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Abstract

A tournament is an oriented complete graph. The feedback arc set problem for tournaments is
the optimization problem of determining the minimum possible number of edges of a given input
tournament T whose reversal makes T acyclic. Ailon, Charikar and Newman showed that this
problem is NP-hard under randomized reductions. Here we show that it is in fact NP-hard. This
settles a conjecture of Bang-Jensen and Thomassen.

1 Introduction

A tournament is an oriented complete graph. A feedback arc set in a digraph is a collection of edges
whose reversal (or removal) makes the digraph acyclic. The feedback arc set problem for tournaments
is the optimization problem of determining the minimum possible cardinality of a feedback arc set
in a given tournament. The problem for general digraphs is defined analogously. Bang-Jensen and
Thomassen conjectured in [6] that this problem is NP-hard, and Ailon, Charikar and Newman proved
in [1] that it is NP-hard under randomized reductions. Here we show how to derandomize a variant
of the construction of [1] and prove that the problem is indeed NP-hard. This is based on the known
fact that the minimum feedback arc-set problem for general digraphs is NP-hard, (see [7], p. 192),
and on certain pseudo-random properties of the quadratic residue tournaments described in [4], pp.
134-137. Similar constructions can be given using any other family of antisymmetric matrices with
{−1, 1} entries whose rows are nearly orthogonal. We note that unlike the authors of [1], we do
not apply the known fact that the minimum feedback arc set problem is APX-hard, and only need
the simpler fact that it is NP-hard, proved more than thirty years ago. In fact, the proof in [1]
can also be modified slightly so as to rely only on this fact (to get hardness of approximation under
randomized reductions).
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2 Notation

For a digraph G = (V,E) and a permutation π of its vertices, an oriented edge (u, v) ∈ E is consistent
with π if u precedes v in π. Let FIT (G, π) denote the number of edges whose orientation is consistent
with π minus the number of edges whose orientation is not consistent with π. Similarly, if the edges of
G are weighted, we let FIT (G, π) denote the total weight of the edges whose orientation is consistent
with π minus the total weight of the edges whose orientation is not consistent with π. It is convenient
to consider unweighted digraphs as weighted digraphs in which the weight of each edge is 1, and the
weight of each non-edge is 0. Most of the weighted digraphs we use here have weights in {0, 1,−1},
but it is helpful to use weights that can be added and subtracted in order to simplify notation.

Returning to unweighted digraphs, let FA(G) denote the minimum size of a feedback arc set of
G = (V,E). It is easy to see that FA(G) = (|E| −maxπFIT (G, π))/2, where the maximum is taken
over all permutations π of V . This is because omitting a feedback arc set leaves the remaining graph
acyclic, ensuring that there is a permutation π consistent with the orientation of all edges left, and
similarly, for any π one can omit all edges not consistent with π and get an acyclic digraph.

If G1 = (V,E1) and G2 = (V,E2) are two (weighted) digraphs on the same set of vertices, the
sum G1 +G2 is the digraph on V in which the weight of each edge is the sum of its weights in G1 and
in G2. The difference G1 −G2 is defined in a similar manner. Note that for every permutation π on
V , FIT (G1 +G2, π) = FIT (G1, π)+FIT (G2, π) and FIT (G1−G2, π) = FIT (G1, π)−FIT (G2, π).

If G is a digraph, and U ⊂ V , then G[U ] denotes the induced subgraph of G on U . We consider
this subgraph, however, as a digraph whose vertex set is V , where all vertices in V −U are isolated.
If U and W are two disjoint subsets of V , then G[U,W ] denotes the subgraph of G consisting of
all edges of G with an end in U and an end in W . Here, too, the vertex set is the original set V .
Let e(U,W ) denote the total number of edges of G that start at U and end at W . Thus, the total
number of edges of G[U,W ] is e(U,W ) + e(W,U).

3 The quadratic residue tournaments

Let p ≡ 3 mod 4 be a prime, and let T = Tp be the tournament whose vertices are all elements of
the finite field GF (p), in which (i, j) is a directed edge iff i − j is a quadratic residue. In [4], pp.
134-137 it is shown that for every permutation π of the vertices of Tp, FIT (T, π) ≤ O(p3/2 log p).
Here we need a stronger result, providing a similar bound for certain subgraphs of T .

We need the following known fact, proved, for example, in [2] (see also [4], Lemma 9.1.2).

Lemma 3.1 Let T = Tp = (V,E) be the quadratic residue tournament defined above. Then, for
every two disjoint sets U1, U2 of T ,

e(U1, U2)− e(U2, U1) ≤ |U1|1/2|U2|1/2p1/2.
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Therefore, if |U1| and |U2| are large, then the number of edges of G oriented from U1 to U2 is roughly
the number of edges oriented from U2 to U1, as the difference between these two numbers is a most
|U1|1/2|U2|1/2p1/2, whereas their sum is |U1||U2|. We next observe that this property implies that for
every large set of vertices U of T , and for every permutation π, FIT (T [U ], π) is small.

Corollary 3.2 Let T = Tp = (V,E) be as above, let U ⊂ V be a set of vertices of T , and let T [U ]
denote the induced subgraph of T on U . Then, for every permutation π of V ,

|FIT (T [U ], π)| ≤ |U |dlog2 |U |ep1/2 ≤ |U | log2(2|U |)p1/2.

Proof. We prove that for every set U of a most 2r vertices, and for every permutation π

FIT (T [U ], π) ≤ r2r−1p1/2. (1)

Note that if π = π1, π2, . . . , πp and π = πp, πp−1, . . . , π1, then FIT (T [U ], π) = −FIT (T [U ], π), and
hence the validity of (1) implies the assertion of the corollary (including the absolute value). We
prove (1) by induction on r. The result is trivial for r = 1. Assuming it holds for r − 1 we prove it
for r. Suppose |U | ≤ 2r. Given π, split U into two disjoint sets U1, U2, each of size at most 2r−1, so
that all the elements of U1 precede all those of U2 in the permutation π. Clearly

FIT (T [U ], π) = e(U1, U2)− e(U2, U1) + FIT (T [U1], π) + FIT (T [U2], π).

By Lemma 3.1 and the induction hypothesis, the right hand side is at most

2r−1p1/2 + 2(r − 1)2r−2p1/2 = r2r−1p1/2.

This completes the proof. 2

Corollary 3.3 Let T = Tp = (V,E) be as above, let U,W be two disjoint subsets of vertices of T ,
and let T [U,W ] denote the bipartite subgraph of T consisting of all edges of T with an end in U and
an end in W . Then, for every permutation π of V ,

|FIT (T [U,W ], π)| ≤ [ (|U |+ |W |)dlog2(|U |+ |W |)e+ |U |dlog2 |U |e+ |W |dlog2 |W |e ]p1/2.

In particular, if |U | ≤ a and |W | ≤ a, then |FIT (T [U,W ], π)| ≤ 4a log2(4a)p1/2.

Proof. In the notation of Section 2, T [U,W ] = T [U ∪W ]− T [U ]− T [W ]. Therefore, for every π,

|FIT (T [U,W ], π)| = |FIT (T [U ∪W ], π)− FIT (T [U ], π)− FIT (T [W ], π)|,

and the desired result follows from the triangle inequality and three applications of the previous
corollary. 2

The a-blow-up of a digraph H, which we denote by H(a), is the digraph obtained by replacing
each vertex v of H by an independent set I(v) of size a, and each directed edge (u, v) of H by a
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complete bipartite digraph containing all a2 edges from the members of I(u) to those of I(v). It is
easy to check that the minimum size of a feedback arc set of H(a) satisfies FA(H(a)) = a2FA(H).
Indeed, this follows from the fact that if π is a permutation of the vertices of the blow up H(a) that
maximizes FIT (H(a), π), and if x, y are two vertices of H(a) that lie in the same I(v), then one
may always either shift x to lie right next to y in π or vice versa without decreasing the number of
consistent edges.

Our main technical lemma is the following.

Lemma 3.4 Let H = (U,F ) be a digraph, let p ≡ 3 mod 4 be a prime, and let T = Tp = (V,E) be
the quadratic residue tournament described above. Let a be an integer and suppose that a|U | ≤ p.
For each u ∈ U , let I(u) be an arbitrary subset of size a of V , where all |U | sets I(u) are pairwise
disjoint, and let T ′ be the tournament obtained from T as follows: for each edge (u, v) ∈ F of H,
omit all edges of T that connect members of I(u) with those of I(v), and replace them with all the a2

directed edges that start at a member of I(u) and end at one of I(v). Then, for every permutation π

of V :
|FIT (T ′, π)− FIT (H(a), π)| ≤ p3/2 log2(2p) + 4|F |a log2(4a)p1/2.

Proof. Consider H(a) as a digraph on the sets of vertices I(u), u ∈ U . By construction,

T ′ = T −
∑

(u,v)∈F

T [I(u), I(v)] + H(a).

Therefore, for every π,

FIT (T ′, π) = FIT (T, π)−
∑

(u,v)∈F

FIT (T [I(u), I(v)], π) + FIT (H(a), π).

It follows that

|FIT (T ′, π)− FIT (H(a), π)| ≤ |FIT (T, π)|+
∑

(u,v)∈F

|FIT (T [I(u), I(v)], π)|,

and the desired result follows from Corollary 3.2 that implies that |FIT (T, π)| ≤ p3/2 log2(2p)
and from Corollary 3.3 that implies that for each fixed (u, v) ∈ F , |FIT (T [I(u), I(v)], π)| ≤
4a log2(4a)p1/2.

4 The main result

Theorem 4.1 The minimum feedback arc set problem for tournaments is NP-hard.

Proof. It is known (cf., e.g., [7], p. 192) that the minimum feedback arc set problem is NP hard,
even for digraphs H in which all outdegrees and indegrees are at most 3 (this last point is not essential
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here, but we use it to make the computation explicit). Given a digraph H = (U,F ) as above, let
a = |U |c where c > 3 is a fixed integer, and let p ≡ 3 mod 4 be a prime between |U |a and, say, 2|U |a.
Such a prime always exists, by the known results on primes in arithmetic progressions, and it is easy
to find such a prime in time polynomial in |U |, by exhaustive search. Let T ′ be the tournament
constructed from Tp and the blow-up H(a) of H as described in Lemma 3.4. Computing FA(T ′) is
equivalent to computing maxπFIT (T ′, π), where the maximum is taken over all permutations π of
V . However, by Lemma 3.4 it follows that the value of maxπFIT (T ′, π) provides an approximation
up to an additive error of p3/2 log2(2p)+ |F |4a log2(4a)p1/2 ≤ 13p3/2 log2(4p) for maxπFIT (H(a), π),
where here we used the fact that |F | ≤ 3|U | and the fact that |U |a ≤ p. Since, as explained after
the proof of Corollary 3.3, maxπFIT (H(a), π) = a2maxσFIT (H,π), where the last maximum is
taken over all permutations σ of the vertices of H, we conclude that if a2 > 13p3/2 log2(4p), this
approximation will enable us to determine maxσFIT (H,π) (and hence also FA(H)) precisely. Since
a = |U |c and p ≤ 2|U |a ≤ 2|U |c+1, this is the case provided c ≥ 4, completing the proof. 2

5 Remarks and problems

• By choosing c appropriately in the above proof it follows that for every fixed ε > 0, it is NP-
hard to approximate FA(T ) for a tournament on n vertices up to an additive error of n2−ε.
Note that approximating it up to an additive error of εn2 can be done in polynomial time using
the algorithmic version of the regularity lemma (for digraphs), or the methods of [5].

• It will be interesting to decide if the minimum feedback arc set problem for tournaments
is APX-hard. The authors of [1] describe a randomized algorithm that provides a constant
approximation of this quantity.

• The assertion of Lemma 3.1 here follows from the fact that the absolute value of the sum of
entries in any submatrix of the p by p matrix B in which Bij = χ(i − j), where χ is the
quadratic character, can be bounded as described in the lemma. If G = (V,E) is a general
directed graph, with weights on its edges, let A = AG be a matrix whose rows and columns
are indexed by the vertices of G, in which for each u, v ∈ V , A(u, v) = w(u, v) − w(v, u) is
the difference between the weight of the directed edge from u to v and that from v to u (0 if
both these edges are missing). Thus, the matrix B above is the matrix ATp , where Tp is the
quadratic residue tournament described in Section 3.

The cutnorm ||A||C of a real matrix A is the maximum absolute value of the sum of entries
in a submatrix of A. Note that if A = AG, where G is a weighted directed graph, then for
two subsets U1, U2 ⊂ V , the sum

∑
u1∈U1,u2∈U2

A(u1, u2) can be expressed as follows. Put
U3 = U1 ∩ U2. For two disjoint subsets X, Y of V let D(X, Y ) denote the total weight of all
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edges oriented from X to Y minus the total weight of all edges oriented from Y to X. Then∑
u1∈U1,u2∈U2

A(u1, u2) = D(U1 − U2, U2) + D(U3, U2 − U1). (2)

The authors of [3] describe a polynomial time algorithm that finds, given a matrix A, two
subsets U1, U2 such that |

∑
u1∈U1,u2∈U2

A(u1, u2)| is at least α||A||C , for some absolute constant
α > 0, (for randomized algorithms α > 0.56). As in our case the matrix A is antisymmetric,
the algorithm provides U1, U2 so that the above sum (with no absolute value) approximates
the maximum cut norm. In view of the expression (2) this supplies an α/2 approximation for
the maximum possible value of D(X, Y ), as X and Y range over all pairs of disjoint subsets of
V .

• The bound in Corollary 3.2 can be slightly improved, using the expression in (2) and the fact
that for the matrix A = ATp of the quadratic residue tournament, the absolute value of the
sum of entries of any submatrix with s rows and t columns is at most

√
stp. Indeed, plugging

this fact in a simple modified version of the proof of Corollary 3.2 one can prove the following:

If U is a set of vertices of Tp, and |U | ≤ 3r for some integer r, then for every permutation π of
the vertices of Tp: FIT (T [U ], π) ≤ 2r3r−1p1/2.

• The basic approach of proving hardness results for dense instances of computational problems
by reducing the task of solving precisely sparse instances to dense ones, adding a pseudo-random
collection of edges to a blow-up of a sparse instance, can be applied to various additional similar
problems. Several far reaching applications of this approach, combined with some additional
ideas will appear in subsequent joint work with Ailon and with Shapira and Sudakov.
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