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Abstract

A family of sets has the (p, q) property if among any p members of the family some q have

a nonempty intersection. It is shown that for every p ≥ q ≥ d + 1 there is a c = c(p, q, d) < ∞

such that for every family F of compact, convex sets in Rd which has the (p, q) property there is

a set of at most c points in Rd that intersects each member of F . This extends Helly’s Theorem

and settles an old problem of Hadwiger and Debrunner.
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1 Introduction

For two integers p ≥ q, a family of sets H has the (p, q) property if among any p members of the

family some q have a nonempty intersection. H is k-pierceable if it can be split into k or fewer

subsets, each having a nonempty intersection. The piercing number of H, denoted by P (H), is the

minimum value of k such that H is k-pierceable. (If no such finite k exists, then P (H) =∞.)

The classical theorem of Helly [13] states that any family of compact convex sets in Rd which

satisfies the (d + 1, d + 1)-property is 1-pierceable. Hadwiger and Debrunner considered the more

general problem of studying the piercing numbers of families F of compact, convex sets in Rd that

satisfy the (p, q) property. By considering the intersections of hyperplanes in general position in

Rd with an appropriate box one easily checks that for q ≤ d the piercing number can be infinite,

even if p = q. Thus we may assume that p ≥ q ≥ d+ 1.

Let M(p, q; d) denote the maximum possible piercing number (which is possibly infinity) of a

family of compact convex sets in Rd with the (p, q)-property. By Helly’s Theorem,

M(d+ 1, d+ 1; d) = 1

for all d, and trivially M(p, q; d) ≥ p − q + 1. Hadwiger and Debrunner [11] proved that for

p ≥ q ≥ d+ 1 that satisfy

p(d− 1) < (q − 1)d (1)

this is tight, i.e., M(p, q; d) = p − q + 1. In all other cases, it is not even known if M(p, q; d) is

finite, and the question of deciding if this function is finite, raised by Hadwiger and Debrunner

in 1957 in [11] remained open. This question, which is usually referred to as the (p, q)-problem,

is considered in various survey articles and books, including [12], [4] and [7]. The smallest case

in which finiteness is unknown, which is pointed out in all the above mentioned articles, is the

special case p = 4, q = 3, d = 2. We note that in all the cases where finiteness is known, in fact

M(p, q; d) = p − q + 1 and that there are examples of Danzer and Grünbaum (cf. [12]) that show

that M(4, 3; 2) ≥ 3 > 4− 3 + 1.

The (p, q)-problem received a considerable amount of attention, and finiteness have been proved

for various restricted classes of convex sets, including the family of parallelotopes with edges parallel

to the coordinate axes in Rd ([12],[18], [5]), families of homothetes of a convex set ([18]), and, using

a similar approach, families of convex sets with a certain ”squareness” property ([8], see also [20]).
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Despite these efforts, the problem of deciding if M(p, q; d) is finite remained open for all values

of p ≥ q ≥ d+ 1 which do not satisfy (1).

Here we solve this problem, by proving the following theorem.

Theorem 1.1 For every p ≥ q ≥ d+ 1 there is a c = c(p, q, d) <∞ such that M(p, q; d) ≤ c. I.e.,

for every family F of compact, convex sets in Rd which has the (p, q) property there is a set of at

most c points in Rd that intersects each member of F .

The detailed proof will appear in the full version of the paper. Here we briefly sketch the main

ideas. Three tools are applied; a fractional version of Helly’s Theorem, first proved in [14], Farkas’

Lemma (or Linear Programming Duality) and a recent result proved in [1].

It may seem that there are almost no interesting families of compact convex sets in Rd which

satisfy the (p, q)-property, for some p ≥ q ≥ d + 1. A large class of examples can be constructed

as follows. Let µ be an arbitrary probability distribution on Rd, and let F be the family of all

compact convex sets F in Rd satisfying µ(F ) ≥ ε. Since the sum of the measures of any set of

more than d/ε such sets is greater than d it follows that if p is the smallest integer strictly larger

than d/ε then F has the (p, d + 1) property. It follows that P (F) ≤ M(p, d + 1; d), i.e., for every

probability measure in Rd there is a set X of at most M(p, d+ 1; d) points such that any compact

convex set in Rd whose measure exceeds ε intersects X.

The following Theorem is an immediate consequence of Theorem 1.1.

Theorem 1.2 Let F be a family of compact convex sets in Rd, and suppose that for every subfamily

F ′ of cardinality x of F the inequality P (F ′) < dx/de holds; i.e., F ′ can be pierced by less than x/d

points. Then P (F) ≤M(x, d+ 1; d).

Observe that in order to deduce a finite upper bound for the piercing number of F , the as-

sumption that P (F ′) < dx/de cannot be replaced by P (F ′) ≤ dx/de as shown by an infinite family

of hyperplanes in general position (intersected with an appropriate box), whose piercing number is

infinite.

3



2 A sketch of the proofs

Since we do not try to optimize the constants here, and since obviously M(p, q; d) ≤M(p, d+ 1; d)

for all p ≥ q ≥ d + 1 it suffices to prove an upper bound for M(p, d + 1; d). Another simple

observation is that by compactness we can restrict our attention to finite families of convex sets.

Let F be a family of n convex sets in Rd, and suppose that F has the (p, d+ 1) property. Our

objective is to find an upper bound for the piercing number P (F) of F , where the bound depends

only on p and d. It is convenient to describe the ideas in three subsections.

2.1 A fractional version of Helly’s Theorem

Katchalski and Liu [14] proved the following result which can be viewd as a fractional version of

Helly’s Theorem.

Theorem 2.1 ([14]) For every 0 < α ≤ 1 and for every d there is a δ = δ(α, d) > 0 such that for

every n ≥ d + 1, every family of n convex sets in Rd which contains at least α
( n
d+1

)
intersecting

subfamilies of cardinality d+ 1 contains an intersecting subfamily of at least δn of the sets.

Notice that Helly’s Theorem is equivalent to the statement that in the above theorem δ(1, d) = 1.

A sharp quantitative version of this theorem was proved by Kalai [15] and, independently, by

Eckhoff [6]. See also [2] for a very short proof. All these proofs rely on Wegner’s Theorem [19] that

assrerts that the nerve of a family of convex sets in Rd is d-collapsible.

The above Theorem, together with a simple probabilistic argument, can be applied to prove

the following lemma.

Lemma 2.2 For every p ≥ d+1 there is a positive constant β = β(p, d) with the following property.

Let F = {A1, . . . , An} be a family of n convex sets in Rd which has the (p, d+ 1) property. Let ai

be nonnegative integers, define m =
∑n
i=1 ai and let G be the family of cardinality m consisting of

ai copies of Ai, for 1 ≤ i ≤ n. Then there is a point x in Rd that belongs to at least βm members

of G.

2.2 Farkas’ Lemma and a Lemma on Hypergraphs

The following is a known variant of the well known lemma of Farkas (cf. [16], page 90).
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Lemma 2.3 Let A be a real matrix and b a real (column) vector. Then the system Ax ≤ b has

a solution x ≥ 0 if and only if for every (row) vector y ≥ 0 which satisfies yA ≥ 0 the inequality

yb ≥ 0 holds.

This lemma (or the MinMax Theorem) can be used to prove the following.

Corollary 2.4 Let H = (V,E) be a hypergraph and let 0 ≤ γ ≤ 1 be a real. Then the following

two conditions are equivalent.

(i) There exists a weight function f : V 7→ R+ satisfying
∑
v∈V f(v) = 1 and

∑
v∈e f(v) ≥ γ for all

e ∈ E.

(ii) For every function g : E 7→ R+ there is a vertex v ∈ V such that
∑
e; v∈e g(e) ≥ γ

∑
e∈E g(e).

By the last corollary and Lemma 2.2 one can prove the following result.

Corollary 2.5 Suppose p ≥ d + 1 and let β = β(p, d) be the constant from Lemma 2.2. Then for

every family F = {A1, . . . , An} of n convex sets in Rd with the (p, d+ 1) property there is a finite

(multi)-set Y ⊂ Rd such that |Y ∩Ai| ≥ β|Y | for all 1 ≤ i ≤ n.

2.3 Weak ε-nets for convex sets

The follwing result is proved in [1].

Theorem 2.6 ([1]) For every real 0 < ε < 1 and for every integer d there exists a constant

b = b(ε, d) such that the following holds.

For every m and for every multiset Y of m points in Rd, there is a subset X of at most b points in

Rd such that the convex hull of any subset of εm members of Y contains at least one point of X.

Several arguments that supply various upper bounds for b(ε, d) are given in [1]. The simplest one

is based on a result of Bárány [3] whose proof is based on a deep result of Tverberg [17].

Theorem 1.1 follows from the above results quite easily. Let F = {A1, . . . , An} be a family of n

convex sets in Rd with the (p, d+ 1) property , where p ≥ d+ 1. By Corollary 2.5 there is a finite

(multi)-set Y ⊂ Rd such that |Y ∩ Ai| ≥ β|Y | for all 1 ≤ i ≤ n, where β = β(p, d) is as in Lemma

2.2. By Theorem 2.6 there is a set X of at most b(β, d) points in Rd such that the convex hull of any

set of β|Y | members of Y contains at least one point of X. Since each member of F contains at least
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β|Y | points in Y it must contain at least one point of X. Therefore, P (F) ≤ |X| ≤ b(β(p, d), d),

completing the proof. 2

The detailed proofs of the lemmas and corollaries above, as well as some methods to improve the

estimates for the numbersM(p, q; d) using the known results about Turán’s problem for hypergraphs

together with some of the ideas of [1], will appear in the full version of the paper. The problem of

determining the numbers M(p, q; d) precisely for all p ≥ q ≥ d+ 1 remains wide open.
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