivers. In each random graph G ∈ G, each receiver is independently
connected to each sender with probability 1

2 .
Standard application of Chernoff and union bounds shows that for each random graph G ∈ G, with

probability 1−2−Ω(η), we have that in G, each receiver has degree in range [ 9η
20 ,

11η
20 ]. To complete the proof,

we show the following: for each random graph G ∈ G, with probability 1 − 2−Ω(η), there is no STS with
weight at most 99 log log η

100 that covers G.

Since for each STS S, we have W (S) ≥ |S|η , to prove the claim we only need to focus on STSs with at

most η log log η � η2 rounds. Consider a fixed STS S such that W (S) ≤ 0.99 log log η and the length of S
is at most η2. We show that the probability that this STS covers G is at most e−η

5

. Then, we use a union
bound over all such STSs to conclude the proof of the claim.

We first reorder the rounds of S as (i1, A1), (i2, A2), .., (it, At), with t < 0.99η log log η < η2, where each
pair (ij , Aj) corresponds to a round in which the subset Aj of A is the set of transmitting senders, and
ij ∈ Aj is the only sender that transmits the message. The order of these pairs is chosen greedily; Aj is the
one for which the cardinality of Aj − {i1, i2, .., ij−1} is minimized among all rounds that are still available.

Let p be the minimum index such that |Ap−{i1, ., , ip−1}| ≥ 10 log η (if there is no such p take p = t). Note
that the minimality in the choice of p implies that also |As−{i1, ., ip−1}| ≥ 10 log η for all s > p. Moreover, let
q be the minimum index so that |Aq−{i1, ., , iq−1}| ≥ 10 log log η (if there is no such q take q = t). Note that
by definition q ≤ p. As before, the minimality in the choice of q implies that |As−{i1, ., , iq−1}| ≥ 10 log log η
for all s > q (and of course |As − {i1, ., , iq−1}| ≥ 10 log η for all s > p).

We have p ≤ log2 η. This is because of the following: For all j < p, we have |Aj | ≤ j − 1 + 10 log η,
as |Aj − {11, .., ij−1}| ≤ 10 log η. Thus, if p > log2 η, then W (S) would be at least

∑p
i=1 1/(i + 10 log η) >

(1 − o(1)) log log η, which would be a contradiction. Similarly, we have q ≤ 0.5 log η. This is because, if
q > 0.5 log η, then W (S) would be at least

∑q
i=1 1/(i+ 10 log log η) = (1− o(1)) log log η, which would again

be a contradiction.
For a fixed receiver node u ∈ B, the probability that u is not connected to any of the vertices i1, i2, .., iq−1

and has at least 2 neighbors in As − {i1, ., , iq−1} for all s ≥ q is at least

(
1

2
)q(1− p ·O(log log η/ log10 η)− η2 ·O(log η/η10))

≥ (1/
√
η)(1− log2 η ·O(log log η/ log10 η)

−η2 ·O(log η/η10)) ≥ 1/(2
√
η).

Note that if this happens, u never receives the message. Thus we get that the probability that no such
receiver u exists is at most (1 − 1/(2

√
η))η

6 � e−η
5

. Hence, the probability that the fixed STS S covers

random graph G is at most e−η
5

.
Now, the total number of possibilities for STS S of length at most η2 is less than (η2η)η

2

< 2η
4

. This
is because, for each round r of S, there are η options for sender ir and at most 2η options for Ar. Hence,
using a union bound over all such STSs, we get that the probability that there exists an STS with weight
at most 99 log log η

100 that covers G is at most 2η
4

e−η
5

< 2−η. Therefore, we get that the described network H
exists.

Using Theorem 5.4, we now go back to proving Theorem 3.2.
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Proof of Theorem 3.2. Consider the graph H proven to exist by Theorem 5.4 with η = n−1 and add a source
connected to all senders. Theorem 5.4 implies that routing has throughput at most O( 1

log logn ). To complete

the proof, we show that network coding achieves a throughput of Θ(1) in this network. Delivering messages
to all senders takes just k rounds. Then, divide the k messages into blocks of Θ(log n) messages. We do
coding only inside each block, and deliver each block completely from the senders to receivers in Θ(log n)
rounds, thus proving the corollary. In each round (of Θ(log n) rounds), each sender transmits a new coded
packet of the block with probability 1/2 and remains silent otherwise. It is easy to see that since receiver
degrees are in range [ 9η

20 ,
11η
20 ], in each round, each receiver receives a new coded packet of the block with

constant probability and thus, after Θ(log n) rounds, w.h.p., this receiver receives Θ(log n) coded packets
and thus can decode the messages of this block. A union bound over all receivers finishes the proof.

5.3 Routing-based Broadcast Algorithms

We now use STSs and Lemma 5.3 to obtain throughput-optimal routing algorithms.

Proof of Theorem 3.4. Consider the STS S = ((1, [1, 1]), (2, [1, 2]), . . . , (η, [1, η])). That is, the STS where in
the ith round, the ith sender sends the message and senders 1 to i− 1 send noise. Let H to be an arbitrary
bipartite network with η senders and with receivers B ⊆ 2[η] (each receiver is presented by the subset
of senders to which it is connected). We claim that for any permutation π of senders A = {1, 2, . . . , η},
the STS π(S) covers H. The theorem then directly follows from Lemma 5.3 and the observation that
W (S) ≤

∑η
r=1 1/r ≤ ln η + 1.

To prove the claim, consider a receiver rA′ ∈ B that is connected to the senders A′ ⊆ {1, 2, . . . , η}. In
round t = minu∈A′ π

−1(u) of the STS π(S), node π(t) ∈ A′ sends and only nodes v for which π−1(v) < π−1(t)
send noise. By minimality of t, none of these nodes v are in A′ and thus, receiver rA′ receives the message
in round t.

Note that the STS in Theorem 3.4 is independent of network G. So, the resulting routing scheme works
obliviously—i.e., without adapting to the topology—for any bipartite network with η senders.

Generalizing Theorem 3.4, we get Theorem 3.3 (stated in Section 3.2) and Theorem 5.6 for bipartite
networks with a limited range of receiver degrees, as considered in Section 5.2, which show the bound of
Theorem 3.2 to be the best possible for such graphs. To prove Theorem 3.3, we here present and prove a
stronger version:

Theorem 5.5. For any bipartite network G with η senders in which the receivers have degrees in [δ,∆] there
exists a routing scheme with throughput Θ( 1

log ∆
δ +log log η

).

Proof. Let S1, . . . , Sf be f = 16 ln η sets be independently and uniformly random chosen sets of senders
A = {1, 2, . . . , η}, each of size η

∆ . Now we consider the STS S that is made of two parts, i.e., S = (s1, s2),
where

• the first part s1 = ((1, [1, 1]∪S1), . . . , (1, [1, 1]∪Sf ), (2, [1, 2]∪S1), . . . , (2, [1, 2]∪Sf ), . . . , ( η
∆ ln η , [1,

η
∆ ln η ]∪

S1), . . . , ( η
∆ ln η , [1,

η
∆ ln η ] ∪ Sf )), and,

• the second part s2 = (( η
∆ ln η + 1, [1, η

∆ ln η + 1]), ( η
∆ ln η + 2, [1, η

∆ ln η + 2]), . . . , ( 2η ln η
δ , [1, 2η ln η

δ ])).

The weight of the first part of the schedule is

∆

η
· f · η

∆ log η
= O(1),

and the second part has weight

2η ln η
δ∑

i= η
∆ ln η

1/i ≤ ln
2∆ ln2 η

δ
+ 1 = O(log

∆ log η

δ
).
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Hence, the total weight is W (S) = O(log ∆ log η
δ ).

Next we show that for a random permutation π, π(S) covers the network G with probability at least
1/2. We first remark that for each receiver rA′ ∈ G, which is connected to a subset of senders A′, and any
i ∈ [1, f ], there is an independent chance of

(
η−∆
η
∆

)(
η
η
∆

) >

(
η −∆− η

∆

η − η
∆

) η
∆

=

(
1− ∆

η(1− 1
∆ )

) η
∆

> e−(1− 1
∆ )−1

≥ e−2 > 1/8

that π(Si)∩A′ = ∅. The probability that for every receiver rA′ there is an frA′ ∈ [1, f ] with π(Sfr
A′

)∩A′ = ∅
is therefore at least 1− η · (1− 1/8)f > 3/4. Furthermore for a random permutation π there is a chance of
at least

1−

( η−δ
2η ln η
δ

)( η
2η ln η
δ

) > 1− (
η − δ
η

)
2η ln η
δ

= 1− (1− δ

η
)2 ηδ ln η

≥ 1− 1/η2

that a specific receiver r ∈ G is connected to a sender in π([1, 2η log η
δ ]) and therefore with probability at least

1− 1
η ≥ 3/4 this holds for all receivers.

Using a union bound we get that with probability 1/2 both properties hold and we show next that in
this case the STS π(S) covers G. To see this, consider the receiver rA′ that is connected to the senders in
A′ and set t = minu∈A′ π

−1(u). If t > n
∆ log η , then rA′ is covered by part s2, namely the round in which

(t, [1, t]) was scheduled: the node π(t) that is sending is in A′ by definition of t. Furthermore, the nodes
sending noise are senders v for which π−1(v) < π−1(t) which by minimality of t are not in A′. Similarly, if
t ≤ n

∆ log η , then rA′ is covered by part s1, namely the round in which (t, [1, t] ∪ Sfr
A′

) was scheduled: the

node π(t) that is sending is in A′ by definition. Furthermore, the nodes sending noise are senders v for which
π−1(v) < π−1(t) which by minimality of t are not in A′ and nodes in π(Sfr

A′
) which are also not in A′ by

definition of frA′ .
This shows that a random permutation of S covers G with probability at least 1/2 while having a weight of

Θ(log ∆ log η
δ ) which together with Lemma 5.3 result in a routing scheme with throughput Θ(1/ log ∆ log η

δ ) =
Θ( 1

log( ∆
δ )+log log η

).

Theorem 5.6. For any bipartite network G with η senders in which the maximum receiver degree is ∆ there
exists a routing scheme with throughput Θ( 1

log ∆ ).

Proof. The approach is almost identical to the proof of Theorem 3.3 except that we set f = ∆ + 1 and
change the construction of the Si sets and the switching point between s1 and s2. In particular, we choose
the sets S1, S2, . . . , S∆+1 to be a partition of the senders into f = ∆ + 1 sets each of size at least 1

3∆ . Since
for each receiver rA′ that is connected to senders A′ where |A′| ≤ ∆, it is the case that for every permutation
π there exists an fr ∈ [1,∆ + 1] such that π(Sfr ) ∩ A′ = ∅ just as in the proof of Theorem 3.3. Letting s2

progress up to η furthermore guarantees that every permutation of the new STS covers G. Lastly, choosing
the switching point between s1 and s2 to be η

∆2 leads to a weight of 3∆
η · f ·

η
∆2 = O(1) for the first part and∑η

i= η

∆2
1/i ≤ ln ∆2 + 1 = O(log ∆) for the second part.

Remark 5.7. Combining Theorems 3.3 and 5.6 leads to a routing throughput of Θ(max{ 1
log ∆ ,

1
log ∆

δ +log log η
}).
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6 Open Questions

The results of this paper raise a number of interesting questions: Note that the routing algorithm with
throughput of Θ(1/ log n) messages-per-round presented in Section 5 works for large number of messages.
It is open whether such a throughput can be achieved for smaller number of messages. In particular, we
suspect that if k is at most (poly-)logarithmic in n, then there might be an Ω(k log2 n) round lower bound
for routing based k-message broadcast algorithms. This would in essence imply a “network coding gap” of
Θ(log n) for this small number of messages. If true, it would be interesting to know how far this “gap for
small k” extends and how it depends on the number of messages k. The case of k = n corresponds to the
well-studied gossiping problem for which the optimal routing algorithm remains open.
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A Missing Proofs of Section 2

Here we first explain why the limit in the definition of Broadcast Throughput (see Section 2.2) is well-defined.

Proposition A.1. The limits limk→∞
k

TRk (G,s)
and limk→∞

k
TNCk (G,s)

defined in Section 2.2 exist.

Proof. First note that as each node can receive at most one message per round, lim supk→∞
k

TRk (G,s)
and

lim supk→∞
k

TNCk (G,s)
are well-defined and are at most 1. On the other hand, it is clear that TRk (G, s) and

TNCk (G, s) are subadditive functions of k. That is, for example, TRk+k′(G, s) ≤ TRk′ (G, s) + TRk′ (G, s). Thus,

using Fekete’s subadditive Lemma, we get that limk→∞
k

TRk (G,s)
exists and is equal to lim supk→∞

k
TRk (G,s)

.

Similarly, we also get that limk→∞
k

TNCk (G,s)
exists and is equal to lim supk→∞

k
TNCk (G,s)

.

We now prove Theorem 2.1 (stated in Section 2.3).

Proof of Theorem 2.1. To prove the theorem, we show two things:

(a) If there is a bipartite network with n nodes for which any algorithm has bipartite broadcast throughput
at most x messages-per-round, then there is a network with n+ 1 nodes for which any algorithm has
throughput at most x messages-per-round.

(b) If for any bipartite network with n nodes we have a broadcast algorithm with throughput of at least
x messages-per-round, then for any general network with n + 1 nodes we have a broadcast algorithm
with broadcast throughput at least Θ(x) messages-per-round.

For part (a), simply add a source node s—which initially contains all k messages—to the bipartite network
and connect it to all senders. If a broadcast algorithm delivers k messages to all nodes in at most k

x rounds,
then repeating the same transmissions in the bipartite network part gives a bipartite broadcast algorithm
with throughput at least x.

For part (b), note that for each general graph G, the broadcast problem on G can be broken into broadcast
problems on a set of bipartite networks. In particular, if we have a broadcast algorithm with throughput
y for all bipartite networks with at most n nodes, then we can achieve a throughput of at least Θ(y) in
general graphs with n+ 1 nodes. Consider an arbitrary graph G with source node s and the Breadth First
Search (BFS) layering of G where the ith layer contains all the nodes at distance i from the the source
s. Each two consecutive BFS-layers define a bipartite network. We divide the messages into batches of
k′ = k

D . Delivering each batch from one layer to the next takes O(k′/y) rounds. By spacing the progress of
batches 3 layers apart, we can pipeline different batches simultaneously and deliver all batches to all nodes
in O((D + k

k′ ) ·
k′

y ) = O(ky ) rounds, thus achieving a throughput of Θ(y).

B Missing Proofs Section 3

Theorem B.1. For any network with at most n nodes, there is a network coding broadcast algorithm with
throughput Θ( 1

logn ).

Proof of Theorem B.1. Following the discussion in Section 2.3, we know that to prove the theorem, it is
enough to present a broadcast algorithm with throughput Θ( 1

logn ) for bipartite networks. Fix a bipartite
network G with senders S and receivers R. Divide k messages into blocks of log n messages each. We use
network coding to broadcast each block from senders to receivers in Θ(log2 n) rounds, thus achieving the
claimed throughput. In the following, we explain the process for just once block.

Using the Random Linear Network Coding analysis of [16], it is easy to see that for each receiver u ∈ R
to be able to decode all messages of the block, it is enough if u receives Θ(log n) (different) randomly coded
packets of this block. To achieve this, the Θ(log2 n) rounds are divided into Θ(log n) phases, where in each
round of the ith phase, each sender transmits a new randomly coded packet with probability 2−i and remains
silent otherwise.
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Consider a specific receiver u and suppose that u is connected to d senders. Let i∗ = dlog de. Then, in
each round of the phase i∗, u receives a new packet with probability at least d

2i∗
(1 − 1

2i∗
)d−1 ≥ 1

16 = Θ(1).
Hence, in Θ(log n) rounds of phase i∗, u receives Θ(log n) coded packets with high probability. A union bound
over all receivers shows that each receiver receives at least Θ(log n) coded packets and thus, all receivers can
decode all the messages of the block.

The important point about the algorithm of Theorem B.1 is that it uses different transmission prob-
abilities to aim at different receiver degree ranges. That is, in the ith phase, transmissions happen with
probability 2−i and this aims at receivers with degree roughly 2i. Thus, also if we are given the promise
that in a bipartite network all receiver degrees are in range [δ,∆], then just using the phases in range
[blog δc, dlog ∆e] gives a broadcast algorithm with throughput Θ(1/log ∆

δ ).

C Missing Proof of Section 4

Proof of Theorem 3.1. We show that there exists a bipartite network H with less than n nodes such that in
each round, regardless of which nodes transmit, at most O( 1

logn ) fraction of receivers receive a packet. Then
by adding a source node to this bipartite network, we complete the proof.

To prove existence ofH, we consider a distribution over a family of bipartite graphs G where we have

|A| = n′ =
√
n senders and |B| = m′ = n′ logn

2 receivers. The receivers are divided into logn
2 classes, each

of equal size n′. For each i ∈ {1, 2, . . . , logn
2 }, the receivers of class i have degree exactly 2i in each graph

of family G. To present the distribution, we explain how to draw a random graph from this distribution.
In a random graph G ∈ G, the connections are chosen randomly as follows: for each i ∈ {1, 2, . . . , logn

2 },
each receiver in the ith receiver class is connected to 2i randomly chosen senders. The choices of different
receivers are independent. Note that the size of each graph in this family is n′(1 + logn

2 ) < n.

Consider a random graph G ∈ G. We claim that, with probability at least 1− e−2n′ , G has the property
that in each round at most a O( 1

logn ) fraction of the receiver nodes receive a packet, regardless of which set
nodes transmit.

To prove this claim, we first study the receptions in G when a fixed subset A′ of senders transmit. More
precisely, let XA′ be the random variable equal to number of receivers that receive a packet when senders
A′ transmit. We first calculate E[XA′ ].

Consider a receiver v with degree d. Receiver v receives a packet if and only if exactly one of its sender
neighbors is in set A′. If d > n′ − |A′| + 1, then clearly v does not receiver a packet. Suppose that
d ≤ n′ − |A′|+ 1. Then, the probability that G is such that v receives a packet is exactly

Pd(|A′|) =

(|A′|
1

)(
n′−|A′|
d−1

)(
n′

d

)
=
|A′|d
n′

d−1∏
i=1

(1− |A
′| − 1

n′ − i
)

≤ |A
′|d
n′

(1− |A
′| − 1

n′ − 1
)d−1

≤ |A
′|d
n′

exp

(
−|A

′| − 1

n′ − 1
(d− 1)

)
≤ |A

′|d
n′

exp

(
−|A

′| − 1

n′
(d− 1)

)
=
|A′|d
n′

exp

(
−|A

′|
n′

d

)
exp

(
|A′|+ d− 1

n′

)
≤ e · |A

′|d
n′

exp

(
−|A

′|
n′

d

)
.

(1)

For each i ∈ {1, 2, . . . , n
′ logn

2 } receiver, let Xi
A′ be an indicator random variable which is each equal to 1

iff the ith receiver receives a packet. We have XA′ =
∑n′ logn

2
i=1 Xi

A′ . Let d∗ = 2
blog( n′

|A′| )c ≤ n′

|A′| . Using
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Equation (1), we have

E[XA′ ] =

n′ logn
2∑
i=1

Xi
A′ = n′

logn′∑
i=1

P2i(|A′|)

≤ en′ ·
logn′∑
i=1

|A′|2i

n′
exp

(
−|A

′|
n′

2i
)

= en′ ·
log d∗∑
i=1

|A′|2i

n′
exp

(
−|A

′|
n′

2i
)

+

logn′∑
i=log d∗+1

|A′|2i

n′
exp

(
−|A

′|
n′

2i
)

≤ en′ ·

 ∞∑
j=0

1

2j
+

∞∑
j=0

2j+1

e2j


< 10n′.

Note that the random variables Xi
A′ for different receivers i are independent as the neighbors of different

receivers are chosen independently. Thus, we can use a chernoff bound and infer that Pr(XA′ > 20n′) <
e−3n′ . That is, when exactly nodes in set A′ are transmitting, with probability at least 1 − e−3n′ , random
graph G is such that at most 20n′ receivers receive a packet.

The total number of choices for set A′ is 2n
′
. Thus, by a union bound over all choices of set A′, we get

that with probability at least 1 − e−3n′ · 2n′ > 1 − e−2n′ , the random graph G is such that no set A′ can
deliver a packet to more than 20n′ receivers. Hence, there exists a bipartite graph H in this family such

that no set A′ delivers a packet to more than 20n′ receivers. Since there are n′ logn
2 receivers, we get that in

H, there does not exist a subset of senders which their transmission delivers a packet to more than a 40
logn

fraction of the receivers.
Now consider network H proven to exist. We construct radius-2 network H′ from H by simply adding one

source node s and connecting s to all senders. Put k messages in the source node s. For each receiver node
u, in order for u to have all the k messages, u must receive at least Ω(kB) bits, i.e., Ω(k) packets. Note that
this holds for any algorithm including network coding algorithms. Since receiver nodes are only connected
to the sender nodes, by the choice of H, we get that in each round at most O( 1

logn ) of receivers receive a

packet (any packet). Thus, it takes at least Ω(k log n) rounds till all receivers have all the k messages.
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