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BROADCAST TRANSMISSION TO PRIORITIZING RECEIVERS∗

NOGA ALON† AND GUY RUTENBERG‡

Abstract. We consider a broadcast model involving multiple transmitters and receivers. Trans-
mission is performed in rounds, where in each round any transmitter is allowed to broadcast a single
message, and each receiver can receive only a single broadcast message, determined by a priority
permutation over the transmitters. The message received by receiver R in a given transmission
round is the one sent by the first transmitter among all those broadcasting in that round according
to the permutation of R. In our model, each pair of transmitter and receiver has a unique message
which the transmitter has to send to the receiver. We prove upper and lower bounds on the minimal
number of rounds needed for transmitting all the messages to their respective receivers. We also
consider the case where the priority permutations are determined geometrically.
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1. Introduction. Consider the following broadcast model: There are k trans-
mitters and n receivers. Each transmitter has a (unique) message for each receiver
which has to be sent. Transmission is performed in rounds of broadcasting; in each
round some transmitters send messages where each transmitter can only send a single
message in each broadcasting round (it can also send none). When multiple trans-
mitters broadcast at the same time, collisions between transmissions may occur at
the receiver. Such collisions are resolved by having a priority permutation associ-
ated with each receiver, determining the message that will get through according
to the transmitter’s priority. One possible example of such priority permutations is
when transmitters are sorted by their respective distance to each receiver, and hence
the receiver will always receive the message which was broadcasted by the closest
transmitter.

In this paper we are interested in finding the minimum possible number of trans-
mission rounds q = q(k, n) needed to transmit messages in a network with k transmit-
ters and n receivers, where the minimum is taken over all choices of n permutations
for receivers. For the case n = 2 of two receivers we show that q(k, 2) = k + 1 and
determine for each two given permutations the minimum number of required rounds.
For the case of networks with n = 3 and n = 4 receivers we establish lower and
upper bounds on the minimum number of required rounds. We provide a general
lower bound of q(k, n) = n log k and show that it is tight for n = k!. Finally, we
provide general upper bounds realizable by permutations corresponding to distances
in the plane and in higher dimensions. The higher dimension construction shows that
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q(n, n) ≤ n · O(e
√

logn log logn) for the case n = k of equal number of receivers and
transmitters.

In the appendix we consider those sets of permutations which can be realized as
distances in d-dimensional space and show that their number is negligible compared
to the total number of sets of permutations of the same size.

2. Related work. The problem studied in this paper is closely related to the
investigation of radio networks, that is, the study of propagation of messages in a
network of nodes that can transmit or receive messages. There are several different
models, each having different constraints on how messages can be sent and received
between nodes and the type and number of messages transmitted.

The study of such networks dates back to the 1980s [15] and since then has
undergone extensive research. The first network model, introduced by [15], consid-
ered networks defined as directed graphs, where the vertices are nodes which both
transmit and receive messages, and edges indicate to which nodes the message can
propagate when it is broadcasted. The basic model is of a multihop network, where
a single message is emitted from a distinguished node called the source node and
then propagates to the entire network. In their paper, they consider collisions, which
happen when multiple neighbors of a node transmit simultaneously, and optimality
measures for protocols considering the maximum time and average time needed for
the broadcasted message to propagate from the source node to all others.

The collision model used in [15] deals with two scenarios: If collision occurs
because two neighbors of a vertex transmit simultaneously, the receiving vertex detects
the collision but not its origin. However, if a collision occurs because a vertex is
transmitting while a neighbor of it tries to transmit as well, none of the parties
involved detects the collision. This collision model can be altered in order to further
consider additional models: Collisions are not distinguishable from nontransmissions
[18, 5], while in another model in the case of multiple transmissions, one of the signals
gets through. This is the model considered in the present paper. Some papers, such
as [4], use a model where collisions can be detected as noise, but in practice this
additional information is discarded and treated as silence.

The original radio-broadcast model considered a single message that needs to be
broadcasted to the entire graph. The paper [21] generalizes this model to include set-
to-set broadcasting and introduces the concept of sets of receivers and transmitters
where each transmitter has a unique message to be delivered to each receiver. Papers
[10, 11, 6] consider a different generalization where multiple messages have to be
transmitted to different receivers, but some receivers have prior knowledge of messages
intended for others.

A variant of the multiple-message model studied in [10, 2, 11, 5] considered
network-coding : Instead of treating each message separately when routing them,
the model allows taking multiple messages and combining them by means of cod-
ing that merges information from multiple messages into a single packet. This model
of broadcasting, the so-called network-coding model, sometimes performs better than
the traditional routing model.

The papers [13, 12] consider another variant, where each transmitter and receiver
have multiple ports, and each such port is connected to a shared bus which is used for
communicating. Again, a unique message from each transmitter needs to be sent to
each receiver; however, the use of buses results in multiple broadcast networks that
can be used concurrently and results in much higher efficiency than a single broadcast
channel.
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For a more extensive review of broadcasting in radio networks, see [20].

3. The model. The model of broadcasting used in this paper is as follows: We
have two kinds of nodes: transmitters and receivers. We denote the number of trans-
mitters by k and the number of receivers by n. Each pair of transmitter and receiver
has a unique message that needs to be transmitted between them. The transmis-
sions are performed in rounds of broadcasting, where the transmissions in each round
are performed simultaneously. Associated with each receiver is a permutation of the
transmitters, denoting their priority. This permutation is used for solving broadcast
collisions in the sense that when two or more transmitters transmit in the same round,
a receiver gets the message sent by the transmitter appearing first in its associated
permutation. This happens regardless of whether or not that transmitter transmitted
a message addressed to that particular receiver. More formally, suppose 1, . . . , k are
the transmitters and σ is a permutation that is associated with one of the receivers.
Consider a given round in which i1, . . . , i` are the transmitters that sent messages.
Then, the only message that gets through to that receiver is the one transmitted by
the transmitter with minimal index in σ, that is, the message sent by ij , where j
satisfies σ(ij) = min`m=1 σ(im). Advanced knowledge of all the priority permutations
is used in determining the transmission schedule.

We are interested in studying the limits on how many transmission rounds are
necessary in a given network (defined by the number of transmitters, receivers, and
the corresponding permutations) in order for each transmitter to deliver its messages
to the corresponding receivers. We consider those priority permutations which result
in best-case and worst-case scenarios in regard to the number of transmission rounds.

4. Networks with two receivers. The case n = 2 is fully understood, as
shown in the following theorem.

Theorem 4.1. For any k, q(k, 2) = k + 1. In addition, for a given pair of
permutations σ and τ of the set [k] = {1, 2, . . . , k} of senders, the minimum number
q of rounds that suffices to transmit all 2k messages is k+ t, where t is the minimum
number of parts in a partition of [k] into disjoint parts so that each part is increasing in
σ and decreasing in τ . In particular, this is easy to compute, given σ and τ , and for a
pair of random permutations the expected number of rounds needed is k+(2+o(1))

√
k

(the exact distribution is known as well and is sharply concentrated around the expected
value).

Proof. We start with the lower bound. At most two senders can transmit simul-
taneously in each round. Furthermore, the two transmissions corresponding to the
sender which appear last in each of the permutations can only be transmitted alone,
as any other sender transmitting simultaneously will block their transmission. Hence
we need at least k + 1 transmission rounds.

The following construction realized on the real 1-dimensional line proves that the
bound is tight: Place the senders S1, . . . , Sk, in that order, between the two receivers,
R1 and R2. Let the permutations over the transmitters associated with each receiver
be determined by the distance between that receiver and each transmitter. In the first
round, S1 transmits its message to R2. In the ith round for 2 ≤ i ≤ k, Si−1 transmits
its message to R1 while Si transmits its message to R2. In the (k + 1)th and final
round, Sk transmits to R1. It is clear that in the transmission schedule above each
transmitter succeeds in sending its messages to its two receivers.

We next consider the minimum number of rounds in an arbitrary network with
two receivers. Given a transmission schedule for two permutations σ and τ , assume,
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Fig. 1. Consider the two permutations above. The vertices can be split into three parts each
increasing in σ and decreasing in τ : (1, 2, 3, 6), (4, 5), (7). These correspond to the graph shown
above and 10 transmission rounds.

without loss of generality, that σ = (1, 2, 3, . . . , k). Construct the bipartite graph
(A ∪ B,E) with A = B = {1, 2, . . . , k}, where (i, j) ∈ E for i ∈ A, j ∈ B, iff i
transmits to the first receiver in the same round in which j transmits to the second
receiver, or i = j. Figure 1 provides an example of such construction. We may
further assume that there are no redundant transmissions; that is, no sender trans-
mits its message twice to the same receiver. It follows directly that each vertex is
connected to at most one other vertex besides the copy of itself; hence, for every
v ∈ A ∪ B, deg(v) ≤ 2. Thus every connected component in the graph is either
a path or a cycle. Next we show that it cannot be a cycle. Assume to the con-
trary that (i1, i1), (i1, i2), (i2, i2), (i2, i3), . . . , (i`−1, i`), (i`, i`), (i`, i1) form a cycle in
the bipartite graph. Since (i1, i2) is an edge, i1 transmits to R1 in the same round
in which i2 transmits to R2. Hence, i1 ≤σ i2 and i2 ≤τ i1. This reasoning of
course can be applied to every other edge, resulting in i1 ≤σ i2 ≤σ · · · ≤σ i` ≤σ i1,
which is a contradiction. Therefore, every connected component is a path of the form
(i1, i1), (i1, i2), (i2, i2), (i2, i3), . . . , (i`−1, i`), (i`, i`), where i1 ≤σ i2 ≤σ · · · ≤σ i` and
i` ≤τ i`−1 ≤τ · · · ≤τ i1.

If a path corresponds to ` transmission rounds of pairs, it has 2` + 2 vertices,
and vice versa. Hence, the total number of pairs transmitting simultaneously is k− t,
where t is the number of connected components in the graph. We need two additional
rounds corresponding to the transmissions of the endpoints of each path. Hence the
total number of rounds is k + t. Furthermore, if [k] can be partitioned into t parts,
each increasing in σ and decreasing in τ , then it is easy to see that an appropriate
transmission schedule can be constructed such that the connected components in the
transmission graph will match the parts of the partition.

Dilworth’s theorem [16] states that given a finite partially ordered set, the size of
the maximum antichain, that is, a set where every two distinct elements are noncom-
parable, is equal to the minimum number of chains (sets where every two elements
are comparable) that cover the set.

Consider the following partial order over [k]:

x ≤ y ⇐⇒ x ≤σ y ∧ y ≤τ x.



BROADCAST TRANSMISSION TO PRIORITIZING RECEIVERS 2521

Every chain in this partial order corresponds to a path in the graph whose vertices
increase in σ and decrease in τ . Hence, by Dilworth’s theorem, the minimum num-
ber of such paths required to cover all vertices is equal to the size of the maximum
antichain. However, an antichain set is simply a common subsequence of both per-
mutations, σ and τ . For the case of random permutations, the length of the longest
common subsequence has the well-studied statistics of the length of the longest in-
creasing subsequence of a random permutation; see [8]. In particular, its expectation
is (2 + o(1))

√
k.

We note that finding the longest common subsequence of two permutations can be
done easily in polynomial time. Hence, we can efficiently find the optimal transmission
schedule for any two given permutations.

5. Bounds on networks with three and four receivers. For any fixed n ≥ 3
the situation already changes and q(k, n) − k tends to infinity with k. We describe
the cases n = 3, n = 4 separately, as these are simpler.

Theorem 5.1.

k + bk1/3c ≤ q(k, 3) ≤ q(k, 4) ≤ k +O(
√
k).

Moreover, permutations achieving the upper bound can be realized by distances between
senders and receivers in the plane.

Proof. Applying the Erdős–Szekeres theorem [17] twice (see, e.g., [9]), we conclude
that any three permutations contain two that have a common subsequence of length
at least bk1/3c. Because a schedule for three permutations induces a schedule for any
two of the permutations (not necessarily an optimal one), by Theorem 4.1 and its
proof the schedule must contain at least k + bk1/3c rounds.

As any valid schedule for a set of permutations induces a valid schedule for any
subset of the permutations, we clearly have q(k, 3) ≤ q(k, 4). Thus, it is sufficient to
provide a construction for n = 4 receivers that proves the upper bound. Suppose that
k = s2 and consider the grid in the plane

{0, 1, 2, . . . , s} × {0, 1, 2, . . . , s}.

We place the senders on each point of the grid with nonzero coordinates, namely, in
each point (i, j) with i, j ∈ 1, . . . , s we have a sender. We place four receivers, called
NE (for North-East), SE (South-East), SW (South-West), and NW (North-West).
The permutation for NE is according to the projection of the location of the senders
on the line x = y, with ties broken arbitrarily, and with the highest priority point
being the North-East sender located at (s, s). The permutation of SW is opposite,
and those of SE and NW are according to the projections on the line y = −x. Now we
can complete the transmissions in (s+ 1)2 rounds corresponding to the squares of the
grid: For each square with vertices (i, j), (i+1, j), (i, j+1), (i+1, j+1) (i, j ∈ 0, . . . , s)
we add a transmission round where each sender sends its message to the receiver to
whom it is closest (compared to the other transmitters in the square). Namely, the
sender at (i, j) transmits its message to SW, that in (i + 1, j) sends its message to
SE, and so on. When i or j is equal to s or 0 some of the points in the squares above
may not represent senders, as those are located only on {1, . . . , s} × {1, . . . , s}. In
that case we simply ignore these vertices and no corresponding transmission is made.

Clearly, each transmitter has a round where it transmits to each receiver and is
closest to that receiver among the transmitting senders at that transmission round.
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Hence, the construction yields a valid schedule with (s+1)2 = k+O(
√
k) transmission

rounds.
We further note that by placing the receivers far enough away in the direction

of North-East, South-West, and so on, the permutations above are simply the ones
obtained by distances in the plane.

In case k is not a square, we can still use the same construction, taking s = d
√
ke,

and get a schedule for d
√
ke

2
transmitters. Such a schedule induces a schedule for k

transmitters and has (s+ 1)2 = k +O(
√
k) rounds.

Remark 5.2. It is known (see [9, 14]) that there are collections of Ω(k1/3) permu-
tations of [k], so that no two have a common subsequence of size exceeding Θ(k1/3).
Therefore, the proof of the lower bound above does not yield a larger bound for q(k, n)
for any fixed n and sufficiently large k than for n = 3.

6. The general case: Lower bound. Note first that the transmitters with the
lowest priority for each receiver must transmit separately from any other transmitter;
otherwise they will be blocked. Hence, every schedule has to contain n transmission
rounds for those transmitters. Additionally, because each receiver can only receive a
single transmission in each round, every round is limited to n participating transmit-
ters. This means that the remaining n(k − 1) messages will be transmitted using at
least k − 1 transmission rounds. Therefore, we get the following trivial lower bound:

q(k, n) ≥ n+ k − 1.

This trivial bound can be generalized by the following observation: Consider
the set of n messages to each receiver with the (k − 1)th priority (with respect to
the appropriate receiver). Each such message can only be sent with another single
message (one that corresponds to a transmitter with the kth priority for the respective
receiver). Furthermore, a round that includes a message which originates from a
transmitter with priority i and reaches its destination can only include k−i additional
messages—messages of transmitters which have lower priority for the given receiver.
Hence, assuming that there are no redundant transmissions which do not reach their
destinations, the round may contain up to k−i+1 messages, as any additional message
will necessarily be redundant.

We can use this fact to give a better lower bound on the number of transmission
rounds needed. Associate with each message a weight: The weight of a message from
a transmitter with priority i to the corresponding receiver will be 1/(k− i+ 1). Thus
the sum of weights of all messages participating in a single round is at most 1. Indeed,
let i be the maximum index in a priority permutation of a message in the round. Then
there are at most k − i + 1 messages in that round, and each has a weight at most
1/(k− i+ 1); hence the total weight of all messages in that round is 1. Summing the
weights of all the messages gives us a lower bound on the number of rounds required
to complete the transmission of all the messages. This proves the following theorem.

Theorem 6.1. For every n and k,

q(k, n) ≥ n
k∑
i=1

1
i
≥ n ln k.

We note that for the case k > n this can be slightly improved as each round
cannot contain more than n messages. Therefore, if we modify the definition of
the weight associated with each message to max{1/(k − i + 1), 1/n}, we get that
q(k, n) ≥ n(lnn− 1) + k.
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7. The general case: Upper bound. The case k = n appears difficult, but for
k far smaller than n (specifically, for n ≥ k!) we can show that q(k, n) = Θ(n log k).

Theorem 7.1. For n = k!, q(k, n) = n
∑k
i=1

1
i .

The upper bound of O(n log k) for n > k! follows by splitting the set of receivers
into groups of size at most k!, and by handling the messages to each such group
separately, using the schedule in the proof of Theorem 7.1.

Proof. Let the priority permutations of the n receivers be all the n = k! possible
permutations of the k transmitters. For each subset I of the transmitters, |I| = r, let
J be the subset of receivers whose priority permutations have the transmitters in I
in the last r places. Thus |J | = r!(k − r)!. Note that each transmitter in I has the
highest priority among the transmitters in I in mr = (r − 1)!(k − r)! permutations
in J .

We define the following transmission schedule: For each subset I, it is possible
to split the receivers in J into mr sets, each of size r, such that in each set those
transmitters with the highest priority among the transmitters in I are distinct. To
see this, for each of the (k− r)! possible permutations τ of the receivers not in I, and
each cyclic permutation ν of the receivers in I, take the r cyclic shifts of ν concatenated
with τ as a set of r permutations. This gives the required mr sets. For each such r
permutations, the corresponding r transmitters with the highest priority will transmit
in a single round to their respective receivers (according to the permutation where
they have the highest priority among the transmitters in I). This ensures that each
transmitter participating in the round is indeed able to deliver its message to the
corresponding receiver.

Given a transmitter i and a receiver j, consider the set I that includes i and every
other transmitter whose priority (with regards to j’s permutation) is lower than i’s.
Now j ∈ J , where J is the subset of receivers whose priority permutations have the
transmitters in I in the last r = |I| places. Thus the transmission schedule defined
above ensures that i successfully transmits its message to j in one of the rounds
associated with I and J . Therefore, every transmitter is able to send its message
to every receiver in one of the rounds of the transmission schedule. The number of
rounds is

q =
k∑
r=1

(
k

r

)
mr =

k∑
r=1

(
k

r

)
(r − 1)!(k − r)! = k!

k∑
r=1

1
r
,

which completes the proof.

For any n > k!, one can split the receivers into sets of size k!. Repeating the
construction from the proof for each set shows that q(k, n) = Θ(n log k). For n < k!
one can split the senders into groups of size log n/ log log n and handle each such group
separately according to the last theorem. This implies that for all n < k!

q(k, n) ≤ O
(
kn

(log log n)2

log n

)
.

In particular, for k = n the arguments here imply

(1 + o(1))n log n ≤ q(n, n) ≤ (1 + o(1))
n2(log log n)2

log n
.

It is possible, however, to get a better upper bound using the basic construction in [7].
In that paper it is shown that there is a positive constant c > 0 and a bipartite graph
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with classes of vertices A = B = [n] and with n2 − n2−c edges, whose edges can be
decomposed into at most n2−c induced matchings. View A as the set of senders and B
as the set of receivers. For each b ∈ B define a permutation on A by placing all a ∈ A
connected to B before all other members of A (with the permutation being arbitrary
otherwise). Now the messages corresponding to each of the induced matchings can be
transmitted in one round, for each of the matchings. The remaining messages can be
sent in separate rounds. This completes the schedule in at most 2n2−c rounds, which
gives

q(n, n) ≤ O(n2−c)

for some constant c > 0.
In the next section we prove a much stronger upper bound showing that in fact

q(n, n) = n1+o(1).

7.1. A general upper bound. The construction used for getting the upper
bound on n = 3 and n = 4 receivers can be generalized to an arbitrary number
of receivers n, provided that the number of transmitters is sufficiently large. This
is done by taking a digital convex n-gon, that is, a convex n-gon whose vertices lie
on lattice points, and placing the receivers on the lines perpendicular to arbitrarily
chosen supporting lines of each vertex of the n-gon, while the senders will be located
far enough on a square of size

√
k ×
√
k centered around the origin.

We cover the senders using overlapping translates of the convex n-gon, such that
each sender is covered by every vertex of the n-gon (using different translates of it).
Each transmission round will correspond to one n-gon participating in the cover. Each
sender covered by the n-gon will transmit its message to the corresponding receiver
according to the vertex that covers it. It can be seen that such a sender is the closest
to the corresponding receiver among all other senders covered by that n-gon. Thus,
this is a valid and complete transmission schedule.

It has been shown in [19] and [1] that such convex n-gons can be constructed so
that they can be inscribed inside a square grid of side-size Θ(n3/2). Therefore, by
using such a convex n-gon, our senders can be covered, according to the construction
above, using (

√
k + O(n3/2))2 = k + O(n3/2

√
k + n3) n-gons; hence the schedule

requires k +O(n3/2
√
k + n3) transmission rounds.

We have thus proved the following theorem.

Theorem 7.2. For any k and n, q(k, n) ≤ k+O(n3/2
√
k+n3) with permutations

corresponding to distances in the plane.

One such family of convex polygons with diameter O(n3/2) is constructed as
follows: For a given t consider the Farey sequence of order t, that is, the set of
irreducible fractions between 0 and 1, where the denominator is at most t; for example,
F3 = { 0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1}. Now, consider the bijection p/q → p/(q−p) applied to the Farey

sequence (omitting the last term), e.g., F̄3 = { 0
1 ,

1
2 ,

1
1 ,

2
1}. One can verify that the

bijection preserves the increasing monotonicity of the Farey sequence. Now, starting
at (0, 0), treat each fraction as a 2-tuple and add it coordinate by coordinate to the
previous point to create the next vertex of the polygon. The last example produces
the following vertex list: (0, 0), (0, 1), (1, 3), (2, 4), (4, 5). This effectively constructs
one quarter of the polygon. We complete the polygon by rotating and repeating the
process. Because the elements in the list were monotonely increasing, so is the slope
of the corresponding edges. Therefore, the constructed polygon is indeed convex. As
the sum of the numerator and denominator of each term in the modified sequence is
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Fig. 2. Convex n-gon construction for t = 4. Here n = 24 and the n-gon is bounded by a
17 × 17 square.

bounded by t, the total change to both coordinates in each quarter is bounded by t
times the number of terms in the modified Farey sequence of order t. The number of
terms of the modified Farey sequence is one less than in the original sequence, that
is,
∑t
i=1 ϕ(i) = Θ(t2), where ϕ(i) is Euler’s totient function, namely the number of

positive integers smaller than i that are relatively prime to i. Therefore, the total
change in both coordinates is O(t3), making the diameter of the polygon O(t3) as
well. The number of vertices in the polygon is O(t2) (the same order as the number of
terms in the sequence). Therefore, a digital convex n-gon constructed in this manner
will have a diameter of O(n3/2). Such a construction is illustrated in Figure 2.

Theorem 7.2 can be used to derive a nontrivial upper bound for the case of an
equal number of receivers and senders (n = k), with permutations corresponding to
distances in the plane. We start by partitioning the set of receivers into n2/3 sets of
n1/3 receivers each. For each such subset of receivers in the partition and the set of
all transmitters, apply the construction of Theorem 7.2. This results in

n2/3 ·
(
k +O

([
n1/3]3/2√k +

[
n1/3]3)) = O

(
n5/3

)
rounds. This proves the following corollary.

Corollary 7.3. For any n, q(n, n) = O(n5/3) with permutations corresponding
to distances in the plane.

Finally, we consider a higher dimensional analogue of the construction, by using
a d-dimensional sphere instead of the convex n-gon.
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Theorem 7.4.

(1 + o(1))n log n ≤ q(n, n) ≤ n ·O
(
e
√

logn log logn
) (

= n1+o(1)
)
.

Proof. Consider the d-dimensional ball. It is well known that the volume of the
unit ball in Rd (for even d) is

Vd =
πd/2

(d/2)!
,

and hence the number of lattice points in a ball of radius r is (1 + o(1))Vdrd. Now
if we consider the ball of radius m and all the spheres of integral square radius at
most m2, we get that by the pigeonhole principle there exists such a sphere (hence-
forth the “small” sphere) which has at least (1 + o(1))Vdmd−2 lattice points on its
boundary. Let the permutations of the receivers correspond to projections to lines
perpendicular to the supporting hyperplanes of these lattice points. Thus we have
n = (1 + o(1))Vdmd−2.

Let the transmitters be the lattice points inside a ball of radius dm. Thus k =
(1 + o(1))Vd(dm)d. The transmission rounds will correspond to shifts of the “small”
sphere centered in the lattice points of a ball of radius (d+ 2)m. Thus the number of
transmission rounds is

(1 + o(1))Vd ((d+ 2)m)d = (1 + o(1))
(

1 +
2
d

)d
k ≤ (1 + o(1))e2k.

If we take m2 = dd, we get that k = nd2d. In this case we have d2d = no(1)

as n > 1
(d/2)d/2 d

d(d−2)/2, which implies log n ≥ (1 + o(1))d2/2 · log d, and hence

k ≤ n ·O(e
√

logn log logn), which gives

q(n, n) ≤ q(k, n) ≤ (1 + o(1))e2k ≤ n ·O
(
e
√

logn log logn
)

= n1+o(1).

8. Concluding remarks. The problem of determining q(k, n) or estimating it
more accurately is still unresolved except for the extreme cases of n = 2 and n ≥ k!.
While we have shown improved upper and lower bounds for the general case of n < k,
it is still far from being solved. In networks with n = 3 and n = 4, it is still unclear
where between k + O(k1/3) and k + O(

√
k) the real values of q(k, n) are. For n = k,

the gap between the lower bound n log n and the upper bound n ·O(e
√

logn log logn) is
still substantial, and it will be interesting to improve it.

One might consider the problem limited to the case where the permutations are
realized as distances in the plane. In this case, the k + O(n3/2

√
k + n3) bound gives

good results for a fixed number of receivers (fixed n). However, if we consider the
special case of an equal number of receivers and transmitters (n = k), then the bound
above is trivial but, as shown in Corollary 7.3, can be improved to O(n5/3). It will
be interesting to estimate more accurately the minimum possible number of rounds
that can be realized by distance permutations in the plane when n = k.

A natural problem that arises from constructions that appeared in the proofs of
the bounds is determining which sets of permutations are realizable as projections
along lines in a d-dimensional space. In the appendix we further investigate this
problem and prove upper bounds on the number of such sets of permutations whenever
the dimension is smaller than the number of permutations, showing that in this case
most sets of permutations are not realizable.

Appendix A. Distance permutations. The construction of the upper bound
on networks with n = 3 and n = 4 receivers relies on a set of permutations that can be
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realized as distances in the plane. The general question of determining necessary and
sufficient conditions such that a set of r permutations over n points can be realized
as distances from r points in a d-dimensional space is interesting in its own right.

We focus on those permutations that can be realized as projections along arbitrary
directions. That is, each permutation is determined by the projection of the points
on a line through the origin in a given direction. Note that such a construction is
equivalent to distances from far away placed points.

Clearly, whenever r ≤ d, every set of permutations is realizable, as we can consider
the permutations as projections along the axes and place the points independently in
each axis according to the corresponding permutation.

Consider the case of r = 3 and d = 2. Let ~v1, ~v2, ~v3 be the vectors representing
the directions on which each permutation is projected, and let πi(p) be the projection
of the point p on vi. The vectors ~v1, ~v2, ~v3 are linearly dependent; hence there are
a1, a2, a3 such that a1~v1 + a2~v2 + a3~v3 = 0. Now let p1, p2 be two arbitrary points,
and suppose, without loss of generality, that a1(π1(p1) − π1(p2)) and a2(π2(p1) −
π2(p2)) both have the same sign. In that case a3(π3(p1) − π3(p2)) must have the
opposite sign. If one of the ai’s is 0, say a1, the condition simplifies to requiring
that a2(π2(p1) − π2(p2)) and a3(π3(p1) − π3(p2)) have opposing signs. This implies
a necessary condition for a set of three permutations to be realizable in the plane.
Clearly, the condition can be generalized to apply for every r > d.

For example, the following three permutations over 1, . . . , 4 cannot be realized by
projections in the plane:

π1 = (1234),
π2 = (4132),
π3 = (3124).

Indeed, assume to the contrary that the permutations are realizable in the plane, and
let ~v1, ~v2, ~v3 be the directions of the projections used for defining the permutations.
Let a1, a2, a3 satisfy a1~v1 + a2~v2 + a3~v3 = 0. As none of the permutations is the same
or an inverse of another, we have that a1, a2, a3 are all nonzero. Suppose that a1 and
a2 have the same sign; then a1(π1(1) − π1(2)), a2(π2(1) − π2(2)), a1(π1(1) − π1(3)),
and a2(π2(1) − π2(3)) all have the same sign. However, because π3(1) − π3(2) and
π3(1)− π3(3) have opposing signs, the necessary condition above requires a3 to have
both an opposite sign and the same sign as a1 and a2 at the same time, which is a
contradiction. Supposing that a1 and a2 have opposing signs, we may consider the
pairs of points 1, 4 and 2, 3. Using the same arguments, we get that a3 must have
the same sign as a1 and the opposite sign as well, which is, again, a contradiction.
Therefore, one cannot realize the above permutations by projections in the plane.

The above condition, and its clear extension for r > d, presents a necessary
condition for a set of permutations to be realizable using projections along lines in
the d-dimensional case. However, it is not immediately clear how many such sets are
indeed realizable. In the following subsection we show that the number of such sets
is negligible compared to the total number of sets of permutations when the number
of permutations is bigger than the dimension of the space used.

A.1. Upper bound on the number of realizable permutations. In order
to bound the number of r-tuples of permutations realizable by projections in the
plane, consider the following set of polynomials over variables in Rd:

Pijk(x1, . . . , xn, α1, . . . , αr) = 〈xi, αk〉 − 〈xj , αk〉,
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where 1 ≤ i < j ≤ n, 1 ≤ k ≤ r. Given a set A = {x1, . . . , xn} of n points in Rd
and a set of vectors α1, . . . , αr ∈ Rd, the signs of the polynomials Pijk determine the
ordering of the points in A when projected on the directions α1, . . . , αr. That is, the
pattern over {−1, 1}d(

n
2) created by taking the sign of each polynomial over a given

point in Rd(n+r), the so-called sign-pattern, represents a set of points and directions
realizing a set of r permutations over n points using projections in Rd.

Warren’s theorem [22] (see also [3]) states that given a set of m polynomials
P1, . . . , Pm over R`, the number of different sign-patterns in {±1}m created by the
polynomials is bounded by (4ekm/`)`, where k is the maximum degree of the poly-
nomials and assuming m ≥ `. We can use Warren’s theorem to bound the number of
different sign-patterns created by {Pijk}, and thus bound the number of permutations
realizable as projections.

In this case, the number of polynomials is m = r
(
n
2

)
, and each polynomial is of

degree k = 2 and over ` = d(n + r) variables. Thus by Warren’s theorem (assuming
d(n+ r) ≤ r

(
n
2

)
), the number of sign-patterns s̄ satisfies

s̄ ≤
(

4ern2

d(n+ r)

)d(n+r)

≤ (4ern/d)dn+dr.

Thus the number of ways to pick r permutations over n points which are realizable
by projections in Rd is bounded by (4ern/d)dn+dr. Compare that number with the
number of ways to pick r arbitrary permutations over n points, which is (n!)r ≥
(n/e)nr. When d < r are fixed, and n tends to infinity, we get that the number of
r-tuples of permutations realizable as projections in the d-space is negligible when
compared to the total number of r-tuples of permutations. On the other hand, the
bound becomes trivial if d = r, as expected, as in that case, every r permutations are
realizable, for example by projecting each permutation independently on a different
axis.

The above discussion considered sets of permutations realizable by projections
in the d-dimensional space. A generalization of this model would be to consider
sets of permutations realizable as distances from r points in the d-dimensional space
(projections are distances from far away placed points). This generalization behaves
similarly to the case of projections, as we can still use the signs of a set of r

(
n
2

)
polynomials of degree 2 to describe the permutations defined using the distances.
Indeed, here

Pijk(x1, . . . , xn, α1, . . . , αr) = d2(xi, αk)− d2(xj , αk),

where d2(xi, αj) is the square of the distance between xi and αj . Thus, the analysis is
the same as before and results in proving that the number of r-tuples of permutations
realizable as distances in the d-dimensional space is negligible compared to the total
number of r-tuples of permutations whenever d < r are fixed and n tends to infinity.
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