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Abstract

It is shown that for every k and every p ≥ q ≥ d + 1 there is a c = c(k, p, q, d) < ∞ such

that the following holds. For every family H whose members are unions of at most k compact,

convex sets in Rd in which any set of p members of the family contains a subset of cardinality

q with a nonempty intersection there is a set of at most c points in Rd that intersects each

member of H. It is also shown that for every p ≥ q ≥ d+ 1 there is a C = C(p, q, d) <∞ such

that for every family G of compact convex sets in Rd so that among any p of them some q have

a common hyperplane transversal, there is a set of at most C hyperplanes that together meet

all the members of G.

1 Introduction

In this paper we study geometric problems of the type introduced in [14] and considered in various

subsequent papers. It is convenient, however, to make the required definitions in the more general

framework of abstract families of sets. Let H be a (finite or infinite) family of (finite or infinite)

sets, and let F be another family of sets. For two integers p ≥ q we say that H satisfies the (p, q)

property (with respect to F) if for any p members of H there is an F ∈ F that intersects (at least)

q of them. The piercing number of H (with respect to F), denoted by P (H,F), is the minimum

number of members of F that together meet all members of H. Our objective is to show that for
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certain geometrically defined infinite families H and F , and for various values of p ≥ q there is

a finite constant c = c(H,F , p, q) so that for every H ⊂ H that satisfies the (p, q) property with

respect to F , the piercing number P (H,F) does not exceed c.

The best known example of this form is the classical theorem of Helly [16]. In the notation

above it can be formulated as follows. Let H be the family of all compact convex sets in the

d-dimensional Euclidean space Rd, and let F be the family of all one-point subsets of Rd. Then,

if H ⊂ H satisfies the (d + 1, d + 1) property (with respect to F ; that is, if every d + 1 of the

convex sets in H have a common intersection) then P (H,F) = 1, (i.e., all the sets have a common

intersection). An extension of this statement has been considered by Hadwiger and Debrunner [14].

They conjectured that for every p ≥ q ≥ d + 1 there is a c = c(p, q, d) < ∞ so that for H and F

as above, if H ⊂ H satisfies the (p, q) property then P (H,F) ≤ c. This question became known

as the (p, q)-problem and has been considered in various papers, including the survey articles and

books [15], [6], [9]. Special cases have been proved in [14], [7], [11], [12], [24], [26], and the general

conjecture has recently been proved by Alon and Kleitman in [3].

Another result that can be stated in the above notation is the main result of Eckhoff [10]. Here

H is the family of all compact convex sets in the plane and F is the family of all lines in the plane.

It is shown in [10] that if H ⊂ H satisfies the (3, 3) property with respect to F (that is, if every

three members of H admit a common line transversal), then P (H,F) ≤ 4, i.e., there are four lines

that together meet all the members of H.

In this paper we extend the Alon Kleitman piercing theorem to families of unions of convex sets

and also prove a piercing theorem for hyperplane transversals, which extends Eckhoff’s theorem.

Let Kdk denote the family of all sets in Rd which are the union of at most k convex sets.

Theorem 1.1 For every k and every p ≥ q ≥ d + 1 there is a c = c(k, p, q, d) < ∞ such that the

following holds. For every family H ⊂ Kdk that satisfies the (p, q) property with respect to the family

F of all points of Rd, P (H,F) ≤ c.

The case k = 1 of the above is the main result of [3], conjectured in [14]. Note that the

assumption p ≥ q ≥ d+ 1 cannot be improved, as shown by any infinite family whose members are

the intersections of hyperplanes in general position with an appropriate box. Such a family satisfies

the (p, q) property for all p ≥ q, q ≤ d and yet has an infinite piercing number.
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For k > 1 Theorem 1.1 is interesting even for p = q ≥ d + 1. It is well known (and quite easy,

see [6]) that there is no finite “Helly number” for unions of convex sets, i.e., for every n and k > 1

there are examples of families of n sets in Kdk, such that every n − 1 of them have a nonempty

intersection but all of them have an empty intersection.

An easy consequence of Theorem 1.1 is that Kdk has a finite “Helly order”. A family of sets F

has Helly order t if the following property holds. Let H be a subfamily of F . If every intersection of

members of H is in F and if every t members of H have a nonempty intersection then all members

of H have a nonempty intersection.

Corollary 1.2 Put h(d, k) = (d+ 1) · c(k, d+ 1, d+ 1, d). The Helly order of the family Kdk is finite

and bounded above by h(d, k).

For the special case in which every intersection as above is a union of at most k pairwise disjoint

convex sets, Morris [21] proved in his Ph. D thesis that the Helly order is k(d + 1). (The cases

k = 2, 3 were proved already by Grünbaum and Motzkin [18].) The proofs in [18] and [21] apply in a

more general context and use only Helly’s theorem and purely combinatorial arguments. (However,

Morris’ proof is complicated and not fully understood and a simple proof is desirable. See the

discussion in [9] p. 399.)

Another result we prove in this paper is the following.

Theorem 1.3 For every p ≥ q ≥ d + 1 there is a C = C(p, q, d) < ∞ such that for every family

G of compact convex sets in Rd that satisfies the (p, q) property with respect to the family F of all

hyperplanes in Rd, P (G,F) ≤ C.

Here, too, the assumption p ≥ q ≥ d + 1 is best possible, as shown by any infinite family F of

points in general position.

It is known (and easy) that there is no finite Helly number for hyperplane transversals. Thus

the case p = q = d+ 1 of Theorem 1.3 is nontrivial and of particular interest. For d = 2 this special

case is a weak form of Eckhoff’s theorem on line transversals in the plane.

Our proofs follow the basic approach of [3], but contain several additional ideas. The proofs

of both theorems are based on the same general technique, which can be used for proving several

additional results of the same type.
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The rest of the paper is organized as follows. In Section 2 we describe the general technique

applied for proving both theorems above, and present the proofs of a few lemmas that are relevant

in both cases. Section 3 contains the proofs of Theorem 1.1 and Corollary 1.2. Theorem 1.3 is

proved in Section 4. The final Section 5 contains some concluding remarks and open problems.

2 The general technique

LetH and F be two families of sets, whereH is infinite. Our objective is to show that under suitable

assumptions, for every p ≥ q ≥ r there is a finite constant c (depending only on H,F , p and q), such

that for every H ⊂ H that satisfies the (p, q)-property (with respect to F), P (H,F) ≤ c. Since

we are not interested here in finding the best possible estimate for c, we may assume that q = r.

This is because for q ≥ r any H that satisfies the (p, q) property clearly satisfies the (p, r) property

as well. In the cases considered here there is always a simple compactness argument that shows it

suffices to (uniformly) bound the piercing numbers P (H,F) for finite subfamilies H of H.

The desired bound for the piercing numbers P (H,F) is derived in three steps, described in the

following three subsections.

2.1 A fractional piercing theorem

Let H and F be families of sets. If H′ ⊂ H satisfies P (H′,F) = 1, that is, there is an F ∈ F that

intersects all members of H′, we say that H′ is pierceable. We say that H satisfies the fractional

piercing property of order r (with respect to F) if there is a function δ : (0, 1] 7→ (0, 1] with the

following property. For every α, 0 < α ≤ 1 and every finite H ⊂ H, so that at least α
(|H|
r

)
subfamilies H′ of cardinality r of H are pierceable, there is an F ∈ F that intersects at least

δ(α)|H| members of H. In this case we call δ the fractional piercing function of order r of H.

In Sections 2 and 3 it is shown that various interesting infinite families H satisfy the above

property. For our purposes we need the following consequence of this property.

Proposition 2.1 Suppose H satisfies the fractional piercing property of order r with respect to

F and let δ be the corresponding fractional piercing function. Then, for every p ≥ r there is a

β = β(δ, p, r) > 0 with the following property. Suppose H = {H1, . . . ,Hn} ⊂ H satisfies the (p, r)

property (with respect to F). Assume, further, that each Hi ∈ H intersects some member of F .
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Let a1, . . . , an be nonnegative integers, define m =
∑n
i=1 ai and let G be the family of cardinality m

consisting of ai copies of Hi for 1 ≤ i ≤ n. Then there is an F ∈ F that intersects at least βm

members of G.

Proof. We prove the proposition with

β = min{ 1
2p
, δ(

1
2p
(p
r

))}.
This estimate can be easily improved, but we make no attempt to optimize the constant here and

in what follows. If there exists an i with ai ≥ m/2p, then, since there is an F ∈ F which intersects

Hi the desired result follows, as β ≤ 1
2p . We thus assume that ai < m/2p for all i. Denote the

members of G by Gi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ ai, where for each fixed i, the sets Gi,j are the ai copies

of Hi. Let T be the family of all subsets

{Gi1,j1 , . . . , Gip,jp}

of cardinality p of G in which iu 6= iv for all 1 ≤ u < v ≤ p. Since ai ≤ m/(2p) for all i we conclude

that

|T | ≥ 1
p!
m(m−m/(2p))(m− 2m/(2p)) . . . (m− (p− 1)m/(2p)) >

1
p!

(m/2)p.

Since H has the (p, r)-property, for each member T = {Gi1,j1 , . . . , Gip,jp} of T there is a pierceable

subset S ⊂ T of cardinality r. Moreover, the same subset S is contained in at most
(m−r
p−r

)
members

of T . It thus follows that the number of pierceable subsets of cardinality r of G is at least

|T |(m−r
p−r

) ≥ (p− r)!
2pp!

mr ≥ 1
2p
(p
r

)(m
r

)
.

By the definition of δ this implies that there is an F ∈ F that intersects at least δ( 1
2p(pr)

)m ≥ βm

members of G, completing the proof. 2

2.2 LP duality and weighted piercing

In this subsection we combine Proposition 2.1 with Linear Programming duality to prove the

following.

Proposition 2.2 Suppose H satisfies the fractional piercing property of order r with respect to F

and suppose p ≥ r. Assume, further, that each H ∈ H intersects some F ∈ F . Let β be any
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rational positive real satisfying the conclusion of Proposition 2.1. Then the following holds. For

every H = {H1, . . . ,Hn} ⊂ H that satisfies the (p, r) property, there is a finite (multi)-set Y of

members of F such that every Hi ∈ H intersects at least β|Y| members of Y.

For the proof we need the following lemma, proved in [3], which follows easily from the min-max

Theorem (see, e.g., [22]).

Lemma 2.3 Let H = (V,E) be a finite hypergraph and let 0 ≤ γ ≤ 1 be a real. Then the following

two conditions are equivalent.

(i) There exists a weight function f : V 7→ R+ satisfying
∑
v∈V f(v) = 1 and

∑
v∈e f(v) ≥ γ for all

e ∈ E.

(ii) For every function g : E 7→ R+ there is a vertex v ∈ V such that
∑
e; v∈e g(e) ≥ γ

∑
e∈E g(e).

2

Proof of Proposition 2.2. For each of the 2n subsets S of H let FS be an arbitrarily chosen

fixed element F of F that intersects all members of S, in case there is such a set in F , and let FS

be an arbitrary fixed element of F otherwise. We define a hypergraph H = (V,E) whose set of

vertices V is the set of all those 2n sets FS . The set of edges of H consists of n edges e1, . . . , en

defined as follows.

ei = {FS ∈ V : Hi ∩ FS 6= ∅}.

By Propostion 2.1, for every function g : E 7→ R+ for which g(ei) is rational for all i there is a

vertex F ∈ V such that ∑
1≤i≤n:F∈ei

g(ei) ≥ β
n∑
i=1

g(ei).

By continuity, this holds without the rationality assumption as well. Therefore, by Lemma 2.3

there is a weight function f : V 7→ R+ satisfying
∑
F∈V f(F ) = 1 and

∑
F ;F∈e f(F ) ≥ β for all

e ∈ E. Since such a function is a solution of a Linear Program with rational constraints there is

such a function f for which f(F ) is rational for all v. Let l be an integer so that lf(F ) is integral

for all F , and let Y consist of lf(F ) copies of F for all F ∈ V . The multiset Y clearly satisfies the

conclusion of the proposition. 2
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2.3 Weak ε-nets

Let H and F be two families of sets. We say that F satisfies the weak ε-nets property for H

if for every ε > 0 there is a finite integer b = b(ε) with the following property. For every finite

multi-subset Y of F there is a subset X of cardinality at most b of F so that every H ∈ H that

intersects at least ε|Y| members of Y intersects at least one member of X .

In the next two sections we describe some geometric examples of H and F that satisfy this

property. The relevance of this property to the problems we consider here is clarified in the following

theorem, which is the main result of this section.

Theorem 2.4 Let H and F be two families of sets. Suppose that

(i) H satisfies the fractional piercing property of order r with respect to F , and every H ∈ H

intersects some F ∈ F .

(ii) F satisfies the weak ε-nets property for H.

Then, for every p ≥ q ≥ r there is a constant c = c(H,F , p, q) so that for every finite H ⊂ H

that satisfies the (p, q)-property with respect to F there is a set X of at most c members of F that

together meet all members of H.

Proof. By (i) and Proposition 2.2 there is a β > 0 and a multiset Y of elements of F so that every

member of H intersects at least β|H| members of Y. By (ii) this implies that there is a subset X of

at most c = b(β) elements of F that together meet all members of H. Since c is a uniform bound

that depends only on H, F , p and q (and not on the actual subfamily H) this completes the proof.

2

The assertions of Theorems 1.1 and 1.3 can be deduced from the above result by showing that

the corresponding H and F in both cases satisfy properties (i) and (ii). This is done in the next

two sections.

3 Unions of convex sets

In this section we prove Theorem 1.1. This is done by combining Theorem 2.4 with two known

results.
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The first known result is the following theorem of Katchalski and Liu [19] which can be viewd

as a fractional version of Helly’s Theorem.

Theorem 3.1 ([19]) For every 0 < α ≤ 1 and for every d there is a δ = δ(α, d) > 0 such that

for every n ≥ d + 1, every family of (not necessarily distinct) n convex sets in Rd which contains

at least α
( n
d+1

)
intersecting subfamilies of cardinality d+ 1 contains an intersecting subfamily of at

least δn of the sets.

Notice that Helly’s Theorem is equivalent to the statement that in the above theorem δ(1, d) = 1.

A sharp quantitative version of this theorem is proved in [20] and in [8], (see also [2] for a very

short proof.) All proofs of the sharp result rely on Wegner’s Theorem [25] that asserts that the

nerve of a family of convex sets in Rd is d-collapsible. Note that in our notation the above theorem

means that the family of all convex sets in Rd satisfies the fractional piercing property of order

r = d+ 1 with respect to the set of all one-point subsets of Rd.

Another known result we need is the following theorem proved in [1] by applying results from

[4] and [23].

Theorem 3.2 ([1]) For every real 0 < ε < 1 and for every integer d there exists a constant

b = b(ε, d) such that the following holds.

For every m and for every multiset Y of m points in Rd, there is a subset X of at most b points in

Rd such that the convex hull of any subset of εm members of Y contains at least one point of X.

In the language of Section 2 this is the assertion that the family of all one-point subsets of Rd

satisfies the weak ε-nets property for convex sets in Rd.

Proof of Theorem 1.1. Let d and k be fixed positive integers. Let H = Kdk be the family of all

unions of k compact convex sets in Rd. Let F denote the set of all one-point subsets of Rd.

Claim 1: H satisfies the fractional piercing property of order d+ 1 with respect to F .

Proof. Let H = {H1, . . . ,Hn} be a finite subset of H, and suppose that at least α
( n
d+1

)
subsets

of cardinality d + 1 of H are pierceable, i.e., have a nonempty intersection. If n < d + 1 there is

clearly a point that lies in at least 1/n = 1/(d+ 1) of the members of H. Otherwise, n ≥ d+ 1 and

each member Hi of H is a union of k compact, convex sets Hi,1, . . . ,Hi,k. Let G be the family of
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all kn convex sets Hi,j . By assumption, at least

α

(
n

d+ 1

)
≥ α

kd+1

(d+ 1)!
(d+ 1)d+1

(
kn

d+ 1

)

(d+ 1) subsets of G are intersecting (where the last (d+1)!
(d+1)d+1 term is required only for small values

of n (≥ d+1)). By Theorem 3.1 this implies that there is a point that lies in at least δkn members

of G for some δ = δ(α, d, k). This point lies in at least δn members of H, completing the proof of

the claim.

Claim 2: F satisfies the weak ε-nets property for H.

Proof. Let Y be a finite multi-subset of F , let Y be the corresponding set of points in Rd, and

suppose ε > 0. By Theorem 3.2 there is a set of at most b = b(ε/k, d) points X such that the convex

hull of every set of at least ε|Y |/k points of Y contains a point of X. Let X be the subfamily of F

consisting of all the sets {x} for x ∈ X. Then |X | = |X| ≤ b(ε/k, d). If H ∈ H intersects at least

ε|Y| members of Y then at least one of the k convex sets whose union is H contains at least ε/k|Y |

members of Y and hence contains a point of X. Since b(ε/k, d) is only a function of k, d and ε this

completes the proof of Claim 2.

By Claim 1, Claim 2 and Theorem 2.4, for every p ≥ q ≥ d+ 1 there is a c = c(k, p, q, d) <∞

such that for every finite H ⊂ H that satisfies the (p, q) property with respect to F , P (H,F) ≤ c.

This, together with a standard compactness argument, completes the proof of Theorem 1.1. 2

Proof of Corollary 1.2. Let H be a family of sets such that each intersection of members of

the family is the union of at most k convex sets, and assume that each h(d, k) = (d+ 1) · c(k, d+

1, d+ 1, d) of the sets have a nonempty intersection. Consider the family H′ of all intersections of

c = c(k, d + 1, d + 1, d) of the sets. Each d + 1 members of H′ have a nonempty intersection and

therefore by Theorem 1.1, H′ can be pierced by c points. We claim that at least one of these c

points lies in all the sets in H. To see this observe that otherwise for each of the points there is a

member of H that misses it and the intersection of all these c members does not contain any of the

points, contradicting their choice. Thus H is intersecting, as needed. 2
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4 Piercing by hyperplanes

In this section we prove Theorem 1.3 using Theorem 2.4. Let H be the family of all compact convex

sets in Rd and let F denote the set of all hyperplanes in Rd.

Proposition 4.1 H satisfies the fractional piercing property of order d+ 1 with respect to F .

Proof. We apply induction on the dimension d. The result for d = 1 is trivial. Assuming it holds

for d− 1 we prove it for d.

Let H = {H1, . . . ,Hn} be a finite subset of H, and suppose that at least α
( n
d+1

)
subsets of

cardinality d+ 1 of H are pierceable.

Call a d-tuple of members ofH bad if it has a (d−2)-transversal, that is, a (d−2)-flat intersecting

all members of the d-tuple. Otherwise call the d-tuple good. A subfamily H′ ⊂ H is good if all

d-tuples of distinct elements of H′ are good.

We need the following known lemma, proved in [17]:

Lemma 4.2 Let K1,K2, . . .Kd be convex sets in Rd and assume that there is no (d − 2)-flat

intersecting all of them. Then there are hyperplanes which are common tangents to all the sets and

their number is at most 2d.

We now proceed with the proof of the Proposition and consider two possible cases.

Case 1: There are at least β
(n
d

)
bad d-tuples of elements of H, where β = α/2(d+ 1).

In this case choose an arbitrary hyperplane L, and let hi be the orthogonal projection of Hi on L.

Then h1, . . . , hn are convex compact sets in a (d−1)-dimensional Euclidean space and at least β
(n
d

)
subsets of cardinality d of them have a (d−2)-transversal. By applying the induction hypothesis we

conclude that there is a (d−2)-flat M in L that intersects at least γ(β)n of the sets in the projection.

The hyperplane containing M which is orthogonal to L intersects all the δn corresponding sets Hi.

Case 2: H contains less than β
(n
d

)
bad d-tuples of elements of H. In this case there are at least

(α− (d+ 1)β)

(
n

d+ 1

)
≥ α

2

(
n

d+ 1

)

pierceable good subfamilies of cardinality d+ 1 of H.

Let G denote the set of all hyperplanes that are common tangents to all members of some good

subset of cardinality d of H. By Lemma 4.2 |G| ≤ 2d
(n
d

)
.
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We need the following lemma:

Lemma 4.3 Let K1,K2 . . . ,Kd+1 be convex sets in Rd such that there is a hyperplane intersecting

them all and there is no (d − 2)-flat intersecting at least d of them. Then there is a hyperplane

which is tangent to d of the sets and intersects the remaining set.

Proof: The lemma follows from the following two facts: (a) every d members from these

d + 1 sets have a common tangent hyperplane, (by Lemma 4.2 .) (b) The set of common tangent

hyperplanes to any subset of k of the sets, for k < d, is connected, as proved in [17]. 2

We now return to the proof of the proposition. It follows from the last lemma that every good

pierceable subfamily of d+ 1 members of H is pierced by a member of G. Therefore, an averaging

argument shows that some member G of G intersects at least

α

2

(
n

d+ 1

)
/|G| ≥ γ(α, d)n

subfamilies of cardinality d+ 1, all containing the d sets used to define G (as one of their common

tangents). Here γ = γ(α, d) > 0 depends only on α and d. It follows that G is a hyperplane that

intersects at least γn subsets of H, as needed. 2

Proposition 4.4 F satisfies the weak ε-nets property for H (and in fact even for the family of all

connected subsets of Rd).

This proposition is a simple consequence of the following result proved in [5].

Theorem 4.5 ([5]) For any dimension d there exists a constant c(d) with the following property.

For every r ≤ n and every family Y of n (not necessarily distinct) hyperplanes in Rd, there exists

a collection of at most c(d)rd (possibly unbounded) simplices with pairwise disjoint interiors, whose

union covers Rd, such that the interior of any of them is intersected by at most n/r of the given

hyperplanes.

Proof of Proposition 4.4. Let Y be a finite multi-subset of F , that is, a family of n hyperplanes

in Rd, and suppose ε > 0. By Theorem 4.5 with, say, r = 2/ε there exists a collection of at most

c(d)(2/ε)d simplices satisfying the assertion of the theorem. Let X be the set of all hyperplanes

determined by a facet of at least one of these simplices. Then |X | ≤ b(ε, d). Moreover, if H is a
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connected subset of Rd which does not intersect any member of X then it must be contained in

the interior of one of the simplices and hence can meet at most n/r < εn members of Y. This

completes the proof. 2

By Proposition 4.1, Proposition 4.4 and Theorem 2.4, for every p ≥ q ≥ d + 1 there is a

C = C(p, q, d) <∞ such that for every finite H ⊂ H that satisfies the (p, q) property with respect

to F , P (H,F) ≤ C. This, together with a standard compactness argument, completes the proof of

Theorem 1.3. 2

5 Concluding remarks and open problems

1. The arguments in Section 3 can be easily modified to supply a proof of the following theorem.

Theorem 5.1 Let H and F be two families of sets, and let k ≥ 1 be an integer. Let H(k)

denote the family of all unions of k members of H. Then

(i) If H satisfies the fractional piercing property of order r with respect to F , then so does

H(k).

(ii) If F satisfies the weak ε-nets property for H, then it satisfies this property for H(k) as

well.

This, together with Propositions 4.1 and 4.4 imply the following.

Theorem 5.2 For every p ≥ q ≥ d+1 and every k there is a C = C(k, p, q, d) <∞ such that

for every family G whose members are unions of k compact convex sets in Rd that satisfies

the (p, q) property with respect to the family F of all hyperplanes in Rd, P (G,F) ≤ C.

2. Theorem 1.1 with k = 1 and Theorem 1.3 deal with the problem of piercing compact, convex

sets with flats of dimension 0 and d − 1, respectively. It would be interesting to prove an

analog of these results for flats of intermediate dimensions i for 1 ≤ i ≤ d− 2.

The first open case is that of line transversals in space. At the moment we cannot prove a

fractional Helly theorem in this case. In fact, we cannot even answer the following problem.
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Problem Let r ≥ 5 be an integer. Is it true that if n is sufficiently large, every family of n

convex sets in space such that every r of them have a line transversal must contain r+ 1 sets

having a line transversal?

3. The proofs of Theorems 1.1 and 1.3 are constructive. Under suitable assumptions which ensure

that the structures described in the conclusions of Theorem 3.1 and Lemma 4.2 for sets in

the given families can be found efficiently, these proofs yield, for every fixed d, polynomial

time algorithms for finding the corresponding piercing sets. We omit the details of these

algorithmic procedures.

4. It would be interesting to find additional natural families H and F for which theorems of the

type considered here can be proved. The techniques developed in [3] and in the present paper

can certainly be applied in additional cases.
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[18] B. Grünbaum and T. Motzkin, On components in some families of sets, Proc. Amer. Math.

Soc. 12(1961), 607-613.

[19] M. Katchalski and A. Liu, A problem of geometry in Rd, Proc. Amer. Math. Soc. 75 (1979),

284-288.

14



[20] G. Kalai, Intersection patterns of convex sets, Israel J. Math. 48 (1984), 161-174.

[21] H. Morris, Two pigeonhole principles and unions of convexly disjoint sets, Ph. D. Thesis, Cal.

Inst. of Tech., Calif., 1973.

[22] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.

[23] H. Tverberg, A generalization of Radon’s Theorem, J. London Math. Soc. 41 (1966), 123-128.
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