Routing permutations on graphs via matchings
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ABSTRACT

We consider a class of routing problems on connected graphs G. Initially, each vertex
v of G is occupied by a “pebble” which has a unique destination 7(v) in G (so that 7 is a
permutation of the vertices of G). It is required to route all the pebbles to their respective
destinations by performing a sequence of moves of the following type: A disjoint set of edges
is selected and the pebbles at each edge’s endpoints are interchanged. The problem of interest
is to minimize the number of steps required for any possible permutation 7.

In this paper we investigate this routing problem for a variety of graphs G, including
trees, complete graphs, hypercubes, Cartesian products of graphs, expander graphs and Cayley
graphs. In addition, we relate this routing problem to certain network flow problems, and to
several graph invariants including diameter, eigenvalues and expansion coeflicients.



1. Introduction

Routing problems on graphs arise naturally in a variety of guises, such as the study of
communicating processes on networks, data flow on parallel computers, and the analysis of
routing algorithms on VLSI chips. A simple (though fundamental) problem of this type is the
following. Suppose we are given a connected graph G = (V, £') where V and £ represent the
vertex and edge sets, respectively, of G. We denote the cardinality |V| of V by n. Initially, each
vertex v of G is occupied by a unique marker or “pebble” p. To each pebble p is associated a
destination vertex 7(v) € V, so that distinct pebbles have distinct destinations. Pebbles can
be moved to different vertices of G according to the following basic procedure: At each step a
disjoint collection of edges of G is selected and the pebbles at each edge’s two endpoints are
interchanged. Our goal is to move or “route” the pebbles to their respective destinations in a
minimum number of steps.

We will imagine the steps occurring at discrete times, and we let p,(t) € V denote the
location of the pebble with initial position » at time ¢t = 0,1,2,..., . Thus, for any ¢, the set
{pu(t) : v € V}is just a permutation of V. We will denote our target permutation that takes
vtom(v),v €V, by m. Define r{(G, 7) to be the minimum possible number of steps to achieve
7. Finally, define 7¢(G), the routing number of G, by

ri(G) = max ri(G, )
where 7 ranges over all destination permutations on G. (Sometimes we will also call 7 a routing
assignment. )

In more algebraic terms, the problem is simply to determine for G the largest number of
terms 7 = (uyv1)(ugvy)...(u,v,) ever required to represent any permutation in the symmet-
ric group on n = |V| symbols, where each permutation 7 consists of a product of disjoint
transpositions (ugvy) with all pairs {ug, v;} required to be edges of G.

To see that r{(G) always exists, let us restrict our attention to some spanning subtree T’
of G. It is clear that if p has destination which is a leaf of T, then we can first route p to its
destination u, and then complete the routing on 7'\ {«} by induction.

In this paper, we will investigate routing on a variety of graphs. These include trees,
complete graphs, complete bipartite graphs, hypercubes, Cartesian products of graphs, Cayley
graphs and expander graphs. We will also consider a related continuous version of the routing
problem, the so-called flow problem, which is of independent interest. Furthermore, we relate
the routing problem on a given graph to several invariants of it including its diameter, its
resistance, and its expansion coefficients and eigenvalues.

2. General bounds on rt(G)
To begin with, an obvious lower bound on r(G) is the following:
(1) ri(G) > diam(G)

where diam(G') denotes the diameter of GG, i.e., the number of edges in a longest path in G. It
would be interesting (but probably difficult) to characterize graphs for which equality holds.

Suppose C' is a cutset of vertices, and let A and B be subsets of V separated by the removal
of C'. Then

2) (@) > %mmqm, 1B)).



This follows by considering the permutation 7 which maps all pebbles starting in |A| into
| B| (where we assume without loss of generality that |A| < |B]). All pebbles in A (i.e., those
p; with p;(0) € A) must pass through some vertex v of C, and it takes two steps for p; to pass
through v: one to move it from A onto v, and one to move it from v into B (which exchanges
it with some pebble from B).

Almost the same argument applies if C'is a cutset of edges of GG, giving the following similar
bound:

2
ri(G) > 1l min(|A|, |B]) — 1.
This is tight for paths of even length.
Let u(G) denote the size of a maximum matching in G. For a routing assignment 7, define
D(G, ) by
D(G7 7T) = E dG(’U7 7'['(?)))

where dg is the usual (path-) metric on G. Then, setting
D(G) := maxd(G,7) ,

we have the bound

D(G)

2u(G)

This can be seen by noting that D(G) can only be decreased by at most 2u(G) at each step.
Since for any spanning subgraph H of G we have

ri(G) < rt(H)

ri(G) >

then rt(G) is bounded above by rt(7T) for any spanning subtree of G. For any graph G on n
vertices this last quantity is less than 3n, by Theorem 1 below. We next consider the routing
number of trees.

3. Trees

Let T(n) denote some arbitrary fixed tree on n vertices. The following result gives a
reasonably good upper bound on r¢(7(n)).

Theorem 1.

(3) ri(T(n)) < 3n .

Proof. We will need the following simple and known fact, which can be easily proved (by
induction, for example).

Fact. For any tree T on n vertices, there always exists a vertex z of T' (see Figure 1) such
that each subtree T; formed by removing z (and all incident edges) satisfies

(4) 5] <nj2 .

The proof of Theorem 1 is by induction on n = |T'|. Let us apply (4) and let 7" denote any
one of the subtrees T;. Consider a pebble p = p,(0) initially placed on a vertex v of T’. Let us
call p proper if the destination of p under the routing assignment 7= belongs to 7"; otherwise
call p improper. For the special vertex z (the “root”), the pebble p,(0) will be classified as
improper.

Our first objective will be to move all improper pebbles in (each) 77 towards 2/, the vertex
of T" adjacent to z, so that the vertices they occupy form a subtree 7" of T’ containing z’.
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Figure 1: Decomposing a tree T’
Claim. The subtree 7" in T’ can be formed in at most |T’| steps.

Proof of Claim. Let 2/ = v;,v,..., v, be the vertices on some path M in 7”. After the 7*h
step in the process (i.e., after “time ¢”), there will be certain distribution of pebbles on M.
We let p(v,7) denote the pebble occupying vertex v at time ¢. More generally, we will use the
index ¢ to denote the value of a parameter at time ¢. In particular, let I(¢) denote the set of
improper pebbles on M at time 7 which are further from 2’ than some proper pebble on M
(where distance on 7' is measured by the usual path metric, i.e., the number of edges in the
unique path connecting two vertices). Let z(¢) denote the set of all improper pebbles in 77
which are not in the path M. Also, let P(7) denote the set of proper pebbles on M which
are closer to 2z’ than some improper pebbles on M. Further, let C'(7) denote the set of proper
pebbles p on M which are adjacent to an improper pebble on M further from z. Finally, define
the function ¢(7), called the potential, by

(5) ¢(1) := [L())| + [P(1)] + Man{[P(2)], |2(0)[} = |C(2)] -

For example, for the distribution (on the path M) shown in Figure 2 (where o denotes a proper
pebble, and o denotes an improper pebble) we have: |I| = 6, |P| = 5, |C| = 3 and (assuming
|z| > 5), ¢ = 13.
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Figure 2: Pebbles in a path

The algorithm we will employ for reaching the desired state is simply a greedy algorithm:
Whenever we can interchange an improper and proper pebble so as to bring the improper
pebble closer to 2’, we do it. More specifically, at each step we choose a maximal set of disjoint
pairs of this type, and perform the interchanges. We now argue that if we have not yet reached
the desired state (i.e., the set of all improper pebbles in T’ does not span yet a subtree of T’
containing z’) then the potential ¢(i) (computed for some specific path M to be chosen later)
must decrease at the next step.



To see this, observe that since our greedy algorithm must eventually terminate, we can find
some improper pebble p which is moved during the last step. Consider the path M = (2' =
V1,..., V) Where v, is the location of p at time 0, i.e., p(v,,,0) = p. By the definition of our
algorithm, no improper pebble is ever moved off of M. On the other hand, it is quite possible
that new improper pebbles are moved onto M. Let us denote the pebble distribution on M
in terms of alternating blocks of improper and proper pebbles (see Fig 3). P; denotes the gth
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Figure 3: Pebbles on M

block of proper pebbles (with size | P;|) and I; denotes the j*® block of improper pebbles. Each
P; and I;, 1 < j < r,is nonempty (although Iy may be empty). By definition ¢(¢) depends
only on Jc( ), Pj and I;, 1 < j <7, and is given by

=Y G+ Yo 1P =+ Man(Y | Pyl |(2)])
7=1 7=1 7=1

Now, when we go to time ¢ 4+ 1, various changes in M can occur. To begin with, the last
(i.e., right-most) proper pebble in each P; will be replaced by some improper pebble, either
the first pebble in I; or some other improper pebble from outside of M. Observe that if
|1(7)| increases during a step then both |P(7)| and |z(7)| must decrease by at least the same
amount. By keeping track of all the possible changes which can occur at the next step, it is
not hard (though somewhat tedious) to verify that in all cases, ¢(i 4+ 1) < ¢(i) — 1. We omit
the somewhat lengthy details. Since the potential can never exceed, by definition, the number
of vertices in T, this completes the proof of the claim. H

The next step in the proof of Theorem 1 is to move each component’s improper pebbles
to their correct components. With 77, ..., T, denoting the subtrees formed by the removal of
the oot z, let I(7;) denote the set of improper pebbles in T}, and let P(7}) denote the set
of proper pebbles in 7). It can be easily shown that using at most three steps two improper
pebbles can be moved to their correct destination components. In fact, if ¢ denotes the largest
|I(T;)|, then we can move at least 2¢ improper pebbles to their correct destination components
in at most 2¢ + 1 steps.

Following this procedure, we can guarantee that all pebbles are in their correct components
(and z is occupied by its proper pebble) in 5 Z |I(T;)| — 2t) + 2t + 1 more steps.

Note that by the claim 7" can be formed (in T;) in at most |1} steps.
Now, since by induction each 7; can now be routed in fewer than 3|7}| steps, then they can
all be routed (in parallel) in fewer than 3maz|T}| steps. Thus, T" can be routed in less than

ma.r]|T|—|— Z|I |) —t+ 1+ 3maz|T;]

steps. However, maxz|T;| — t does not exceed the number of proper pebbles in the largest
subtree. Let y denote this number of proper pebbles, then, clearly,

YTH) <n—1-y



and hence the previous quantity is at most
3 3
Y+ 5(7@ —1-9y)+ 14+ 3maz|T;| < in +3(n/2) = 3n.

This completes the induction step, and since (3) holds for n = 2 then Theorem 1 is proved.
|

The bound in Theorem 1 can perhaps be improved. For example, it seems clear that one
should not wait to start moving pebbles across z and routing within 7;’s until all improper
pebbles in each 7; have been moved close to z; (i.e., these steps can all be made in parallel).
In fact, the correct value of the constant may be half as large, as suggested by the following;:
Conjecture. For any tree T, on n vertices,

3(n—1)

(6) T, < |2

Furthermore, we suspect that the equality can only be achieved when the tree is the star
S, on n vertices.

The fact that equality holds for S,, was pointed out to us by W. Goddard[7].

For the case that 7T, is a path P, on n vertices, our routing problem reduces to a well
studied problem in parallel sorting networks (see [9] for a comprehensive survey). In this case,
it can be shown that r¢(P,) = n. In fact, any permutation 7 on P, can be sorted in n steps by
labelling consecutive edges in P, as ej,es,...,e,_1 and only making interchanges with even
edges ez on even steps and odd edges eyr41 on odd steps.

4. Complete graphs

Let K, denote the complete graph on n vertices. In this case, because K, is so highly
connected, the routing number K, is as small as one could hope for.

Theorem 2. For the complete graph K, on n > 3 verlices,
(7) rt(K,) =2 .

Proof. To see that rt(K,) > 2, it is enough to consider the permutation © = (abc) consisting
of a 3-cycle on K. It is clear that such a m cannot be achieved in a single step.

To show that r¢( K, ) < 2, it suffices to show that any cyclic permutation can be achieved
in two steps, since any permutation 7 can be factored into disjoint cycles, which can then all

be routed in parallel. So, let 7, denote the cyclic permutation on {1,2,...,m} given by
i) = i—-1, 1<i<m,
(1) = m.

Consider the two routing steps:

Si: Lm4+1-1)2,m+1-2)...(¢, m+1—14)...
and
Sy (Lm—-1)2,m—-2)...(j,m—7)....



We check that the composition 57 o 99 sends:

t—m+l—i—-m-(m+1l-0t)=it-1, t#1,

1—m.

This map achieves the desired permutation in two steps. Consequently, r¢(K,) < 2, and the
theorem is proved. W
The following result is due to Wayne Goddard[7].

Theorem 3. For the complete bipartite graph K, ,, with n > 3,
(8) (K, ,) =4 .

Proof. Suppose K, , has vertex sets A and B where the edges are all between A and B.
To see that r{(K, ,) > 4, we consider the permutation 7 = (ajazas) where @;’s are in A. It is
not hard to show that 7 cannot be achieved in three steps.

A pebble is said to be an A-pebble if its destination is in A. Otherwise it is called a B-
pebble. In at most one step, we can move all A-pebbles to B and B-pebbles to A. To prove
that r{(K, ) < 4, it suffices to show that any cyclic permutation 7 = (1,2,---,2m) can be
achieved in three routing steps:

Si: (L2)B4) - 2l3] - L2lS)elT] +2.215] +3) - (2m—2,2m - 1),
Sy : (1,2m)(3,2m—2)---(2[%1 - 1,2L%J +2),
Ss : (3,2m)---(2L%J+1,2[§1+2).

This proves the theorem. H
More generally, it is not hard to show that for a general complete bipartite graph K, ,,
m < mn, we have

(9) MU K) € 2] +2,

since in at most two steps, m pebbles (in fact, B-pebbles, as defined above,) can be routed to
their destinations.

5. Cartesian products

For graphs G = (V, E), G' = (V', E’), we define the Cartesian product graph G x G’ to
be the graph with vertex set V x V' = {(v,?) | v € V,v" € V'} and with (u,')(v,?’) an edge
of G x G' if and only if either u = v, u'v' € E' or v’ = v/, uv € E. Thus, the n-cube Q™ is just
the Cartesian product of Ky with itself n times.

The following theorem can be traced back to the early work of Benés [5]. It was also proved
by Baumslag and Annexstein[4].

Theorem 4.

(10) (G x G') < 2rt(G) + rt(G') .

Note that since G x G’ and G’ x G are isomorphic graphs then (10) can be written in the
symmetric form

(10) ri(G x G') < min{2rti(G) + ri(G"), 2ri(G') + ri(G)}



G

Figure 4: G x G’

We will briefly describe the proof of Theorem 4 here. We can picture G x G’ as an array
V x V', with each row spanning a copy of G’ and each column spanning a copy of G. To route
in G x G', we will:

(1) Route in columns (copies of G); then
(2) Route in rows (copies of G'); then
(3) Route in columns (copies of G)

Let m be the desired routing permutation we are trying to achieve. Fach pebble p has some
destination (o(p), o'(p)) where o(p) € V, o'(p) € V'. Let us first classify the pebbles according
to their second coordinates. Since 7 is a permutation on V x V', for each v’ € V, there are
exactly |V| pebbles with ¢'(p) = v’. Hence, by the well known marriage theorem of Hall (see
[11]), we can select a set of distinct representatives from the columns, i.e., one pebble from
each column so that their second coordinates are all distinct. Furthermore, we can now repeat
this procedure (again by Hall’s theorem) to get another set of distinct representatives, and so
on. At the end, we see that we can in fact arrange the pebbles in each column so that the
pebbles in each row of the rearranged columns all have distinct values of ¢’. By hypothesis,
this rearrangement can be accomplished in at most 7¢(G) (parallel) steps.

Next, we rearrange the pebbles in each row (i.e., copy of G’) so that pebbles p in the column
indexed by v' € V', have o/(p) = ¢'. This can be done (by hypothesis) in r7¢(G’) more steps,
and guarantees, when completed, that the pebbles in each column have distinct values of o.

The final step, permuting each column (copy of ) can be done in r#(G) more steps. Thus,
the whole process requires at most 27¢(G) 4 rt(G") steps.

Corollary 1. For the n-cube Q",
Q") <2n—1.
Corollary 2. For the m by n grid graph P, X P,, m < n,

rt(Pr X Pp) <2m+n .



Remarks. Routing on the n-cube Q" is a very natural question in view of the popular use the
n-cube structure for models of parallel computation and communication. Indeed, it was this
context (through the work of Ramras [10]) which first motivated our considerations of these
questions.

Corollary 1 is well-known in the literature. The exact value of r{(Q") is still unknown. It
is easy to see that r{(Q") > n since diam(Q") = n. The permutations shown in Figure 5 can
be checked to show that r¢{(Q"™) > n+ 1 for n = 2,3. It is reasonable to conjecture that we
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Figure 5: Bad permutations on @™, n < 3

always have 7¢(Q™) > n 4 1 for n > 2. Certainly r¢{(Q") ~ an for some « € [1,2]. Again, one
suspects that the correct value of « is closer to 1 than to 2, but this seems difficult to prove.

6. Flow problems on graphs

Ordinarily, one might expect that r{(G x G) is substantially larger than r{(G), e.g., as
large as 2r{(G). However, this is not always the case as the following result shows.
Let G, denote the graph consisting of two copies of K,, joined by an edge e (see Figure 6).
It is easy to see that

K, K,

Figure 6:
ri(Gy) =2n4+ 0(1) .
It turns out that r¢{(G,, x G,) is not much larger.

Theorem 5.

(11) (G x Gr) = (1+ 0(1))2n .

Proof. We can view G, X GG, as consisting of 4 copies of K, X K, joined to each other by
n parallel edges to form a 4-cycle (see Figure 7). Within each V; = K, x K,,, the two sets

W~
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Figure 7: G, x G,

of n vertices incident to “crossing” edges have exactly one common vertex. Initially, each V;
has pebbles with destinations lying in the other various V;’s. We are going to group each V;’s
pebbles into sets .S;; of size n, according to their destinations (so that all pebbles in a set 5;;
have the same V; destination; there may be mixed groups of n left over). We are going to move
the S;;’s as a unit, in that all pebbles in each 5;; cross from one V), to another V; at the same
time. Further, we will restrict our routing algorithm so that crossing moves are only made at
even times. Of course, permutations within a V; can occur at all times. Since rt(K, x K,,) <6
(by Theorems 2 and 4), it is not hard to see that if we have m S;;’s in V}, which should cross
over to V; (which is adjacent to it) then this can be done in 2m+0O(1) steps. Thus, our problem
can be reduced to the following continuous flow problem on the 4-cycle Cy. We are given one
unit of “mass” on each vertex v of Cy (where we have rescaled our sets of n? pebbles at each
vertex of C'y to have total mass 1). Thus, mass is required to “flow” along the edges of Cy4 in
order to satisfy a 4 X 4 doubly stochastic circulation matrizc C = (C(u,v)) where for vertices
u,v of Cy, C(u,v) denotes the amount of mass initially at « which must end up at v. Since C'
is assumed to be doubly stochastic, then C'(u,v) > 0 and

ZC(u,v): 1= ZC(U,U).

Therefore, each vertex of Cy also ends up with a total of one unit of mass (hence, our use of
the terminology “circulation”).
In general, a C-circulation ¢ on G = (V, E) is a set of assignments ¢,, : £ — Rt u,v €V,

such that for all u, v,
E Pur(uz) = C(u,v) = Z Puv(yv)
urel yveE

while for any w # u, v,

Z Pup(sW) = Z Pup(wl) .

sweER wiEl

Intuitively, these equations specify that for each pair u,v € V, C(u,v) units of mass flow from
u to v. The norm of ¢, denoted by ||¢||, is defined to be the maximum amount of mass

ple) = punle)

10



assigned to any edge e of F, where we will distinguish between e = ¢ € F and the edge
—e = ji with the reverse orientation. We will say that ¢ is balanced if p(e) = ¢(—e) for all
edges of .

A little reflection shows that we will have proved Theorem 5 if we establish the following:

Lemma 1. For all circulation matrices C' on Cy, there always exists some balanced C -circulation
o with ¢ < 1.

Proof of Lemma 1. Consider a spanning tree T on (4. There are four such trees; these are
all paths of length 3. (See Figure 8.) Note that there is a unique balanced F-flow @1 on 7.
The amount ¢r(e) that @7 assigns to e is just

pr(e) =3 [(u,v)

ucA
vEB

where A and B are the components of 1" formed by the removal of e = 25, and ¢« € A, j € B.
We will form our desired F-flow ¢ as a convex combination of ¢r’s, as T ranges over the

1 € 2
4 3
1 2 1 2 1 2 1 2
o—o0 Co—
4 3 4 3
4 3 4 3

(a) (b) () (d)
Figure 8:

spanning subtrees of . This will guarantee that ¢ is a C-circulation and is balanced (since
each o7 is). In fact, we will take the simplest possible convex combination, namely,

1
P = ZZ@T
T

where 1" ranges over all four spanning trees of C4. To compute ||¢||, we need to bound the
value of ¢(e) for each edge e. For any edge e (by symmetry), the mass ¢(e) assigned to e is

11



equal to that assigned to the edge in the figure which is just:

ple) = 0 from (a)
U2+ 1(4,2)+ 1(3,2)) from (b)
U2+ 7,3+ 7(1L,2) + 7(1,3) Trom ()
U2+ 7(1,3) + 7(1,4)) from (d)

However, observe that in Figure 9, the maximum value that can flow from A to B is just
min(|A|,|B]|). Consequently,

f(L,2)+ f(4,2) + f(3,2) <1
F(4,2)+ f(4,3)+ f(1,2)+ f(1,3) <2
f(L,2)+ f(1,3)+ f(1,4) <1

and so,

Figure 9: Spanning trees of Cy

ple) < 1.

Since e was arbitrary, ||¢|| < 1 and the lemma is proved. H

Now, because ¢ is balanced, we can reinterpret it as pebble movements, where small time
delays (due to the nonuniform S;;, or bounded movement within the V;’s) are negligible as
n — oo. We can then conclude that

r(Gn X Gr) = (14 0(1))2n

as claimed. H

The same argument applies, with the same conclusion, for the k-fold product GfL =
k

—_——
Gy % -+ x Gy, provided we prove the corresponding flow result on Q¥, the k-cube, which
actually is of interest in its own right. This we now do.

Theorem 6. Let F' be a doubly stochastic circulation matriz on Q. Then there always exists
a balanced C-circulation ¢ on QF with ||¢|| < 1.

12



Proof. We will follow the same strategy as in the case of Cy = @2, and build ¢ as a (uniform)
convex combination of tree flows. Define the spanning tree T} on Q* recursively as follows:

Ty is just an edge, which is all of Q!;
Ty is formed by adding the edge e; = {(00...0),(10...0)} to join the two copies
of Ty_1 in the corresponding two copies of Q%! that make up Q*, namely {z =

(1,...,2) | 21 = 0} and {Z = (21,...,2) € QF | 1 = 1}.

We observe that for any edge e of T}, we can always find a minimum-sized component A(e) of
Ty — {e} which does not contain the origin (00...0). Hence we conclude (by induction) that

g(k): = Y |A(e)]

ecT
= > A+ Y [A(e)]
(12) €=¢€g e#eg

= 214 2.9(k—1)

= 2142 (k-1)-2F% = f.281

where we check that ¢g(1) = 1 satisfies (12) to start the induction.

Next, we construct the family of trees which will be used to form . Let Aut(Qk) denote
the automorphism group of Q*. It is easy to see that |Aut(QF)| = 2% - k! and that for any
h € Aut(QF), h(Ty) is also a spanning tree of Q*. Furthermore, for each edge e of Q* and
each edge €’ of Ty there are exactly 2(k — 1)! choices of b € Aut(Q*) which map e onto ¢’ (as
undirected edges; this accounts for the factor of 2. Of course, this does not depend on €’ being
in T%). Define

1
T
where T ranges over all 2% - k! trees h(T}), h € Aut(Q*). Note that this is just what we did
for C4. To bound [|¢||, we compute for any e,
1

P(6) S gy Y0 min(Au(e), Bue)) = gy - 20k~ Dilg(k) =1
" hE€Aut(QF) )

This completes the proof of Theorem 6. W

Corollary 3. For fized k, if G* denotes the k-fold Cartesian product G x ---x G of the graph

G shown in Figure 6, then
ri(GF) = (14 o(1))2n .

Let us define cire(G), the circulation index of a (connected) graph G by

(13) cire(G) := sup inf ||¢||
c ¢

where ¢ ranges over all balanced C-circulations on GG, and C ranges over all doubly stochastic
circulation matrices C' for G. A trivial lower bound for circ(G) is the resistance of G, defined

by
(14) res(G) == max ﬁ min(|A(C)],|B(C)))

13



where C ranges over all culsets of G (i.e., minimal sets of edges whose removal disconnects G,
and A(C') and B(C') are the connected components formed by removing C'. The inequality

(15) cire(G) > res(G)

follows by considering the circulation matrix which sends all |A(C)| units of mass into B(C),
for an extremal cutset C', where we assume |A(C)| < |B(C)|. It is interesting to note that (15)
holds with equality for Q. This is not true in general as can be shown by considering bounded
degree expander graphs G* on n vertices. In this case, we can have

res(G) = 0(1) and cire(G)> clogn .

It will be interesting to know other classes of graphs G for which equality holds in (15). The
technique above can be easily used to show that the set of even cycles is such a class.

It seems likely that the space of balanced C-circulations on any graph is spanned by (convex
combinations of ) the tree circulations on G, i.e., the C-circulations in the spanning trees of G.

7. Eigenvalues, random walks and routing

Here we consider d-regular graphs for which all the eigenvalues of the adjacency matrix
besides the trivial one have a small absolute value. Let us call a graph G an (n,d, A)-graph if
it is a d-regular graph on n vertices and the absolute value of every eigenvalue of its adjacency
matrix besides the trivial one is at most A. If A is small with respect to d then a random walk
on such a graph starting from any vertex converges quickly to the uniform distribution on its
vertices. We will use this property to derive the following theorem the proof of which will be
given later.

Theorem 7. Let G = (V, E) be an (n,d, \)-graph and let o denote a permutation. Then

d? 2
Tt(G,U) S O(mlog n)
Note that in Section 2 it is shown that r{(G) is lower bounded by the diameter of G' and
therefore the routing number of a d-regular graph as above is at least ; logn_ and at most

2 Togld-1)
O((dil—/\)2 log? n).

Now define the ezpansion coefficient a of G to be the minimum, over all subsets X of at
most half the vertices of GG, of the ratio |[N(X)— X|/|X| where N(X)is the set of all neighbors
of X in G. From Section 2, we know that the routing number is bounded below by 2/a. As
an immediate corollary of Theorem 7, up to a polylogarithmic factor, r¢(G) is bounded above

by a polynomial in 1/a for any regular graph with polylogarithmic degrees.

Corollary 4. If G = (V, FE) is a d-reqular graph on n vertices with expansion coefficient a,

then
2

d
ri(G) < O(g log? n).

Proof: The main result of [1] states that if a is the expansion coefficient of a d-regular graph,
then the second largest eigenvalue of its adjacency matrix is at most d — JW. Suppose, first,
that this is an upper bound for the absolute value of every negative eigenvalue as well. Then,
by Theorem 7, rt(G) = O(I%) for | = O(%logn). If there are negative eigenvalues of large
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absolute value we first add d loops in every vertex and apply the result to the new graph. This
completes the proof. [ |

In a similar way, we define the edge expansion coefficient 3 of G to be the minimum, over
all subsets X of at most half the vertices of GG, of the ratio |I'(X)|/|X| where I'( X)) is the set
of edges of G leaving X (i. e., with exactly one endpoint in X). We remark that the inverse
of the edge expansion coefficient is exactly the resistence of G. From Section 2, we know
that the routing number is bounded below by 2/8 — 1. As a corollary of Theorem 7, up to a
polylogarithmic factor, 7¢(G) is bounded above by a polynomial in 1/ for any regular graph
with polylogarithmic degrees.

Corollary 5. If G = (V, F) is a d-regular graph on n vertices with edge expansion coefficient

B, then
d4
ri(G) < O(@log2 n).
Proof : The proof follows from the well-known fact (see [8]) that if 3 is the edge expansion
coeflicient of a d-regular graph, then the second largest eigenvalue of its adjacency matrix is
at most d — g—z. [ ]

Note that by the above two corollaries, r¢(G) < O(log? n) for any bounded degree expander
on n vertices (i.e., any regular bounded degree graph on n vertices with expansion coefficient
or edge expansion coefficient bounded away from 0.)

Many interconnection networks studied in the literature are, in fact, Cayley graphs. A
simple corollary of the above theorem implies that the routing number of a Cayley graph is

intimately related to its diameter.

Corollary 6. For any Cayley graph G of a group of n elements with a polylogarithmic (in n)
number of generators, the diameter of G is polylogarithmic if and only if the rouling number
rt(G) is polylogarithmic.

Proof: As shown in [3], a Cayley graph of polylogarithmic diameter has an inverse polyloga-
rithmic expansion coefficient, and hence the result follows from Corollary 4. [ |

The proof of Theorem 7 follows from the following lemmas. Our first lemma holds for any
d-regular graph G'. A random walk of length [ starting at a vertex v of GG is a randomly chosen
sequence v = vy, v1,..., v, where each v; 41 is chosen, randomly and independently, among the
neighbors of v;, (0 <7 < [). We say that the walk visits v; at time i. We make no attempt to
optimize the constants here and in what follows.

Lemma 2. Let G = (V, F) be a d-regular graph on n vertices and suppose | > logn. For
any v € V independently, let P(v) denote a random walk of length | starting at v. Let I(v)
denote the total number of other walks P(u) such that there exists a vertex x and two indices
0 <47 <I |t—j] <5 sothat P(v) visits ¢ at time i and P(u) visits z at time j. Then,
almost surely (i.e., with probability that tends to 1 as n tends to infinily), there is no vertex v

so that I1(v) > 100(1 + 1).

Proof Let A be the normalized adjacency matrix of G, i.e., the matrix A = (ayy)u,vev defined
by @y, = l(u,v)/d where [(u,v) is the number of edges between u and v. The probability that
the random walk P(u) visits  at time i is precisely e(z)’A’e(u) where e(y) is the unit vector
having 1 in coordinate y and 0 in any other coordinate. Given the random walk P(v) and a
value of ¢, 0 < ¢ <[, there is a unique vertex z = z(v,7) in which P(v) visits at time 4. For
any given u # v the conditional probability that for some j satisfying |i — j| < 5 the walk P(u)
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visits @ at time j is thus at most e(2)" 3.5 ;<5 Ale(u). It follows that the probability p(v,u)
that there exists some vertex z and two indices 0 < ¢,7 <, |i — j| < 5, so that P(v) visits z
at time 7 and P(u) visits  at time j can be bounded by

{

(v,u §Ze v,1))"* Z Ale(u)

i=0 jili—il<s

By summing over all possible starting points u (including v itself, where this last summand
corresponds to adding another independent random walk starting at »- an addition which may
only increase the expectation of I(v)) we conclude that the expectation of I(v) is at most

l
> p(v,u) <D e(a(v,0) > Ale,

ueV =0 Jili—il<5

where e is the all 1 vector. Since e is an eigenvector of A with eigenvalue 1 the last expression
can be computed precisely showing that it is strictly less than 10(I + 1). We have thus shown
that for each fixed v the expectation of the random variable I(v) is strictly less than 10(/+1).
Observe that this random variable is a sum of n — 1 independent indicator random variables
whose expectations are the quantities p(v, u). It thus follows easily from the known estimates
for large deviations of sums of independent indicator random variables (see, e.g., [2], Theorem
A.12, page 237), that for each fixed v, the probability that /(v) exceeds, say, 100(/ 4 1) is at
most
(69/1010)10(1-}-1) << 1/n2‘

(A similar estimate can in fact be proved directly. Given a set of m independent events, with
the probability of the i-th event being p;, suppose that >~ p; < r. Then, the probability that
at least s events occur can be bounded by

E ZES pz >~ sz

SC{177m}7|S| s

< (re/s)°.
In our case, we have r = 10(I + 1) and s = 107.)

Since there are only n vertices v, it follows that the probability that there is a vertex v
with I(v) > 100(/ + 1) is (much) smaller than 1/n, completing the proof.  ®

Lemma 3. Let G = (V, F) be an (n,d, (1 —€)d)-graph and let o be a permutation of order two
of V (i.e., a product of pairwise disjoint transpositions). Put | = %log n. Then there is a set
of n/2 walks P(v) = P(o(v)), v € V of length 2l each, where P(v) connects v and o(v) such
that the following holds. Let I(v) denote the total number of other walks P(u) such that there
exists a vertex x and two indices 0 < 1,7 <1, |i — j| < 5, so that P(v) visits x at time © and
P(u) visits z at time j or at time 21 — j. Then I(v) < 400 + 1) for all v.

Proof Let P(v) be a random walk of length 2/ between v and o(v). As shown in [6] (using
an argument similar to the one used previously in [12]) we may assume that each walk P(v)
consists of two random walks of length [/ each, one starting from v and one from o(v). The
reason for this is that by our eigenvalue condition, a random walk of length [ is almost uniformly
distributed on the vertices of GG, and hence one may view the walk P(v) as being chosen by
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first choosing its middle point (according to a uniform distribution) and then by choosing its
two halves. For more details, see [6]. The result thus follows from Lemma 2. ®
Proof of Theorem 7

Let G = (V, E) be an (n,d, A)-graph. It suffices to consider a permutation o of order two
of V (i.e., a product of pairwise disjoint transpositions) since any permutation is a product of
at most two such permutations (as proved in Theorem 2 ). We set e = 1 — % and [ = log n.
We want to show that r¢(G, o) < O(I%). Let P(v) be a system of walks of length 2/ satisfying
the assumption of the previous corollary. Let H be the graph whose vertices are the walks
P(v) in which P(u) and P(v) are adjacent if there exists a vertex z and two indices 0 < 4,5 <
I, |i—j| < 5so that P(v) visits 2 at time ¢ and P(u) visits z at time j or at time 2/ — j. Then
the maximum degree of H is O(l) and hence it is O()-colorable. It follows that one can split
all our paths P(v) into O(!) classes of paths such that the paths in each class are not adjacent
in H. Consider now the following routing algorithm. For each set of paths as above, perform
20 + 1 steps, where the steps number ¢ and 2/ + 2 — ¢ correspond to flipping the pebbles along
edges number ¢ and 2l + 1 — ¢ in each of the paths in the set for all ¢ < [. Step number [ flips
edge [ and step [ 4+ 1 flips edge [ + 1. One can check that by the end of these 21 + 1 steps,
the ends of each path exchange pebbles, and all the other pebbles stay in their original places.
(Note that some pebbles that are not at the ends of any of the paths may move several times
during these steps, but the symmetric way these are performed guarantees that such pebbles
will return to their original places at the completion of the 21 4+ 1 steps). By repeating the
above for all the path-classes the result follows. [}

8. The route covering number of a graph

We next discuss several problems closely related to the routing number of a graph. One
such problem is the following;:

Suppose G = (V, ) is a connected graph on n vertices. For a permutation 7, we consider
a route set P, which is just some set of paths P; joining each vertex v; to its destination vertex
m(v;), for i = 1,---,n. For each edge e of G, we consider the number rc(e, G, 7, P) of paths P,
in P which contain e. The route covering number re(G) of G is defined to be

re(G) = max m];n max re(e, G, m, P).

In other words, for each permutation we want to choose the route set so that the maximum
number of occurrences of any edge in the paths of the route set is minimized. It is easy to see
that the route covering problem is a special case of C-circulation obtained by choosing C' to
satisfy C(u,v) = 1if v = m(u), and 0 otherwise, for each permutation 7, and by insisting on
integer valued circulation.

For example, for the n-cube @™, the method described in Theorem 4 gives

re(Q") < 4.

In the other direction, by choosing 7 to be the permutation of vertices in Q" so that the
distance between v and 7w(v) is n for every vertex v, it can be easily seen that

Yo, dist(v, m(v))
|E(@")

The problem of determining the exact value of r¢(Q™) for general n remains unresolved. Also
of interest is a “symmetric” version of the route covering problem especially for Q™ :

re(Q") > = 2.
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An assignment for Q™ is a partition of the vertex set of Q™ into subsets of size 2 or less. Is
it possible to find edge-disjoint paths joining vertices in the same subset for any assignment of

Q"

The answer is negative when n is even. However, for odd n this problem remains open.

9. Concluding remarks

Numerous unanswered questions remain, some of which we now mention.

(1) Is it true that for any tree T, on n vertices

(2) Is it true that for the n-cube Q",

Q") =n+o(n)? n+ O0(1)?
(3) Is it true that for every graph G,

(G x G) > ri(G)?

(4) Is it true that for an expander graph G of bounded degree,

ri(G) = O(logn)?

(5) Characterize graphs G with circ(G) = res(G).

(6) Are the balanced C-circulations on a graph always spanned by the spanning tree C-
circulations on the graph?

(7) What is the computational complexity of determining r¢(G)?
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