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Abstract

Let G be a tree and let H be a collection of subgraphs of G, each having at most d connected
components. Let ν(H) denote the maximum number of members of H no two of which share
a common vertex, and let τ(H) denote the minimum cardinality of a set of vertices of G that
intersects all members of H. It is shown that τ(H) ≤ 2d2ν(H). A similar, more general result
is proved replacing the assumption that G is a tree by the assumption that it has a bounded
tree-width. These improve and extend results of various researchers.

1 Introduction

Let H be a finite collection of subgraphs of a finite graph G. The covering number (or piercing number)
τ(H) of H is the minimum cardinality of a set of vertices of G that intersects every member of H.
The matching number ν(H) of H is the maximum number of pairwise vertex disjoint members of H.
Clearly τ(H) ≥ ν(H). In general, τ(H) cannot be bounded from above by a function of ν(H), as
shown, for example, by all induced subgraphs on n vertices of an arbitrary graph on 2n− 1 vertices,
where ν = 1 and τ = n. If, however, the graph G is a tree and each member of H has at most d
connected components, then τ can be bounded by a function of ν and d.

Gallai noticed that if G is a path and d = 1 then τ = ν. More generally, Surányi (see [4]) proved
that the intersection graph of subtrees of a tree is chordal, implying that if G is any tree and d = 1
then ν = τ . Gyárfás and Lehel [4] proved that for d = 2, if ν = 1 then τ ≤ 3, and that if G is a
path then for general d, τ ≤ O(νd!). They also mentioned that τ can be bounded by a (similarly fast
growing) function of ν and d for general trees using related ideas. For G being a path and general d,
Kaiser [5] proved that τ ≤ (d2 − d + 1)ν. His proof is topological, applies the Borsuk-Ulam theorem
and extends and simplifies a result of Tardos [9]. A short proof of the slightly weaker estimate that in
this case τ ≤ 2d2ν is described in [1]. This proof is based on the ideas of [3]. See also [10] for a short
survey.

Here we prove the following result, extending and improving some of the above mentioned ones.
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Theorem 1.1 Let G be an arbitrary tree and let H be a collection of subgraphs of G, each having at
most d connected components. Then τ(H) ≤ 2d2ν(H).

We also prove a more general result, for graphs with bounded tree-width (see Section 4 for the relevant
definitions).

Theorem 1.2 Let G be an arbitrary graph of tree-width at most b and let H be a collection of subgraphs
of G, each having at most d connected components. Then τ(H) ≤ 2(b+ 1)d2ν(H).

The proofs are based on the method of [3] (see also [2]) but require some additional ideas for dealing
with subgraphs of trees or subgraphs of graphs with bounded tree-width. We first obtain an upper
bound for the fractional covering number τ∗(H) (= ν∗(H)) in terms of ν(H) and then bound τ(H)
in terms of τ∗(H).

The term piercing is used in the study of these questions in the geometric context (see, e.g., [3]),
where, for a family of planar sets H, the parameter τ(H) is the minimum number of needles needed
to pierce all the members of the family. Since here we are dealing with a graph theoretic variant, we
prefer to call τ(H) the covering number of H, as usual.

2 Two Lemmas

Our approach is based on the one in [3], where the key ingredients are the notions of fractional
Helly theorems and weak ε-nets, together with linear programming duality. The following lemma is a
fractional Helly type result for subtrees of a tree.

Lemma 2.1 Let H be a collection of n (not necessarily distinct) subtrees of a tree G, and suppose
that there are at least nf/2 intersecting unordered pairs of members of H. Then there is a vertex of
G contained in at least f/2 + 1 members of H.

Proof. As long as there is a subtree in the family H that intersects less than f/2 others, omit one
such subtree from the family. Note that this process must terminate with a nonempty subfamily of H,
since the number of intersecting pairs decreases in each step by less than f/2, and hence would stay
positive if the remaining family would vanish, which is impossible. Therefore, there is a nonempty
subfamily H′ of subtrees in which each member intersects at least f/2 others. Let u be an arbitrary
vertex of G and consider G as a tree rooted at u. Among all vertices x for which there is a member
of H′ which is contained in the subtree rooted at x, let v be one whose distance from u is maximum.
Suppose T ∈ H′ is contained in the subtree rooted at v. Then every element of H′ that intersects T
must contain the vertex v, and since there are at least f/2 such elements besides T itself, the desired
result follows. 2

The next lemma is applied in Section 3 to construct the weak ε-net suitable for our purpose here.

Lemma 2.2 For two positive integers m and r, let R be an arbitrary multi-set of at most rm vertices
in a tree G. Then, there is a set S of at most m− 1 vertices of G so that each connected component
of G− S contains at most r members of R.
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Proof. We apply induction on m, the result being trivial for m = 1. Assuming it holds for m − 1,
we prove it for m ( ≥ 2). Let u be an arbitrary vertex of G and consider G as a tree rooted at u.
Among all vertices x for which the total number of members of R in the subtree rooted at x is at
least r, let v be one whose distance from u is maximum. Then the number of vertices of R in each
connected component of G− v besides the one containing the root u is less than r. Let G′ be the tree
obtained from G by removing the subtree rooted at v (including v). Note that G′ contains at most
r(m− 1) members of R. By the induction hypothesis there is a set S′ in G′ such that each connected
component of G′ − S′ contains at most r members of R. The set S = S′ ∪ {v} clearly satisfies the
required assertion, completing the proof. 2

3 Trees

Let H be a collection of subgraphs of a finite graph G = (V,E). The fractional matching number
ν∗(H) of H is the maximum possible value of the sum

∑
T∈H g(T ), where the maximum is taken

over all real-valued functions g : H 7→ [0, 1] satisfying
∑
T :v∈T∈H g(T ) ≤ 1 for every vertex v of G.

Note that this maximum is obtained for a function attaining rational values. Note also that if we let
g : H 7→ {0, 1} instead, this integer program now defines ν(H). The fractional covering number τ∗(H)
of H is the minimum possible value of the sum

∑
v∈V h(v), where the minimum is taken over all real

valued functions h : V 7→ [0, 1] satisfying
∑
v∈V :v∈T h(v) ≥ 1 for every T ∈ H. Here, too, the minimum

is obtained for a function attaining rational values. By the duality theorem of linear programming we
have ν∗(H) = τ∗(H), and by definition ν(H) ≤ ν∗(H) and τ∗(H) ≤ τ(H). We next show that if H is
nonempty, G is a tree, and each member of H has at most d components, then

τ∗(H) = ν∗(H) < 2dν(H)

and
τ(H) ≤ dτ∗(H).

This clearly implies the assertion of Theorem 1.1.
To complete the proof it thus suffices to prove the above two inequalities. This is done in the

following two lemmas.

Lemma 3.1 Let G be a tree, and let H be a nonempty collection of subgraphs of G, each having at
most d connected components. Then ν∗(H) < 2dν(H).

Proof. Put k = ν(H) and let g : H 7→ [0, 1] be a function, where g(T ) is rational for each T ∈ H,∑
T∈H g(T ) = ν∗(H), and

∑
T :v∈T∈H g(T ) ≤ 1 for every vertex v of G. Let m be an integer for which

mg(T ) is integral for each T ∈ H and put M =
∑
T∈Hmg(T ). Let H′ be the multiset consisting of

mg(T ) copies of T for each T ∈ H, and note that |H′| = M . Let H′′ be the multiset obtained from
H′ by replacing each member of H′ by its components. Put n = |H′′| and note that n ≤ Md. Since
there are no k + 1 pairwise disjoint members of H′, Turán’s Theorem implies that there are at least
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M
2 (Mk − 1) intersecting pairs of members of H′. Thus there are at least

M

2
(
M

k
− 1) ≥ n

2d
(
M

k
− 1) >

n

2
(
M

kd
− 2)

intersecting pairs of members of H′′. By Lemma 2.1 this implies that there is a vertex v of G contained
in more than M

2kd members of H′′ (and hence of H′). Therefore

1 ≥
∑

T :v∈T∈H
g(T ) >

1
m

M

2kd
=
∑
T∈H g(T )

2kd
=
ν∗(H)
2kd

,

implying that ν∗(H) < 2kd, and completing the proof. 2

Lemma 3.2 Let G = (V,E) be a tree, and let H be a nonempty collection of subgraphs of G, each
having at most d connected components. Then τ(H) ≤ dτ∗(H).

Proof. Let h : V 7→ [0, 1] satisfy
∑
v∈V :v∈T h(v) ≥ 1 for every T ∈ H, where h(v) is rational for

all v ∈ V and τ∗(H) =
∑
v∈V h(v). Let r > r′ be two positive integers such that (rd + r′)h(v) is an

integer for all v, and let R be the multiset consisting of (rd + r′)h(v) copies of v, for each v ∈ V .
Note that each member of H contains at least rd + r′ points of R, and hence it has some connected
component that contains at least r + 1 points of R. By Lemma 2.2 with m = d(d + r′

r )
∑
v∈V h(v)e

there is a set S of at most m− 1 < (d+ r′

r )
∑
v∈V h(v) = (d+ r′

r )τ∗(H) vertices of G such that every
connected component of G − S contains at most r points of R. This means that each member of H
contains a point of S, since otherwise each of its components (including the one containing more than
r points of R) would lie in a component of G − S, which contains at most r points of R. Therefore,
τ(H) < (d + r′

r )τ∗(H), and since we can keep r′ fixed and choose an arbitrarily large r the desired
result follows. 2

4 Bounded tree-width

In this section we observe that Theorem 1.2 follows from Theorem 1.1.
The concept of tree-width was introduced by Robertson and Seymour in their series of works on

graph minors. See, e.g., [7].
A tree-decomposition of a graph G = (V,E) is a pair (X,T ) where T = (I, F ) is a tree and

X = {Xi : i ∈ I} is a family of subsets of V such that (i) ∪i∈IXi = V ; (ii) for every edge (u, v) ∈ E,
there exists an i ∈ I such that u, v ∈ Xi; and (iii) if i, j, k ∈ I and j is on the path from i to k in T , then
Xi ∩ Xk ⊆ Xj . The tree-width of the tree-decomposition (X,T ) is maxi∈I |Xi| − 1. The tree-width
of a graph G is the minimum tree-width over all possible tree-decompositions of G. Graphs with
tree-width at most b are also called partial b-trees. In particular, a connected graph has tree-width 1
if and only if it is a tree.
Proof of Theorem 1.2 Fix a tree-decomposition of (X,T ) of G, where T = (I, F ), X = {Xi : i ∈ I}
and |Xi| ≤ b + 1 for each i ∈ I. For each subgraph H ∈ H let H ′ be the subgraph of T induced on
all vertices i ∈ I for which Xi contains a vertex of H. Let H′ denote the set of all subgraphs H ′ of
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T obtained in this way. It is not difficult to check that each member of H′ has at most d connected
components, and that ν(H′) ≤ ν(H). Therefore, by Theorem 1.1 there is a set S′ ⊂ I of at most
2d2ν(H′) ≤ 2d2ν(H) vertices of T that intersects each member H ′ of H′. The set S = ∪i∈S′Xi is thus
a set of size at most 2(b+ 1)d2ν(H) that intersects all members of H, completing the proof. 2

5 Concluding remarks and open problems

• The assumption that G has a bounded tree-width is necessary in Theorem 1.2. Indeed, for every
integer c there exists a b = b(c) such that every graph G with tree-width at least b contains
a collection H of subtrees such that ν(H) = 1 and τ(H) ≥ c. This is because any G with a
sufficiently large tree-width contains a large grid minor (see [8]), and by considering the collection
of all subgraphs of that grid consisting of a union of a horizontal path and a vertical path in it,
we obtain the desired family.

• Very recently, J. Matoušek [6] applied a construction of J. Sgall and proved that even when the
graph G is a path, the quadratic dependence on the number of components d in Theorems 1.1
and 1.2 is optimal, up to a logarthmic factor. It would be interesting to decide if this logarithmic
factor is indeed necessary. Simple examples show that a better than linear dependence on b in
Theorem 1.2 does not hold.
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