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Abstract. Let M = (s1,$2,...,5n) be a sequence of distinct symbols
and o a permutation of {1,2,...,n}. Denote by (M) the permuted
sequence (S,(1);Sx(2),- - - So(n)). FOr a given positive integer d, we will
say that o is d-resilient if no matter how d entries of M are removed
from M to form M’ and d entries of o(M) are removed from o (M)
to form o (M)’ (with no symbol being removed from both sequences),
it is always possible to reconstruct the original sequence M from M’
and o(M)'. Necessary and sufficient conditions for a permutation to be
d-resilient are established in terms of whether certain auxiliary graphs
are acyclic. We show that for d-resilient permutations for [n] to exist,
n must have size at least exponential in d, and we give an algorithm to
construct such permutations in this case. We show that for each d and
all sufficiently large n, the fraction of all permutations on n elements
which are d-resilient is bounded away from 0.

1. Introduction

Suppose we are trying to send a message M consisting of n distinct symbols
over some deletion channel. This channel has the property that for some fixed
d, at most d symbols might possibly be deleted, and that in the resulting
message, M’, the remaining symbols are concatenated so that the positions
of the deleted symbols are not given. Of course, just seeing M’, we have
no way of knowing what (or where) any deleted symbol was in M. To deal
with this problem, we take a typical coding theory approach and transmit
additional information. In particular, we will transmit a permutation o (M)
of M over the channel, and see if M’ and o(M )’ are enough to reconstruct the
original message M. An obvious necessary condition is the channel doesn’t

delete the same symbol in M and o(M).
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We will say that the permutation ¢ on [n] := {1,2,...,n} is d-resilient
if it is always possible to reconstruct the original message M from the two
resulting messages M’ and o(M)’ (provided that no symbol is missing from
both resulting messages).

For example, consider the permutation ¢ = (}%33). If the original
message is M = ABCD then the permuted message is (M) = DACB.
If the channel deletes the symbol C' in M and B in (M), then the two
received messages are M’ = ABD and o(M)" = DAC. However, if instead,
the original message were N = ACBD so that o(N) = DABC, and C is
deleted in N and B is deleted in o(N) then we would have N' = ABD = M’
and o(N) = DAC = o(M)'. Thus the permutation ¢ is not 1-resilient.
However, it is easy to check that the permutation o = (} %3 2) is 1-resilient.
More generally, it not difficult to show the following;:

Fact 1.1. A permutation o on [n] is I-resilient if and only if consecutive
elements in [n] are not consecutive in o, i.e., |o(i)—o(i+1)| > 1 for1 < i <mn.

We give a necessary and sufficient condition for a permutation o to be
d-resilient expressed in terms of a family of auxiliary graphs being acyclic
(see Section 2). We also give a construction of d-resilient permutations which
have size n exponential in d, and show that this growth rate is best possible.
Moreover we show that for every fixed d and large n a positive fraction
(independent of n) of all the permutations of n elements are d-resilient (see
Section 3).

Comment. Our problem was inspired in part by the oral transmission pro-
tocols for Sanskrit literature in the Vedic period. This relied on interleaving
patterns of words to combat transpositions, substitutions, insertions, and
deletions of words.

2. A necessary and sufficient condition to be d-resilient

We start with an example. Let o = (123236 789) Suppose that we have

received ABCEGHI for M' and DAHEBIF for o(M)’. The symbols A, B,
E, H, and I doubly occurring, that is they appear in both received messages.
Suppose that we have been able to determine the location of the doubly
occurring symbols, so that the situation is as illustrated in Figure 1. We have
marked with a line how o connects the entries involved in a deletion in the
first line (M') and the second line (o(M)").

ABOOFEUODOHI

AN

OO0 AHEB I OO

FIGURE 1. Intermediate step in working to recover M.
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The entries marked as [J in Figure 1 indicate that this is a location of
a symbol that occurs only once. Examining the location of these we see that
there are four blocks of contiguous (s (two in the top line and two in the
bottom line). By examining M’ and (M )" we can conclude that each one of
these blocks has one entry which was deleted and the other was transmitted.
If we could uniquely determine which entries in all blocks were deleted and
which were transmitted we could recover our message (we use the connections
to fill any gaps). On the other hand, it might be that there is more than
one possibility to which entries in the blocks were deleted and which were
transmitted.

We are in the latter case in that there are two ways in which entries
could have been deleted, as shown in Figure 2. Here we have oriented the
edges from where a symbol was deleted (marked with a “¥”) to where it
was transmitted. This allows us to determine two possible messages for M,
namely ABCDEFGHI and ABFCEGDHI.

ABC s« FE « GH I AB x CEG *x HI

*DAHUEDBIF * D* AHEB I * F

FIGURE 2. Ambiguity found in working to recover M.

We introduce an auxiliary (multi-)graph to detect such ambiguities.
Given a permutation o = ( ,(1) o(2) = o(n)) 00 [n] ={1,2,...,n} and D C [n]
(representing the indices involved in deletions), let G(o, D) be a bipartite
(multi-)graph defined in the following way. Let ¢1,to, ..., ; be the sets of in-
dices occurring in maximal contiguous blocks of elements of D in the top line
of o and let by, bo, ..., b; be the set of indices occuring in maximal contiguous
blocks of elements of D in the bottom line of 0. We now let

V(G(U7D)) = {t17t2,...,ti7b1,b2,...,bj}

and we add |t Nb,| edges joining t; and b, for all k and ¢. Note that G(o, D)
will have |D| edges (i.e., one edge for each element in D).!

Since every edge in G(o, D) can be identified with an element of D,
we can indicate whether a symbol is deleted in the top or bottom line by
orienting the edge away from where the deletion occurs.

Returning to our example shown in Figure 1 we have D = {3,4,6,7},
t1 = {3,4}, to = {6,7}, by = {7,4}, ba = {6,3}, and G(o, D) is a (simple)
4-cycle. We can interpret the situation shown in Figure 2 as coming from two
different cyclic orientations of the 4-cycle.

I This process is similar to what is done to construct random graphs with prescribed degrees;
namely, we have a matching (the connections joining indices in the top and bottom lines),
and then we group a cluster of endpoints together to form a vertex. Here our clusters are
defined by the contiguous blocks.
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Theorem 2.1. If |D| < 2d and G(o, D) has a cycle, then o is not d-resilient.

Proof. Tt suffices to show how to use the cycle to produce two distinct M for
a given M’ and o(M)’. To do this carry out the following.

e Orient the edges of the cycle to produce in-degree and out-degree one
at each vertex of the cycle.

e Orient the remaining edges so that there are at most d edges directed
into the {tx} collectively and at most d edges directed into the {b,}
collectively.

Call this orientation H;. Let Hs be the orientation found by starting with
H; and reversing all the edges of the cycle. The two orientations will indicate
how to delete entries in the messages M and o(M), i.e. we delete the entries
which correspond to the tails of the directed arcs.

Let M7 be the message 12...n, we now create a second message My #
M so that M| = M}, and o(M;) = o(M>)’ by doing the following.

1. Place the directed edges of the orientation of H; between the two lines
coming from the the two-line representation of ¢. For any element that
has an edge oriented out replace the symbol with a *.

2. Replace the orientation H; with the orientation Hs.

3. For each block t; and by, move the non-x entries to correspond to the
vertices with an edge directed in; while preserving the relative order of
the entries. The entries with edges directed out will now obtain a x.

4. Replace any symbol with a % by using the edges of the orientation, i.e.,
with what it connects with in the other line.

The key step is the third step, because we have guaranteed two things to
happen. First we have changed the orientation of at least two edges (from
the cycle) and thus the location of at least two entries in the message has
changed. Second if we delete the original representation as indicated by H;
and the new representation as indicated by Hs then they will produce the
same pair of received messages. O

Theorem 2.2. If for all |D| < 2d the graph G(o,D) is acyclic, then o is
d-resilient.

Proof. First we demonstrate that we can determine the location of all doubly
occurring symbols in o.

Suppose that the symbol z occurs in M’ in position gq. Then x must
be in one of positions ¢, ¢+ 1, ..., ¢+ d in M (i.e., it could move down by
at most d entries); which in turn implies that the location of z is in one of
d+ 1 possible positions in o(M). It now suffices to show that these positions
are at pairwise distance of more than d apart, since then the positions are
associated with non-overlapping portions of o (M)’ from which we can then
determine the location of x. (Here distance is the difference of the indices
giving the location of the entries.)

So suppose that some pair of positions are at pairwise distance d or less
apart. Then there are a pair of symbols y and z so that the distance between
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them in both the top and bottom lines in the two-line representation of o
is at most distance d. Now form the set D by taking y, z, and all elements
between y and z in both the top and bottom lines. This has size |D| < 2d
and the vertices y and z are both in the same block on the top and bottom.
Thus G(o, D) would have a two-cycle, which contradicts our assumption.

Since we now know the locations of all the doubly occurring symbols, we
also know the locations of entries involved in deletion, i.e., there is a unique D
associated with M’ and o(M)’. We also know that G (o, D) does not contain
a cycle. We now observe that if there were two (or more) possible M, then
they would have to correspond to two distinct orientations, say H; and Hs,
of the edges of G(o, D), and moreover that the orientations would have the
same in- and out-degrees at each vertex. (This last statement follows from
noting that we know how many symbols were in these blocks from M’ and
o(M)" and also the lengths of the blocks.)

So suppose there were two possible M and let e; be any edge of Hy
which has a different orientation from H;. Now going into the vertex it is
oriented towards there must be some other edge that initially was oriented
into the vertex in H; but is now oriented out. Call that edge e;. Now we
can repeat this procedure finding ey, es, e3, ..., until we eventually come to
an edge which goes into a previously seen vertex by this procedure. But at
such a point we have a directed cycle in Hy, and more importantly a cycle in
G(o, D), which is impossible. So there can only be one M. Since this is true
for any M’ and o(M)’" we have o is d-resilient. O

3. Construction of d-resilient permutations

By Theorems 2.1 and 2.2 it is now easy to establish the fact from the intro-
duction, namely that o is 1-resilient if and only if the permutation does not
map adjacent entries to adjacent entries. This first happens with n = 4, for
example, with o = (123 3). Through an exhaustive search it was determined
that the smallest possible 2-resilient permutations have length 18. One such

example is:

<123456 789101112131415161718> (3.1)

6169151115271217 4 8 141810 3 13

The following result shows that d-resilient permutations exist for every d and
there is also an efficient procedure to construct them.

Theorem 3.1. For any n and d satisfying n > 32 there is a d-resilient per-
mutation o of [n]. Such a o can be found by a polynomial time algorithm (in

Call a graph H an (n, d)-double path graph if it has n vertices, its edge
set is a union of two Hamiltonian paths, and its girth is at least 2d + 1. Given
such a graph, number its vertices by the integers 1,2,3,...,n according to
the order of the first Hamiltonian path (corresponding to the top row of the
two-line representation of o). The ordering of the second Hamiltonian path
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will then correspond to the bottom row of the two-line representation of o.
As an example the graph shown in Figure 3 produces the permutation in
(3.1).

FIGURE 3. A graph corresponding to the permutation in
(3.1); the dashed line being the top row and the solid line
being the bottom row. Note the graph has girth 5.

Lemma 3.2. For any (n,d)-double path graph H, the corresponding permuta-
tion is d-resilient.

Proof. If there is a D C [n] so that G(o, D) contains a cycle, then so does
the induced subgraph of H on D. Since H has girth 2d + 1 then G(o, D) is
acyclic for all |D| < 2d and so by Theorem 2.2 we have o is d-resilient. [

Lemma 3.3. If n > 32¢ then there is an (n,d)-double path graph H.

Proof. We apply a variant of a method of Erdés and Sachs [2]. Starting with
a graph H on the set of vertices [n] with the edge set being the union of the
Hamiltonian path 1,2,...,n (in this order) and another Hamiltonian path
P, we keep modifying P as long as there is a cycle of length at most 2d in H.
We show how to perform these modifications in order to get rid of all cycles
of length at most 2d keeping the first Hamiltonian path and maintaining
the property that the second one, P, also stays a Hamiltonian path. In each
modification we switch some pair of edges of P which are far from each other,
that is, omit them and connect their endpoints by new edges in the unique
way ensuring that the modified P will stay a Hamiltonian path. Here are the
details.

As long as H contains a cycle of length at most 2d, let C be a shortest
cycle in H, and let e be an arbitrary edge of P that belongs to C' (there must
be such an edge, as the other Hamiltonian path contains no cycle at all). By
assumption

n—1>1+2-3+2-3242.334...42.3%"1 =32 _9

Starting with any edge e (corresponding to the 1 in the above sum) there are
2 - 3 edges which are incident with that edge, at most 2 - 32 edges which are
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distance two from that edge, etc. This implies there are at most 3°¢—2 < n—1
edges which are within distance 2d — 1 from e and so P contains an edge e’
whose distance (in the graph H) from e is at least 2d. We now switch at e, ¢’
(that is, delete them and add the required edges to keep P a Hamiltonian
path). This way we get rid of the cycle C. Any new cycle created this way
either contains only one of the new edges, and then its length is at least
2d 4+ 1, or contains both and then its length is at least twice the length of
the shortest cycle deleted. Proceeding in this way we increase the length of
the shortest cycle after finitely many steps. When the process terminates we
get the required graph. Note that since the number of cycles of length ¢ in a
graph of maximum degree 4 and n vertices is smaller than n - 3' the process
terminates after at most

O(n(3* + - +32%)) = 0(n?)

steps, and each step is efficient since finding a shortest cycle in a graph can
be done in polynomial time. O

The assertions of Theorem 3.1 follow from the two preceding lemmas.
This shows that we can find d-resilient permutations which have size n only
exponential in d. We now show that this is best possible.

Theorem 3.4. If there is a permutation o of [n] that is d-resilient, then d <
O(logn).

Proof. By the known results about cycles in graphs with n vertices and 2n —
2 edges (see [1]), the graph constructed from the permutation o as in the
discussion above contains a short cycle of length at most 2logsn + O(1).
This in turn implies that G(o, D) has a cycle of length 2logsn + O(1) and
hence we have that d < 2logsn + O(1). O

Finally we note that asymptotically a positive portion of permutations
are d-resilient.

Proposition 3.5. For any fixed d there is a positive real e(d) and ng = ng(d)
so that the probability that a random permutation o of [n] is d-resilient is at
least e(d).

Proof. 1t is known that for every fixed integer d, a random 4-regular graph
on n vertices, for large n, has girth larger than 2d with probability at least
some 6(d) > 0. By the known results about contiguity (see [3]) this random
graph is the edge disjoint union of two Hamiltonian cycles with probability
that tends to 1 as n tends to infinity. This implies the required assertion, by
Lemma 3.2. (|
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