Covering a hypergraph of subgraphs

Noga Alon *

Dedicated to Dan Kleitman, for his 65th-birthday.

Abstract

Let G be a tree and let \mathcal{H} be a collection of subgraphs of G, each having at most d connected components. Let $\nu(\mathcal{H})$ denote the maximum number of members of \mathcal{H} no two of which share a common vertex, and let $\tau(\mathcal{H})$ denote the minimum cardinality of a set of vertices of G that intersects all members of \mathcal{H} . It is shown that $\tau(\mathcal{H}) \leq 2d^2\nu(\mathcal{H})$. A similar, more general result is proved replacing the assumption that G is a tree by the assumption that it has a bounded tree-width. These improve and extend results of various researchers.

1 Introduction

Let \mathcal{H} be a finite collection of subgraphs of a finite graph G. The covering number (or piercing number) $\tau(\mathcal{H})$ of \mathcal{H} is the minimum cardinality of a set of vertices of G that intersects every member of \mathcal{H} . The matching number $\nu(\mathcal{H})$ of \mathcal{H} is the maximum number of pairwise vertex disjoint members of \mathcal{H} . Clearly $\tau(\mathcal{H}) \geq \nu(\mathcal{H})$. In general, $\tau(\mathcal{H})$ cannot be bounded from above by a function of $\nu(\mathcal{H})$, as shown, for example, by all induced subgraphs on n vertices of an arbitrary graph on 2n - 1 vertices, where $\nu = 1$ and $\tau = n$. If, however, the graph G is a tree and each member of \mathcal{H} has at most dconnected components, then τ can be bounded by a function of ν and d.

Gallai noticed that if G is a path and d = 1 then $\tau = \nu$. More generally, Surányi (see [4]) proved that the intersection graph of subtrees of a tree is chordal, implying that if G is any tree and d = 1then $\nu = \tau$. Gyárfás and Lehel [4] proved that for d = 2, if $\nu = 1$ then $\tau \leq 3$, and that if G is a path then for general $d, \tau \leq O(\nu^{d!})$. They also mentioned that τ can be bounded by a (similarly fast growing) function of ν and d for general trees using related ideas. For G being a path and general d, Kaiser [5] proved that $\tau \leq (d^2 - d + 1)\nu$. His proof is topological, applies the Borsuk-Ulam theorem and extends and simplifies a result of Tardos [9]. A short proof of the slightly weaker estimate that in this case $\tau \leq 2d^2\nu$ is described in [1]. This proof is based on the ideas of [3]. See also [10] for a short survey.

Here we prove the following result, extending and improving some of the above mentioned ones.

^{*}Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Research supported in part by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. Email: noga@math.tau.ac.il.

Theorem 1.1 Let G be an arbitrary tree and let \mathcal{H} be a collection of subgraphs of G, each having at most d connected components. Then $\tau(\mathcal{H}) \leq 2d^2\nu(\mathcal{H})$.

We also prove a more general result, for graphs with bounded tree-width (see Section 4 for the relevant definitions).

Theorem 1.2 Let G be an arbitrary graph of tree-width at most b and let \mathcal{H} be a collection of subgraphs of G, each having at most d connected components. Then $\tau(\mathcal{H}) \leq 2(b+1)d^2\nu(\mathcal{H})$.

The proofs are based on the method of [3] (see also [2]) but require some additional ideas for dealing with subgraphs of trees or subgraphs of graphs with bounded tree-width. We first obtain an upper bound for the fractional covering number $\tau^*(\mathcal{H}) (= \nu^*(\mathcal{H}))$ in terms of $\nu(\mathcal{H})$ and then bound $\tau(\mathcal{H})$ in terms of $\tau^*(\mathcal{H})$.

The term *piercing* is used in the study of these questions in the geometric context (see, e.g., [3]), where, for a family of planar sets \mathcal{H} , the parameter $\tau(\mathcal{H})$ is the minimum number of needles needed to pierce all the members of the family. Since here we are dealing with a graph theoretic variant, we prefer to call $\tau(\mathcal{H})$ the covering number of \mathcal{H} , as usual.

2 Two Lemmas

Our approach is based on the one in [3], where the key ingredients are the notions of fractional Helly theorems and weak ϵ -nets, together with linear programming duality. The following lemma is a fractional Helly type result for subtrees of a tree.

Lemma 2.1 Let \mathcal{H} be a collection of n (not necessarily distinct) subtrees of a tree G, and suppose that there are at least nf/2 intersecting unordered pairs of members of \mathcal{H} . Then there is a vertex of G contained in at least f/2 + 1 members of \mathcal{H} .

Proof. As long as there is a subtree in the family \mathcal{H} that intersects less than f/2 others, omit one such subtree from the family. Note that this process must terminate with a nonempty subfamily of \mathcal{H} , since the number of intersecting pairs decreases in each step by less than f/2, and hence would stay positive if the remaining family would vanish, which is impossible. Therefore, there is a nonempty subfamily \mathcal{H}' of subtrees in which each member intersects at least f/2 others. Let u be an arbitrary vertex of G and consider G as a tree rooted at u. Among all vertices x for which there is a member of \mathcal{H}' which is contained in the subtree rooted at x, let v be one whose distance from u is maximum. Suppose $T \in \mathcal{H}'$ is contained in the subtree rooted at v. Then every element of \mathcal{H}' that intersects T must contain the vertex v, and since there are at least f/2 such elements besides T itself, the desired result follows. \Box

The next lemma is applied in Section 3 to construct the weak ϵ -net suitable for our purpose here.

Lemma 2.2 For two positive integers m and r, let R be an arbitrary multi-set of at most rm vertices in a tree G. Then, there is a set S of at most m-1 vertices of G so that each connected component of G-S contains at most r members of R.

Proof. We apply induction on m, the result being trivial for m = 1. Assuming it holds for m - 1, we prove it for m (≥ 2). Let u be an arbitrary vertex of G and consider G as a tree rooted at u. Among all vertices x for which the total number of members of R in the subtree rooted at x is at least r, let v be one whose distance from u is maximum. Then the number of vertices of R in each connected component of G - v besides the one containing the root u is less than r. Let G' be the tree obtained from G by removing the subtree rooted at v (including v). Note that G' contains at most r(m-1) members of R. By the induction hypothesis there is a set S' in G' such that each connected component of G' - S' contains at most r members of R. The set $S = S' \cup \{v\}$ clearly satisfies the required assertion, completing the proof. \Box

3 Trees

Let \mathcal{H} be a collection of subgraphs of a finite graph G = (V, E). The fractional matching number $\nu^*(\mathcal{H})$ of \mathcal{H} is the maximum possible value of the sum $\sum_{T \in \mathcal{H}} g(T)$, where the maximum is taken over all real-valued functions $g : \mathcal{H} \mapsto [0, 1]$ satisfying $\sum_{T:v \in T \in \mathcal{H}} g(T) \leq 1$ for every vertex v of G. Note that this maximum is obtained for a function attaining rational values. Note also that if we let $g : \mathcal{H} \mapsto \{0, 1\}$ instead, this integer program now defines $\nu(\mathcal{H})$. The fractional covering number $\tau^*(\mathcal{H})$ of \mathcal{H} is the minimum possible value of the sum $\sum_{v \in V} h(v)$, where the minimum is taken over all real valued functions $h : V \mapsto [0, 1]$ satisfying $\sum_{v \in V: v \in T} h(v) \geq 1$ for every $T \in \mathcal{H}$. Here, too, the minimum is obtained for a function attaining rational values. By the duality theorem of linear programming we have $\nu^*(\mathcal{H}) = \tau^*(\mathcal{H})$, and by definition $\nu(\mathcal{H}) \leq \nu^*(\mathcal{H})$ and $\tau^*(\mathcal{H}) \leq \tau(\mathcal{H})$. We next show that if \mathcal{H} is nonempty, G is a tree, and each member of \mathcal{H} has at most d components, then

$$\tau^*(\mathcal{H}) = \nu^*(\mathcal{H}) < 2d\nu(\mathcal{H})$$

and

$$\tau(\mathcal{H}) \le d\tau^*(\mathcal{H}).$$

This clearly implies the assertion of Theorem 1.1.

To complete the proof it thus suffices to prove the above two inequalities. This is done in the following two lemmas.

Lemma 3.1 Let G be a tree, and let \mathcal{H} be a nonempty collection of subgraphs of G, each having at most d connected components. Then $\nu^*(\mathcal{H}) < 2d\nu(\mathcal{H})$.

Proof. Put $k = \nu(\mathcal{H})$ and let $g : \mathcal{H} \mapsto [0,1]$ be a function, where g(T) is rational for each $T \in \mathcal{H}$, $\sum_{T \in \mathcal{H}} g(T) = \nu^*(\mathcal{H})$, and $\sum_{T:v \in T \in \mathcal{H}} g(T) \leq 1$ for every vertex v of G. Let m be an integer for which mg(T) is integral for each $T \in \mathcal{H}$ and put $M = \sum_{T \in \mathcal{H}} mg(T)$. Let \mathcal{H}' be the multiset consisting of mg(T) copies of T for each $T \in \mathcal{H}$, and note that $|\mathcal{H}'| = M$. Let \mathcal{H}'' be the multiset obtained from \mathcal{H}' by replacing each member of \mathcal{H}' by its components. Put $n = |\mathcal{H}''|$ and note that $n \leq Md$. Since there are no k + 1 pairwise disjoint members of \mathcal{H}' , Turán's Theorem implies that there are at least $\frac{M}{2}(\frac{M}{k}-1)$ intersecting pairs of members of \mathcal{H}' . Thus there are at least

$$\frac{M}{2}(\frac{M}{k}-1) \geq \frac{n}{2d}(\frac{M}{k}-1) > \frac{n}{2}(\frac{M}{kd}-2)$$

intersecting pairs of members of \mathcal{H}'' . By Lemma 2.1 this implies that there is a vertex v of G contained in more than $\frac{M}{2kd}$ members of \mathcal{H}'' (and hence of \mathcal{H}'). Therefore

$$1 \ge \sum_{T: v \in T \in \mathcal{H}} g(T) > \frac{1}{m} \frac{M}{2kd} = \frac{\sum_{T \in \mathcal{H}} g(T)}{2kd} = \frac{\nu^*(\mathcal{H})}{2kd},$$

implying that $\nu^*(\mathcal{H}) < 2kd$, and completing the proof. \Box

Lemma 3.2 Let G = (V, E) be a tree, and let \mathcal{H} be a nonempty collection of subgraphs of G, each having at most d connected components. Then $\tau(\mathcal{H}) \leq d\tau^*(\mathcal{H})$.

Proof. Let $h: V \mapsto [0,1]$ satisfy $\sum_{v \in V: v \in T} h(v) \ge 1$ for every $T \in \mathcal{H}$, where h(v) is rational for all $v \in V$ and $\tau^*(\mathcal{H}) = \sum_{v \in V} h(v)$. Let r > r' be two positive integers such that (rd + r')h(v) is an integer for all v, and let R be the multiset consisting of (rd + r')h(v) copies of v, for each $v \in V$. Note that each member of \mathcal{H} contains at least rd + r' points of R, and hence it has some connected component that contains at least r + 1 points of R. By Lemma 2.2 with $m = \left\lceil (d + \frac{r'}{r}) \sum_{v \in V} h(v) \right\rceil$ there is a set S of at most $m - 1 < (d + \frac{r'}{r}) \sum_{v \in V} h(v) = (d + \frac{r'}{r}) \tau^*(\mathcal{H})$ vertices of G such that every connected component of G - S contains at most r points of R. This means that each member of \mathcal{H} contains a point of S, since otherwise each of its components (including the one containing more than r points of R) would lie in a component of G - S, which contains at most r points of R. Therefore, $\tau(\mathcal{H}) < (d + \frac{r'}{r})\tau^*(\mathcal{H})$, and since we can keep r' fixed and choose an arbitrarily large r the desired result follows. \Box

4 Bounded tree-width

In this section we observe that Theorem 1.2 follows from Theorem 1.1.

The concept of tree-width was introduced by Robertson and Seymour in their series of works on graph minors. See, e.g., [7].

A tree-decomposition of a graph G = (V, E) is a pair (X, T) where T = (I, F) is a tree and $X = \{X_i : i \in I\}$ is a family of subsets of V such that (i) $\cup_{i \in I} X_i = V$; (ii) for every edge $(u, v) \in E$, there exists an $i \in I$ such that $u, v \in X_i$; and (iii) if $i, j, k \in I$ and j is on the path from i to k in T, then $X_i \cap X_k \subseteq X_j$. The tree-width of the tree-decomposition (X, T) is $\max_{i \in I} |X_i| - 1$. The tree-width of a graph G is the minimum tree-width over all possible tree-decompositions of G. Graphs with tree-width at most b are also called partial b-trees. In particular, a connected graph has tree-width 1 if and only if it is a tree.

Proof of Theorem 1.2 Fix a tree-decomposition of (X, T) of G, where T = (I, F), $X = \{X_i : i \in I\}$ and $|X_i| \leq b + 1$ for each $i \in I$. For each subgraph $H \in \mathcal{H}$ let H' be the subgraph of T induced on all vertices $i \in I$ for which X_i contains a vertex of H. Let \mathcal{H}' denote the set of all subgraphs H' of T obtained in this way. It is not difficult to check that each member of \mathcal{H}' has at most d connected components, and that $\nu(\mathcal{H}') \leq \nu(\mathcal{H})$. Therefore, by Theorem 1.1 there is a set $S' \subset I$ of at most $2d^2\nu(\mathcal{H}') \leq 2d^2\nu(\mathcal{H})$ vertices of T that intersects each member \mathcal{H}' of \mathcal{H}' . The set $S = \bigcup_{i \in S'} X_i$ is thus a set of size at most $2(b+1)d^2\nu(\mathcal{H})$ that intersects all members of \mathcal{H} , completing the proof. \Box

5 Concluding remarks and open problems

- The assumption that G has a bounded tree-width is necessary in Theorem 1.2. Indeed, for every integer c there exists a b = b(c) such that **every** graph G with tree-width at least b contains a collection \mathcal{H} of subtrees such that $\nu(\mathcal{H}) = 1$ and $\tau(\mathcal{H}) \geq c$. This is because any G with a sufficiently large tree-width contains a large grid minor (see [8]), and by considering the collection of all subgraphs of that grid consisting of a union of a horizontal path and a vertical path in it, we obtain the desired family.
- Very recently, J. Matoušek [6] applied a construction of J. Sgall and proved that even when the graph G is a path, the quadratic dependence on the number of components d in Theorems 1.1 and 1.2 is optimal, up to a logarthmic factor. It would be interesting to decide if this logarithmic factor is indeed necessary. Simple examples show that a better than linear dependence on b in Theorem 1.2 does not hold.

References

- [1] N. Alon, Piercing *d*-intervals, Discrete and Computational Geometry 19 (1998), 333-334.
- [2] N. Alon and G. Kalai, Bounding the piercing number, Discrete and Computational Geometry 13 (1995), 245-256.
- [3] N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger Debrunner (p, q)-problem, Advances in Mathematics 96 (1992), 103-112.
- [4] A. Gyárfás and J. Lehel, A Helly-type problem in trees, in *Combinatorial Theory and its Appli*cations, Eds. P. Erdős, A. Rényi and V.T. Sós, North-Holland, Amsterdam 1970, 571–584.
- [5] T. Kaiser, Transversals of *d*-intervals, Discrete and Computational Geometry 18 (1997), 195-203.
- [6] J. Matoušek, Lower bounds on the transversal numbers of *d*-intervals, to appear.
- [7] N. Robertson and P. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal of Algorithms 7 (1986), 309–322.
- [8] N. Robertson, P. Seymour and R. Thomas, Quickly excluding a planar graph, J. Combinatorial Theory Ser. B 62 (1994), 323–348.
- [9] G. Tardos, Transversals of 2-intervals, a topological approach, Combinatorica 15 (1995), 123–134.

[10] G. Tardos, Transversals of d-intervals—comparing three approaches, European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., 169, Birkhauser, Basel, 1998, pp. 234–243.