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Abstract

A radio network is a synchronous network of processors
that communicate by transmitting messages to their neigh-
bors. A processor receives a message in a given step if and
only if it is silent then and precisely one of its neighbors
transmits. This stringent rule poses serious difficulties in
performing even the simplest tasks. This is true even under
the overly optimistic assumptions of centralized coordina-
tion and complete knowledge of the network topology. This
paper is concerned with lower and upper bounds for the
complexity of realizing various communication primitives
for radio networks.

Our first result deals with the broadcast operation. We
prove the existence of a family of radius-2 networks on n
vertices for which any broadcast schedule requires at least
Ω(log2 n) rounds of transmissions. This matches an upper
bound of O(log2 n) rounds for networks of radius 2 proved
earlier by Bar-Yehuda, Goldreich and Itai [BGI]. It is worth
mentioning that this lower bound holds even under optimal
centralized coordination, while the (randomized) algorithm
of [BGI] is distributed.

We then look at the question of simulating two of the
standard message-passing models on a radio network. Both
models can easily simulate the radio model with no over-
head. In the other direction, we propose and study a primi-
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tive called the single-round simulation (SRS), enabling the
simulation of a single round of an algorithm designed for
the standard message models. We give lower bounds for
the length of SRS schedules for both models, and supply
constructions or existence proofs for schedules of matching
(or almost matching) lengths.

Finally we give tight bounds for the length of schedules

for computing census functions on a radio network.

1 Introduction

Communication is a major aspect of every distributed
system. Its role and cost are widely studied in many
areas of Computer Science. Less attention is being
paid, though, to the difficulties arising in communi-
cating over various communication media; usually one
adopts the most convenient medium of point-to-point
non-interfering communication lines. A notable ex-
ception is multiple-access channels (such as Ethernet)
which did receive rather extensive attention (cf. [HLR,
GFL, GGMM]). The main difference is that two sta-
tions transmitting at the same time interfere with each
other.

In the growing field of communications, other mech-
anisms are being proposed, studied and implemented.
However, important aspects of these new communica-
tion modes and the relationships between them are left
somewhat neglected, and there is much more to be said
about these issues from algorithmic and computational
standpoint.

In this paper we study packet radio networks [BGI,
CK, GVF, K, KGBK, SC]. A radio network is a di-
rected graph G = (V,E) whose vertices are processors
(or stations) that communicate among themselves in
synchronous time-slots using radio transmissions. (In
fact, the Ethernet is a special case of a radio network.)
The properties of this medium are described by the
following rules. In each step a processor can either
transmit or keep silent. A processor x receives a mes-
sage from a processor y in a given step if and only if x



keeps silent and y is the only incoming neighbor of x
(i.e., such that (y, x) ∈ E) to transmit in this step. If
more than one incoming neighbor of x transmits, a col-
lision occurs in which case x hears only noise, but no
message. On hearing noise, x can only conclude that
some of his neighbors tried to transmit at this round.
Also, a processor cannot hear while transmitting. (Di-
rected edges reflect asymmetric situations, e.g., some
stations may be more powerful transmitters than oth-
ers.)

It is intuitively clear that the possibility of colli-
sions should make radio networks hard to coordinate
and control, and that performing even the simplest
tasks may pose serious difficulties. This effect is es-
pecially marked when the processors operate in a dis-
tributed fashion, and have no a-priory knowledge of
the network’s topology. This difficulty was demon-
strated, for instance, by the Ω(n) lower bound given
by [BGI] for the time required for deterministic dis-
tributed broadcast protocols in radio networks. Their
lower bound takes full advantage of the assumptions of
the distributed environment and processors’ ignorance
of the graph topology. A major goal of this article is
to point out more fundamental reasons for the diffi-
culty of radio communication. In particular, we study
the time required for some of the most basic functions
usually performed on networks (such as broadcasting a
message from a single source to all other stations), and
give lower bounds which hold even if the processors are
centrally coordinated and have complete knowledge of
the graph.

In order to study the inherent limitations of ra-
dio communication in this way, we need to neutralize
the effects of (the absence of) knowledge of the net-
work. This can be done by concentrating on topology-
bound schedules, rather than distributed algorithms. A
topology-bound schedule is a pre-fixed, oblivious al-
gorithm designed for the particular network at hand.
Such a schedule supplies every vertex with an indi-
vidual list of instructions specifying what actions to
take in each round of the run. (Note that the as-
sumption of a central control being oblivious causes
no loss in power.) To be more specific, a schedule S
is a list (T1, . . . , Tt) of transmissions. For each round
i, i = 1, 2, . . . , t, the set Ti = {(v1,M1), (v2,M2), . . .}
specifies the processors that have to transmit in round
i and the contents of their messages. Such a schedule
may be generated by a centralized algorithm whose in-
put contains the network’s topology. Clearly, a sched-
ule for a given problem on a given graph will gener-
ally outperform any distributed algorithm for the same
problem (run on the same graph). Thus when studying
worst scenarios, lower bounds on the number of rounds
required for a schedule apply also to distributed algo-

rithms.

When trying to demonstrate that one mode of op-
eration is slower or weaker than another, a natural ap-
proach is to study possible simulations between the two
modes. Much of this paper concerns simulations be-
tween the standard synchronous point-to-point message-
passing model and the radio model. (This is one case of
a more general program to study the relative power of
various communication modes by mutual simulation.)
Clearly, the simulation of algorithms for radio networks
on message-passing systems with the same underlying
topology can be achieved in a straightforward manner
with no overhead at all (in terms of number of rounds).
However, in the other direction our results imply that
the simulation of message-passing based algorithms in
radio networks causes a considerable slowdown, typi-
cally depending on the vertex degrees in the network.
This observation lends additional support to one’s feel-
ing about the relative difficulty in radio communica-
tion.

The notion of network simulation may have prac-
tical significance as well. Whenever a new type of
communication mode is invented, new algorithms have
to be developed for it for all standard network opera-
tions. Simulation procedures could help to convert al-
gorithms designed for networks with the same topology
but different means of communication to algorithms
for the new communication mode. In particular, since
designing algorithms for radio networks from scratch
turns to be a hard task, the simulation of algorithms
for standard message-passing systems may prove to be
a plausible approach.

We concentrate on round-by-round simulations where
a separate phase of radio transmission rounds is dedi-
cated to simulating each single round of the original
algorithm. We propose and study a general primi-
tive called single-round simulation (SRS), serving as
a building block in such simulations. The role of this
primitive is to ensure that every message passed by
the original algorithm during the simulated round will
be transmitted (and received) during the simulating
phase. The hardest round to simulate is one where a
message is to be sent over each link of the network.
The simulating phase should guarantee that for every
edge (u, v) there is a step in which u transmits the mes-
sage Muv designated to v and v manages to receive it.
(The resulting communication primitive, SRS, bears
close resemblance to the “network testing” primitive
of [EGMT], although their roles are different.)

Now let us start discussing specific results. For the
broadcast problem in radio networks, Bar-Yehuda et
al. [BGI] present a randomized distributed algorithm



requiring O(D log n + log2 n) rounds, where D is the
diameter of the graph. This implies the existence of
a schedule of the same length. (Their algorithm is
described for undirected graphs, but can be readily
extended to handle also the directed case.) The de-
terministic centralized (polynomial time) algorithm of
[CW] constructs a schedule of length O(D log2 n). In
this paper we demonstrate the existence of a family
of radius-2 networks on n vertices for which the num-
ber of rounds required by any broadcast schedule is
Ω(log2 n), which is optimal in view of [BGI]. The ex-
istence of such a family is established by probabilistic
arguments, including the FKG-Inequality.

It should be noted that both our lower bound and
the Ω(n) deterministic lower bound of [BGI] fail if
one assumes that messages may be broken down and
split to bits. In such a case, the following algorithm
is possible (we state it for radius 2, though the gen-
eral case is just as simple). At time 0 the sender s
passes its broadcast message M to all its neighbors. In
the next length(M) rounds, each neighbor of s trans-
mits the message bit by bit as follows: At time i (for
1 ≤ i ≤ length(M)), it transmits a 1 if the i-th bit of
M is 1, and remains silent otherwise. Since transmis-
sions are synchronous, the stations at distance 2 from
s receive the message by interpreting a 1 message or
noise as a 1 bit and silence as a 0 bit. It is easy to
extend this scheme into an O(length(M) + D) time
broadcast algorithm for general graphs. Notice that
this method is of little practical significance, because
any external noise would fail it. In order to withstand
noise and to achieve synchronization, actual radio net-
works enclose messages by sequences of control bits.
Such a high overhead cost per bit sent in this method
renders it completely useless, except if M is extremely
short. It is also a sensible requirement in the design
of radio networks that messages are not to be meddled
with by intermediate stations and should be forwarded
as a whole, possibly by a special purpose message con-
troller that stations have. In this paper we adopt the
assumption that messages are transmitted as they are.
Alternatively, our lower bound holds also when mes-
sages are long enough to render this method useless.

We cannot rule out the intriguing possibility that
an O(D + log2 n) schedule always exists. This may
seem a surprising possibility in view of the Ω(log2 n)
time that may be required to pass the message to all
vertices at distance 2 from the origin. Would it not
take a similar amount of time to proceed to those of
distance 3 etc...? Let Vi be all the vertices at distance
i from the sender s. There is a possibility that through
some clever pipelining the network may be engaged in
passing the message from Vi to Vi+1 at the same time
that it deals with Vj and Vj+1 for some j > i + 1.

How efficiently this may be done we do not know. It
is worthwhile to try and understand if this is indeed
possible.

Our main results for the single-round simulation
problem are as follows. Denote by ∆in and by ∆out

the maximum indegree and outdegree of any vertex in
the graph, respectively, and let ∆ = max{∆in,∆out}.
(Without loss of generality, ∆in,∆out ≥ 2.) We deal
with two variants of the message-passing model. In the
general model, a processor x may send each of its out-
going neighbors y a (possibly different) message Mxy

in each round. A more restricted model is what we
call the uniform model, where in each round a proces-
sor x may send a single message Mx to all its outgoing
neighbors.

Clearly every algorithm that works in the uniform
model works also in the general model. Conversely,
a single round of an algorithm for the general model
may require Ω(∆out) rounds in a simulating algorithm
in the uniform model, since each processor needs to
send its messages to its outgoing neighbors in ∆out

separate rounds. If messages of unbounded length are
allowed then the two models are equivalent. To simu-
late a round of the general model each processor con-
catenates all its messages along with indicators of the
destinations. This triviality is avoided by considering
the individual message as indivisible and by charging
a unit cost for their transmission. However we assume
messages to have a fixed length.

For the general model we first consider single-round
simulation (SRS) schedules. We prove a matching lower
and upper bound of Θ(∆in∆out) rounds. The upper
bound is achieved by a simple construction method
for SRS schedules, based on coloring a certain related
graph called the interference graph. Our lower bound
is based on a family of graphs with ∆in = ∆out = ∆
that forces every SRS schedule to last at least Ω(∆2)
rounds.

We then turn our attention to distributed algo-
rithms for SRS in the general model. We present a
randomized (Las Vegas) distributed SRS algorithm for
general graphs. With probability 1− p (0 < p < 1), it
requires O(∆in∆out log n

p ) rounds. Deterministic SRS
algorithms are presented under the assumption that
processors have distinct identities {1, . . . , n}. In ad-
dition to the obvious O(n∆out) round algorithm, we
present an O(∆out∆2

in log2 n) round deterministic al-
gorithm.

For the uniform model there is an obvious global
lower bound of Ω(∆in) on the length of an SRS sched-
ule for every graph. Further, there are graphs for
which we can show a lower bound of Ω(∆in log ∆)
rounds. A probabilistic argument using the Lovász Lo-
cal Lemma establishes the existence of an SRS sched-



ule of O(∆in log ∆) rounds for every graph. We also
present a (centralized) algorithm for constructing a
schedule of O(∆in log n) rounds for every graph.

Finally we consider distributed algorithms for SRS
in the uniform model. We exhibit a randomized (Las
Vegas) distributed algorithm for general graphs, which
with probability 1−p requires onlyO(∆in log n

p ) rounds.
We also present deterministic algorithms based on the
assumption of distinct id’s {1, . . . , n}. These algo-
rithms are faster by a factor of ∆out than the corre-
sponding algorithms for the general model.

The last problem we study is that of schedules for
computing census functions on a radio network. The
problem is defined as follows (taking addition as our
example). Each vertex x of G has an input value vx.
The goal is to sum all the values to a designated vertex
p in G.

We give a schedule of O(D∆in) rounds for the cen-
sus problem, where D denotes the diameter of G. We
show that this result is tight by constructing a graph in
which every census schedule requires at least Ω(D∆in)
rounds.

Unless specified otherwise, all logarithms are to
base 2. For easier readability we omit all floor and ceil-
ing roundings throughout. Also, we assume without
further notice that all our parameters are sufficiently
large whenever needed.

2 A lower bound for broadcast

In a schedule S = (T1, T2, . . .) for broadcast, the trans-
missions Ti need only specify the transmitting proces-
sors, not the messages. In step i, every processor v ∈ Ti
is assumed to already hold a copy of the original mes-
sage M , and is required to transmit it. The schedule
S is a broadcast schedule for the sender s in G if after
applying S, every processor in the network has a copy
of M .

Let G = (V,E) be a radius-2 graph, denote by V1

(V2) the set of all the vertices at distance one (two)
from the sender s. For convenience, we assume V1 =
N = {1, 2, . . . , n}. After the first round of any broad-
casting schedule in G all the processors in V1 have the
message M . Therefore, the remaining rounds of any
schedule only need to guarantee the arrival of M to
all processors in V2. The graphs considered here have
no edges between vertices in V2, and so existence of a
t−round schedule can be cast in combinatorial terms
as follows.

Let H and F be families of nonempty subsets of N .
(Any H ∈ H is the set of neighbors of some vertex in
V2. Members of F are transmissions in the schedule.)
We say that F ∈ F hits H ∈ H if |F ∩H| = 1. (This

means that the vertex in V2 corresponding to H got the
message on the transmission corresponding to F.) Also
F hits H if some F ∈ F does, and F hits H if it hits
every H ∈ H. Let t(H) be the minimum cardinality
of F which hits H. (The shortest broadcast schedule.)
Define t(n) = max{t(H)} over all H of n subsets of N .
The problem is to determine, or estimate t(n).

We determine t(n) up to a constant factor.

Theorem 2.1 There are two positive constants c1, c2
such that c1 log2 n ≤ t(n) ≤ c2 log2 n for all n ≥ 2.

The upper bound was established in [BGI] and we show
the lower bound t(n) = Ω(log2 n). Theorem 2.1 implies
the desired corollary

Corollary 2.1 There is a family of order n graphs with
radius 2 for which any schedule for the broadcast problem
requires Ω(log2 n) rounds.

2.1 Proof outline of Theorem 2.1

The proof is based on a probabilistic argument. We
exhibit the existence of a family H of subsets of N
which cannot be hit by any F of size (log2 n)/100.

The lower bound of Ω(log2 n) changes only by a
constant factor, as long as the cardinality of the family
H is polynomial in n, and in fact, the constructed fam-
ily, H, is composed of 0.2 logn subfamilies H`, each of
cardinality n7. For each `, 0.4 logn ≤ ` ≤ 0.6 logn, let
H` be a random family of n7 (not necessarily distinct)
subsets H of N chosen as follows: for each i ∈ N , in-
dependently, Pr(i ∈ H = 1

2`
). It is shown that for any

fixed family F of at most log2 n/100 sets there is only
a small probability for F to hit H. The sum of these
probabilities over all such F is less than 1 so there is
an H which is hit by no F .

As observed in [BGI2] every H` may be hit by an
F of size O(log n). The proof essentially shows that
each H` requires an F` of size Ω(log n) in order to be
hit and F` “does not help” in hitting Hj for j 6= `.

It is easy to check that for a set A of a elements inN
and a random set B of b elements in N , the probability
of A hitting B is (1+o(1))xe−x where x = ab/n. Now,
the cardinalities of the sets in H` are almost surely
very close to n/2`, so, for a fixed F and H ∈ H` the
following three cases may occur: If |F | << 2` then,
with high probability, F ∩H = ∅. If |F | >> 2`, then
with high probability, |F ∩ H| ≥ 2. If |F | is close to
2`, then with a constant probability F hits H. Con-
sequently, a set F ∈ F which is of the “right” size for
some H` is either too small, or too large for other Hj .

If we associate each F ∈ F with the appropriate
H`, then there is an H` with less than log n/20 asso-
ciated F ’s (since |F| < log2 n/100 and H consists of



0.2 logn subfamilies H`). A simple argument can al-
ready be made here to yield some lower bound, but not
quite the correct one, due to two difficulties. First, the
function xe−x mentioned above does not decay suffi-
ciently fast as we move from its maximum at x = 1.
Consequently, an F of size 2` may “help” also in hitting
Hj for j “close” to `. Second, estimating the proba-
bility of F hitting H by summing over all F ∈ F and
H ∈ H, gives bounds which are too crude and we need
some independence. These difficulties are overcome
by applying the FKG-Inequality and by the following
refinement of the pigeonhole argument (described for-
mally in Lemma 2.1).

Let F be a fixed family of t ≤ (log2 n/100) sub-
sets of N , Lemma 2.1 shows that there are an index
` (0.4 logn ≤ ` ≤ 0.6 logn) and a subfamily G of F
satisfying the following conditions:

1. | ∪A∈G A| is “small”.

2. For each B ∈ F\G, Br = B\(∪A∈GA) is “large”.

This index ` indicates which subfamily H` is not hit
by F .

Let H be a member in H`. The claim is that the
probability that F does not hit H is more than 1/n5.
By (1.) the union of all sets in G is sufficiently small,
thus, the probability that H ∩ A = ∅ for all A ∈ G is
at least 1/n2 (Lemma 2.2). The probability that |H ∩
Br| ≥ 2 for a fixed B ∈ F \G is at least 1−O(2`/|Br|).
The dependencies between the events |Bri ∩H| ≥ 2 and
|Brj ∩ H| ≥ 2 only help by the FKG inequality ([Bo
Thm. 19.5]), and so the probability that |H ∩Br| ≥ 2
for all B 6∈ G is at least

∏
(1−O(2`/|Br|)). Condition

(2.) implies that this is larger than 1/n3 (Lemma 2.3).
Since ∪GA and the Br are disjoint these two events are
independent and the 1/n5 bound is proved.

The size ofH` (n7) implies that the probability that
for all H ∈ H` there is an F ∈ F with |F ∩H| = 1 is
at most e−n

2
. As there are less than 2n log2 n << en

2

such possible families F , the lower bound follows.

2.2 A combinatorial lemma

We assume that n is large enough whenever needed,
also the numerical constants can be certainly improved.

Lemma 2.1 Suppose t ≤ log2 n
100 and let F be a family

of t subsets of N = {1, 2, . . . , n}. Then, there is an
index ` and a subfamily G of F such that the following
four conditions hold:

(i) 0.4 logn ≤ ` ≤ 0.6 logn.

(ii) | ∪A∈G A| ≤ 2` log n.

(iii) For each B ∈ F \G define Br = B \ (∪A∈GA) then
|Br| ≥ 2` for all B ∈ F \ G.

(iv) For each k ≥ 0 let fk denote the number of sets
B ∈ F \ G such that 2`+k ≤ |Br| < 2`+k+1 then∑

k≥0

fk
2k
≤ log n. (1)

Proof: Define a permutation A1, A2, . . . , At of the
members of F as follows. Let A1 be a set of minimum
cardinality in F . Assuming A1, . . . , Ai have already
been chosen, (1 ≤ i ≤ t), let Ai+1 be a set in F \
{A1, . . . , Ai} such that |Ai+1 \ (∪ij=1Aj)| is minimum.
Define, also, xi = |Ai \ (∪j<iAj)| for 1 ≤ i ≤ t. For
each `, 0.4 logn ≤ ` ≤ 0.6 logn, let j = j(`) be the
smallest j such that xj ≥ 2`. (If there is no such j,
put j(`) = t+ 1). Notice that by the definition of the
permutation A1, A2, . . . , At, for every ` and for every
j′ ≥ j(`)

|Aj′ \ {A1 ∪ . . . ∪Aj(`)−1}| ≥ 2`. (2)

For each ` put

d` = |{i : 1 ≤ i ≤ t, 2` ≤ xi < 2`+1}|,

and

d′` = d`−1 +
d`−2

2
+
d`−3

4
+
d`−4

8
+ · · · .

Clearly ∑
{d′` : 0.4 logn ≤ ` ≤ 0.6 logn} ≤

≤ 2
∑
`≥0

d` ≤ 2t ≤ log2 n

50
. (3)

Call an index ` good if 0.4 logn ≤ ` ≤ 0.6 logn and
d′` ≤ log n. By (3) the average value of d′` over all
0.4 logn ≤ ` ≤ 0.6 logn is at most (log n)/10 and hence
at least 90% of the indices `, 0.4 logn ≤ ` ≤ 0.6 logn
are good. Notice that if ` is good and j = j(`) then
for G = {A1, . . . , Aj−1} we have

|
⋃
A∈G

A| = x1 + · · ·+ xj−1 ≤
∑
p<`

2p+1dp =

= 2`
(
d`−1 +

d`−2

2
+ · · ·

)
= 2`d′` ≤ 2` log n.

Hence G and ` satisfy conditions (i) and (ii). More-
over, by (2), condition (iii) holds as well. To complete
the proof we show that for at least one (and in fact for



many) good ` condition (iv) holds too. For each good
` and each set Ak, with k ≥ j(`), define s(`, k) = r if

2`+r ≤ |Ak \
j(`)−1⋃
i=1

Ai| < 2`+r+1.

Notice that if `′ > ` are both good then j(`′) ≥ j(`)
and hence if k ≥ j(`′) then

|Ak \
j(`′)−1⋃
i=1

Ai| ≤ |Ak \
j(`)−1⋃
i=1

Ai|.

Consequently, in this case s(`′, k) is strictly smaller
than s(`, k). Therefore, for every fixed k,∑{

1
2s(`,k)

: ` is good, j(`) ≤ k
}
≤ 2. (4)

For each good ` define y` =
∑
k≥j(`)

1
2s(`,k) . By (4)∑

{y` : ` is good} ≤

≤
t∑

k=1

{
1

2s(`,k)
: ` is good, j(`) ≤ k

}
≤ 2t ≤ log2 n

50
.

Since there are at least 0.9 · 0.2 logn > 1
10 log n good

indices `, there is at least one such ` with y` ≤ logn
5 <

log n. Define j = j(`) and G = {A1, A2, . . . , Aj−1}.
Clearly these G and ` satisfy conditions (i),(ii) and
(iii). Moreover, if fk denotes the number of sets B ∈
F \ G such that 2`+k ≤ |Br| < 2`+k+1 then∑

k≥0

fk
2k

= y` < log n,

i.e., condition (iv) holds too. This completes the proof
of the lemma.

2.3 The proof of Theorem 2.1

Now we show our probabilistic construction. For each
`, 0.4 logn ≤ ` ≤ 0.6 logn, let H` = {H`1 , . . . ,H`n7}
be a random family of n7 (not necessarily distinct)
subsets of N = {1, 2, . . . , n} chosen as follows, for each
i ∈ N and 1 ≤ j ≤ n7, independently, Pr(i ∈ H`j ) =
1
2`

. Put

H =
⋃
{H` : 0.4 logn ≤ ` ≤ 0.6 logn}.

We show that with positive probability t(H) > (log2 n/100).
Since H has less than n7 log n sets all of which can be
considered as subsets of an bn7 log nc-element set this
shows that t(n7 log n) = Ω(log2 n) and hence t(m) =

Ω(log2m), completing the proof of Theorem 2.1. It
thus remains to show that with positive probability

t(H) >
log2 n

100
.

Let F be a fixed family of t ≤ (log2 n/100) sub-
sets of N . By Lemma 2.1 there are an index ` and a
subfamily G of F satisfying the conclusions (i)-(iv) of
the lemma. Consider the subfamily H` of H and let
H = H`j be one of the subsets in that subfamily. We
claim that the probability that |H ∩ F | 6= 1 for each
F ∈ F is more than 1/n5 (for all sufficiently large n).
To prove this claim we need the following two lemmas.

Lemma 2.2 The probability that H ∩ A = ∅ for all
A ∈ G is at least 1/n2.

Proof: This probability is precisely(
1− 1

2`

)|∪A∈GA|
≥
(

1− 1
2`

)2` logn

=
1

n1+o(1)
>

1
n2
.

Lemma 2.3 The probability that |H ∩Br| ≥ 2 for all
B ∈ F \ G is at least 1/n3.

Proof: We first note that by the well known FKG
inequality (see, e.g., [Bo Thm. 19.5]) the above prob-
ability is at least the product of the probabilities that
|H ∩ Br| ≥ 2, as B ranges over all sets in F \ G. Fix
a set B in F \ G and let k ≥ 0 be an integer so that
2`+k ≤ |Br| < 2`+k+1. Put y = |Br|. Clearly if n is
large enough:

Pr(|H ∩Br| ≥ 2) =

= 1−
(

1− 1
2`

)y
− y 1

2`

(
1− 1

2`

)y−1

≥

≥ 1−
(

1− 1
2`

)2`+k

− 2k
(

1− 1
2`

)2`+k−1

≥

≥ 1− e−2k − (1 + o(1))2ke−2k =

= 1− (1 + o(1))
2k + 1
e2k

≥ 1− 0.9
2k
.

Consequently, by Lemma 2.1 (iv) and by the FKG
inequality mentioned above we conclude that if fk is
the number of sets B ∈ F \ G such that 2`+k ≤ |Br| <
2`+k+1 then the probability that H contains at least
two elements from each Br is at least∏

k≥0

(
1− 0.9

2k

)fk
>
∏
k≥0

(e−
3

2k )fk ≥ e−3 log n =
1
n3
.



This completes the proof of the lemma.

The event considered in Lemma 2.2 and that con-
sidered in Lemma 2.3 are clearly independent (since
∪GA and ∪B∈F\GBr are disjoint) and hence

Pr(∀F∈F |H ∩ F | 6= 1) ≥

≥ Pr(∀A∈G |H ∩A| = 0
∧
∀B∈F\G |H ∩Br| ≥ 2) =

= Pr(∀A∈G |H ∩A| = 0) · Pr(∀B∈F\G |H ∩Br| ≥ 2)

≥ 1
n2
· 1
n3

=
1
n5
.

We have thus proved that for each fixed family of
at most (log2 n)/100 sets F there is some index ` such
that for each of the random sets H in H`, the prob-
ability that |H ∩ F | = 1 for some F ∈ F is at most
1 − 1

n5 . As the members of H` are independent this
implies that the probability that for all H ∈ H` there
is an F ∈ F with |F ∩H| = 1 is at most(

1− 1
n5

)n7

≤ e−n
2
.

Therefore, for each fixed family F of at most (log2 n)/100
subsets of N , the probability that for all H ∈ H there
is an F ∈ F with |F ∩H| = 1 is at most e−n

2
. As there

are less than 2n log2 n << en
2

such possible families F
this implies that for most families H constructed as
above

t(H) ≥ log2 n

100
.

(It is also easy to check that most of these families
contains no empty sets). This completes the proof of
Theorem 2.1

3 Simulation of the message-passing
model

In this section we give lower and upper bounds on the
number of rounds needed to simulate a single round
in a message-passing network by a radio network in
a synchronous environment by means of single-round
simulation (SRS).

3.1 The general model

Let us first give a precise description of the SRS prim-
itive for the general message-passing model. We are
given a directed graph G = (V,E). For every edge
(x, y) ∈ E, the processor x has a message Mxy des-
tined for y. The single-round simulation problem calls
for the delivery of all of these messages. We say that

an edge (x, y) is satisfied by a transmission step T if
T contains the instruction (x,Mxy) and neither y nor
any other incoming neighbor z of y transmits in T (so y
gets to receive Mxy). A schedule S = (T1, T2, . . .) sat-
isfies an edge if at least one of its transmissions does. A
schedule S is a single-round simulation (SRS) schedule
if it satisfies all edges in E.

For every directed graph G = (V,E), define the
simple undirected interference graph ofG, I(G) = (VI(G), EI(G)),
as follows. The vertices of I(G) are the edges of G
(VI(G) = E). There is an edge between the vertices
(x, y) and (z, w) if at least one of the following two
conditions holds:

1. The edges (x, y) and (z, w) are adjacent edges in
G (i.e., |{x, y} ∩ {z, w}| ≥ 1 and (x, y) 6= (z, w)).

2. At least one of the two edges (z, y) and (x,w)
exists in G.

Denote the chromatic number of an undirected graph
H by χ(H). The following easy lemma expresses the
least length of an SRS schedule for G in terms of I(G).

Lemma 3.1 χ(I(G)) rounds are necessary and suffi-
cient for an SRS schedule for the general model.

Since no degree in I(G) exceeds 2∆in∆out, greedy
coloring of I(G) yields the following corollary.

Corollary 3.1 For every directed graph G there is a
(polynomial time constructible) SRS schedule for the gen-
eral model of 2∆in∆out + 1 rounds.

If G contains a bidirected clique of order ∆, then
I(G) contains a ∆(∆ − 1) clique, whence χ(I(G)) ≥
∆2−∆ and the next corollary follows from Lemma 3.1.

Corollary 3.2 For every ∆ ≥ 2 and n ≥ ∆ there
exists a graph with n vertices and maximum indegree
and outdegree ∆ for which every SRS schedule requires
Ω(∆2) rounds.

We now turn our attention to the subject of find-
ing a randomized distributed algorithm for the prob-
lem. We assume that each processor knows the iden-
tity of its neighbors in the network, as well as n, ∆in

and ∆out, but does not know the entire topology. The
following procedure will be used several times in the
sequel.

Procedure A(M, r): In each round i, 1 ≤ i ≤ r,
transmit M with probability 1

∆in
, and keep silent with

probability 1− 1
∆in

.
In all cases, this procedure is applied at every pro-

cessor x simultaneously using the same r values, with
appropriate messages Mx. For an edge (x, y) denote



by Axy the event: “the processor y fails to receive Mx

over the edge exy during all r rounds”.

Lemma 3.2 For every edge (x, y),

Pr(Axy) ≤ exp
(
− r

2e∆in

)
.

Proof: The probability that a single transmission step
of the procedure succeeds on the edge (x, y) for y with
indegree d is bounded below by

1
∆in

(
1− 1

∆in

)d
≥ 1

2e∆in
.

Therefore, it is only with probability at most(
1− 1

2e∆in

)r
< exp

(
− r

2e∆in

)
that the algorithm fails to transmit Mx on (x, y) in all
r rounds.

Our randomized algorithm for SRS consists of ∆out

phases. Let y1, . . . , yk be the outgoing neighbors of x
in the network. In phase i (1 ≤ i ≤ k), x applies the
procedure A(Mxyi , r) where

r =
⌈

2e∆in ln
n∆out

q

⌉
for some safety parameter 0 < q < 1. As a result of
the previous lemma we get

Lemma 3.3 The probabilistic algorithm succeeds in trans-
mitting on all the edges with probability 1− q.

Proof: Denote by P the probability that the algo-
rithm fails on some edge.

P = Pr(
⋃

(x,y)∈E

Axy) ≤
∑

(x,y)∈E

Pr(Axy).

By the previous lemma and the choice of r

P ≤ n∆out exp

(
−

2e∆in ln n∆out

q

2e∆in

)
= q.

Thus the entire algorithm succeeds on all edges with
probability at least 1− q.

Theorem 3.1 For every 0 < q < 1 and 1 ≤ ∆in,∆out ≤
n the SRS problem for the general model has a random-
ized (Las-Vegas) distributed algorithm requiringO(∆in∆out log n

q )
rounds with success probability 1 − q on any n-vertex
graph G.

Finally we consider deterministic algorithms for SRS.
We make the assumption that processors have distinct
identities {1, . . . , n}. Under this assumption there is an
obvious O(n∆out) round algorithm. We now present
an O(∆out∆2

in log2 n) round deterministic algorithm.
This algorithm relies on the following easy fact.

Lemma 3.4 Let 1 ≤ x1, . . . , xs ≤ n be s distinct in-
tegers. Then for every 1 ≤ i ≤ s there exists a prime
p ≤ s log n such that xi 6= xj(modp) for every j 6= i.

The algorithm operates in ∆out phases. In phase i,
each vertex x transmits its message Mi destined to its
ith neighbor yi. Let {p1, . . . , ps} be the set of primes
in the range [2..(∆in+1) log n]. Each phase consists of
s subphases where subphase j proceeds for pj rounds
and vertex x transmits Mi at time x(modpj).

Correctness is based on the fact that by the above
lemma, for every two adjacent vertices x and y there is
a prime p in the appropriate range such that x( modp)
is different from y( mod p) as well as from z( mod p) for
every neighbor z of y, z 6= x. The overall complexity
of this algorithm is O(∆out∆2

in log2 n) rounds.

Theorem 3.2 For every 1 ≤ ∆in,∆out ≤ n the SRS
problem for the general model has deterministic distributed
algorithms requiringO(n∆out) orO(∆out∆2

in log2 n) rounds
on any n-vertex graph G with distinct processor identities
{1, . . . , n}.

3.2 The uniform model

We now consider the SRS primitive for the uniform
model. That is, in the single round which we simulate,
each processor x sends an identical message Mx to all
of its outgoing neighbors. We first consider the exis-
tence of efficient schedules for the problem. An obvious
lower bound is:

Lemma 3.5 For every graph G, any SRS schedule for
the uniform model requires Ω(∆in) rounds.

Proof: The claim follows from the fact that each pro-
cessor has to hear from ∆in different processors.

Note that this lower bound is global in the sense
that it holds for every graph. In contrast, the Ω(∆2)
lower bound of Corollary 3.2 for the simulation of the
general model is true only for some particular graphs.

We can also prove a tight (but non-global) lower
bound.

Lemma 3.6 For infinitely many values of n there exist
n-vertex graphs for which every SRS schedule requires
Ω(∆in log ∆) rounds.



Proof: For r ≥ 2, construct a directed bipartite graph
G = (V,U,E) with V = {1, . . . , r}, U = {{i, j}|1 ≤ i < j ≤ n}
and all directed edges (i, {i, j}) for every 1 ≤ i 6= j ≤ r.
In this graph ∆in = 2 and ∆out = ∆ = r − 1. asso-
ciate the edge (i, {i, j}) in G with the edge (i, j) in the
complete graph on r vertices, Kr.

We now claim that for this graph, every SRS sched-
ule needs Ω(∆in log ∆) = Ω(log r) rounds. Notice that
the set of edges in G, satisfied by a transmission round
T ⊆ V , is associated with the cut T × (V − T ) in Kr.
The claim follows as the edges of Kr cannot be covered
by fewer than dlog re cuts (cf. [Bo]).

We remark that the above argument uses graphs in
which ∆in and ∆out are considerably different. For the
interesting special case of an undirected network we do
not have any lower bound higher than Ω(∆), yet our
best upper bound is still O(∆ log ∆), leaving an in-
triguing gap. This can be stated in pure combinatorial
terms as follows:

Problem: For a graph G let τ = τ(G) be the least
number of subsets S1, . . . , Sτ ⊆ V (G) so that if x and
y are adjacent vertices, then there is an 1 ≤ i ≤ τ for
which y 6∈ Si and Γ(y) ∩ Si = {x}. Let τd be the
maximum of τ(G) over all d-regular G. Our results show
that d ≤ τd ≤ d log d. What is the true behavior of τd?

We now prove that for every graph there exists a
simulation schedule of r = O(∆in log ∆) rounds. In
order to prove the existence of the desired schedule it
suffices to show that on any given graph, applying the
procedure A(Mx, r) at every vertex for r rounds, where
r is as above, succeeds with positive probability.

The proof is based on the Lovász Local Lemma
([EL], cf. [S]). Let A1, . . . , An be events in a prob-
ability space. A graph H on the vertices {1, . . . , n}
(the indices for the Ai) is called a dependency graph
for A1, . . . , An if for all i the event Ai is mutually in-
dependent of all Aj with (i, j) 6∈ H.

Lemma 3.7 [EL] Assume that for all i,

Pr(Ai) ≤ p

and let d be the maximum degree of vertices in H. If
4dp ≤ 1 then

Pr

(
n⋂
i=1

Āi

)
> 0.

For every directed edge (x, y) in the network G the
event Axy is defined as in the previous subsection.

Lemma 3.8 There is a dependency graph H for these
events with maximum degree d ≤ 2∆2.

Proof: For all (x, y) the event Axy is independent of
all Avw where (v, w) is an edge at distance at least
three from the edge (x, y). (Distance is measured in
the underlying graph of G and two incident edges are
at distance one.) The lemma follows as there are at
most 2∆2 directed edges at distance one or two from
(x, y).

Lemma 3.9 Applying the procedure A(Mx, r) at every
vertex for

r =
⌈
2e∆in ln(9∆2)

⌉
rounds succeeds in transmitting on all the edges with
positive probability.

Proof: Consider the dependency graph of the events
defined above. By Lemmas 3.2 and 3.8 and by the
choice of r we have that

4dp ≤ 8∆2exp

(
− r

2e∆in

)
< 1.

Hence by Lemma 3.7,

Pr
( n⋂
i=1

Āi
)
> 0.

For every directed graph G = (V,E) define the
undirected graph Ĝ = (V, Ê) as follows. The set Ê
contains all the edges of E. In addition, Ê includes
the edge (x, y), if there exists a vertex z such that
(x, z) and (y, z) are in E. The following easy lemma
bounds the least length of an SRS schedule for G in
terms of Ĝ.

Lemma 3.10 χ(Ĝ) rounds are sufficient for an SRS
schedule for the uniform model.

A greedy coloring of Ĝ yields the following corol-
lary.

Corollary 3.3 For every directed graph G there is a
(polynomial time constructible) SRS schedule for the uni-
form model of ∆out∆in rounds.

As is the case with other instances where the Lovász
Local Lemma is used we are not able to constructively
find a schedule of O(∆in log ∆) rounds. Rather we de-
scribe a construction of a schedule with O(∆in log n)
rounds.

The schedule is constructed by a doubly iterative
process. On the highest level, the schedule is con-
structed sequentially round by round. For each round
i select a set of transmitters Ti by an internal iterative



process. Suppose that Tj is already constructed for
1 ≤ j ≤ i. Denote by Si the set of edges satisfied in
one of the first i rounds and by Fi = E − Si the set
of edges (x, y) such that Mx still needs to be received
by y. Initially F0 = E and S0 = ∅. The construction
process continues until a round i when Si = E.

We now describe the internal iterative procedure
for constructing the transmission set Ti+1 of round i+
1. Let F = Fi and S = Si. For every processor x and
for every set W ⊆ V denote by fW (x) (respectively,
sW (x)) the number of edges (x, z) for z ∈W belonging
to F (respectively, S). Note that the total number
of edges pointing to W is

∑
x∈V (fW (x) + sW (x)) ≤

∆in|W |.
Throughout the construction the set V of proces-

sors is partitioned into four groups:

(1) T – The transmitters

(2) H – Processors with exactly one incoming neigh-
bor in T . These processors will hear a message
(and contribute an edge to S) if the processors
in T transmit.

(3) C – Processors having at least two incoming neigh-
bors in T , They hear no message if the processors
in T transmit.

(4) R – The rest of the processors.

Initially T,H,C = ∅ and R = V .
Call a processor x useful if it satisfies one of the

following conditions:

1. x ∈ H and fR(x) > 2(fH(x) + sH(x) + 1),

2. x ∈ C ∪R and fR(x) > 2(fH(x) + sH(x)).

Note that a useful processor can never belong to T be-
cause processors in T have no outgoing neighbors in R.
Intuitively, a useful processor is a processor whose ad-
dition to T will increase the number of satisfied edges
while maintaining some invariants needed for the anal-
ysis of the algorithm.

In each step we select a useful processor x from
H ∪ C ∪ R, transfer it to T , and change the sets H,
C and R accordingly. Repeat this selection process as
long as such a vertex can be found. Once no processor
is useful, let Ti+1 = T and start constructing the next
round.

Lemma 3.11 The invariants

|T | ≤ |H| and |C| ≤ |H|

are maintained by the construction procedure described
above.

Proof: The proof is by induction on the number of
iterations in the construction of T . The base case is
trivial since |T |, |C|, |H| = 0. Assume that the claim
holds after j selection steps and that x is chosen in
step j+ 1 to be transferred to T . Let H ′, C ′ and T ′ be
the new sets of processors and denote by a the number
of new processors that were added to H (from R) and
by b the number of processors that were removed from
H (mostly to C, except for x ∈ H which is moved to
T ).

The definition of a useful processor implies that
a > 2b. Therefore,

|H ′| = |H|+ a− b ≥ |H|+ b+ 1.

By the inductive hypothesis and the above inequality,

|H ′| ≥ |H|+ 1 ≥ |T |+ 1 = |T ′|,

and
|H ′| > |H|+ b ≥ |C|+ b ≥ |C ′|.

Lemma 3.12 The construction of T proceeds as long

as |H| < |F |
5∆in

.

Proof: Assume to the contrary that |H| < |F |
5∆in

and
yet no processor x 6∈ T is useful, i.e., every x ∈ R ∪ C
satisfies

fR(x) ≤ 2(fH(x) + sH(x))

and every x ∈ H satisfies

fR(x) ≤ 2(fH(x) + sH(x) + 1)

. Summing these inequalities over all the processors in
R ∪ C ∪H implies A ≤ B where

A =
∑

x∈V−T
fR(x)

and B is equal to

2
∑

x∈R∪C
(fH(x) + sH(x)) + 2

∑
x∈H

(fH(x) + sH(x) + 1).

The edges in F are classified according to the sets
into which they point. This implies that the cardinality
of F is∑
x∈V−T

fR(x) +
∑
x∈V

fT (x) +
∑
x∈V

fH(x) +
∑
x∈V

fC(x)

≤
∑

x∈V−T
fR(x) + ∆in|H ∪ C ∪ T |.



(The first summation does not include processors in T
since there are no F edges from T to R.) This inequal-
ity and Lemma 3.11 imply that

A ≥ |F | −∆in(|H|+ |C|+ |T |) ≥ |F | − 3∆in|H|.

On the other hand

B ≤ 2
∑

x∈V−T
(fH(x) + sH(x)) + 2|H|.

Since there is exactly one incoming edge from T into
each vertex ofH, and this edge is in F , |H| =

∑
x∈T fH(x).

Using this fact and bounding by ∆in we get

B ≤ 2
∑
x∈V

(fH(x) + sH(x)) ≤ 2∆in|H|.

Combining the last two inequalities with the fact that
A ≤ B we get

|H| ≥ |F |
5∆in

,

contradicting the assumption.

Lemma 3.13 There is a (polynomial time constructible)
SRS schedule for the uniform model of only r = O(∆in log n)
rounds.

Proof: Let Fi denote the set of unsatisfied edges at
the beginning of round i. Lemma 3.12 implies that in
round i the transmission succeeded on at least |Fi|

5∆in

edges. Hence for every i ≥ 1,

|Fi| ≤
(

1− 1
5∆in

)
|Fi−1|,

so

|Fi| ≤
(

1− 1
5∆in

)i
|E| ≤

(
1− 1

5∆in

)i
∆inn.

Therefore after at most

log ∆inn

− log
(

1− 1
5∆in

) = O(∆in log n)

rounds all edges are satisfied.

We end by considering distributed algorithms for
SRS. We may apply procedure A(Mx, r) (for a suffi-
ciently large number of rounds) as a randomized algo-
rithm for the problem, with any desired success prob-
ability.

Theorem 3.3 For every 0 < q < 1 and 1 ≤ ∆in,∆out ≤
n the SRS problem for the uniform model has a random-
ized (Las-Vegas) distributed algorithm requiringO(∆in log n

q )
rounds with success probability 1 − q on any n-vertex
graph G.

Proof: ¿From Lemma 3.2 and the fact that |E| ≤ ∆n
we get that the probability to fail on at least one of
the edges is

Pr

 ⋃
(x,y)∈E

Axy

 ≤ ∑
(x,y)∈E

Pr(Axy) ≤ ∆ne−
r

2e∆ .

A simple calculation shows that for

r =
⌈

2e∆ ln
∆n
q

⌉
this probability is less than 1

q .

Deterministic algorithms for SRS can again be de-
signed under the assumption that processors have dis-
tinct identities {1, . . . , n}. Both algorithms presented
for the general model can be modified to run faster in
the uniform model, saving the factor of ∆out.

Theorem 3.4 For every 1 ≤ ∆in,∆out ≤ n the SRS
problem for the general model has deterministic distributed
algorithms requiring O(n) or O(∆2

in log2 n) rounds on
any n-vertex graph G with distinct processor identities
{1, . . . , n}.

4 The census problem

The census problem is defined as follows. Each vertex x
of G has an input value vx taken from a commutative
semigroup SG = (S,+). The goal is to sum all the
values to a designated vertex p, p ∈ G (i.e., at the end
of the process p has the value

∑
x∈G vx). To simplify

matters only the case of SG = (Z,+), the integers, is
considered, though all the results carry to the general
case.

Let G = (V,E) be a directed graph, denote its
diameter by D (i.e., the maximum distance between
any two vertices in G). We now describe a sched-
ule of O(D∆in) rounds for the census problem, and
show that this result is tight by constructing a graph in
which every census schedule requires Ω(D∆in) rounds.

For every vertex x ∈ G denote by T (G, x) the fol-
lowing directed version of a BFS tree. For a vertex y
let d(y, x) be the length of the shortest path from y
to x. The set Vi = {z|d(z, x) = i} is linearly ordered
as follows: the index of z ∈ Vi in this ordering is de-
termined according to the smallest index j of y ∈ Vi−1

such that (z, y) ∈ E. This y is called z’s parent and the
vertices with the same parent are ordered arbitrarily.

Lemma 4.1 For every directed graph G = (V,E) and
for every processor p ∈ V , that is reachable from all the
other processors in G, there is a schedule for the census
problem requiring D∆in rounds.



Proof: Construct a mapping

ϕ : Vi → {1, . . . ,∆in}

such that all vertices z ∈ Vi with the same ϕ value
can communicate their value to their parents without
creating a conflict. The value of ϕ is determined by
the order of vertices in Vi. Let y be the parent of z
and let A be the set of all ϕ(u) where u precedes z in
Vi and (u, y) ∈ E. The set A has cardinality at most
∆in−1 and ϕ(z) is the smallest integer not in this set.
It is easily verified that transmission in this order is
possible whence we conclude.

The lower bound is demonstrated using a ∆in-ary
tree of depth D.

Lemma 4.2 For every D and ∆in there exists a graph
G = (V,E) with diameter D and maximum indegree
∆in and a vertex p ∈ V , such that every schedule for the
census problem requires Ω(D∆in) rounds.
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