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Abstract

We introduce a new notion of embedding, called minimum-relaxation ordinal embedding,
parallel to the standard notion of minimum-distortion (metric) embedding. In an ordinal em-
bedding, it is the relative order between pairs of distances, and not the distances themselves,
that must be preserved as much as possible. The (multiplicative) relaxation of an ordinal em-
bedding is the maximum ratio between two distances whose relative order is inverted by the
embedding. We develop several worst-case bounds and approximation algorithms on ordinal
embedding. In particular, we establish that ordinal embedding has many qualitative differences
from metric embedding, and capture the ordinal behavior of ultrametrics and shortest-path
metrics of unweighted trees.

1 Introduction

The classical field of multidimensional scaling (MDS) has witnessed a surge of interest in recent
years with a slew of papers on metric embeddings; see e.g. [IM04]. The problem of multidimen-
sional scaling is that of mapping points with some measured pairwise distances into some target
metric space. Originally, the MDS community considered embeddings into an `p space, with the
goal of aiding in visualization, compression, clustering, or nearest-neighbor searching; thus, low-
dimensional embeddings were sought. An isometric embedding preserves all distances, while more
generally, metric embeddings tradeoff the dimension with the fidelity of the embeddings.

Note, however, that the distances themselves are not essential in nearest-neighbor searching
and many contexts of visualization, compression, and clustering. Rather, the order of the distances
captures sufficient information, that is, we might only need an embedding into a metric space with
any monotone mapping of the distances. Such embeddings were heavily studied in the early MDS
literature [CS74, Kru64a, Kru64b, She62, Tor52] and have been referred to as ordinal embeddings,
nonmetric MDS, or monotone maps. Here, we use the first term.
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While the early work on ordinal embeddings was largely heuristic, there has been some work
with mathematical guarantees since then. Define a distance matrix to be any matrix of pairwise
distances, not necessarily describing a metric. In [SFC04], it was shown that it is NP-hard to decide
whether a distance matrix can be ordinally embedded into an additive metric, i.e., the shortest-path
metric in a tree. Define the ordinal dimension of a distance matrix to be the smallest dimension
of a Euclidean space into which the matrix can be ordinally embedded. Bilu and Linial [BL04]
have shown that every matrix has ordinal dimension at most n− 1. They also applied the methods
of [AFR85] to show that (in a certain well-defined sense) almost every n-point metric space has
ordinal dimension Ω(n). Because ultrametrics can be characterized by the order of distances on all
triangles, they are closed under monotone mappings. Holman [Hol72] showed that every n-point
ultrametric can be isometrically embedded into (n−1)-dimensional Euclidean space and that n−1
dimensions are necessary. Combined with the closure property just noted, this shows that the
ordinal dimension of every ultrametric is exactly the maximal n− 1.1

Relaxations of ordinal embeddings have involved problems of deciding the realization of par-
tial orders. For example, Opatrny [Opa79] showed that it is NP-hard to decide whether there is
an embedding into one dimension satisfying a partial order that specifies the maximum edge for
some triangles. Such partial orders on triangles are called betweenness constraints. Chor and Su-
dan [CS98] gave a 1/2-approximation for maximizing the number of satisfied constraints. It is also
NP-hard to decide whether there is an embedding into an additive metric that satisfies a partial
order defined by the total order of each triangle [SFC04].

1.1 Our Results

We take a different approach. We define a metric M ′ to be an ordinal embedding with relaxation
α ≥ 1 of a distance matrix M if αM [i, j] < M [k, l] implies M ′[i, j] < M ′[k, l]. In other words,
significantly different distances have their relative order preserved. Note that in an ordinary ordinal
embedding, we must respect distance equality, while in an ordinal embedding with relaxation 1, we
may break ties. It is now natural to minimize the relaxation needed to embed a distance matrix
M into a target family of metric spaces. Here we optimize the confidence with which we make an
ordinal assertion, rather than the number of ordinal constraints satisfied.

In this paper, we prove a variety of results about the Ordinal Relaxation Problem. We show
that the best relaxation achievable is always at most the best distortion of a metric embedding.
Furthermore, while the optimal relaxation is bounded by the ratio between the largest and smallest
distances in M , the optimal distortion can grow arbitrarily. Indeed, the ratio between the optimal
relaxation and distortion can be arbitrarily large even when embedding into the line, and can be
infinite when embedding into cut metrics. (We also give a polynomial-time algorithm to compute
the best ordinal embedding into a cut metric.) We show that, if the target class of the embedding is
ultrametrics, the relaxation and distortion are equal, and the optimal embedding can be computed
in polynomial time. More surprisingly, we show that ultrametrics are the only target metrics
for which all distance matrices have a bounded ratio between the best distortion and the best
relaxation.

We demonstrate many more differences between ordinal and metric embeddings. While any
metric can be isometrically embedded into `∞, there are four-point metrics that cannot be so
embedded into any `p, p < ∞. In contrast, we show that it is possible to ordinally embed any
distance matrix into `p for any fixed 1 ≤ p ≤ ∞. We show that the shortest-path metric of an

1This observation settles an open problem posed in [BL04] asking for the worst-case ordinal dimension of any
metric on n points, which they showed was between n/2 and n− 1. Ultrametrics show that the answer is n− 1.
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unweighted tree can be ordinally embedded into d-dimensional Euclidean space with relaxation
Õ(n1/d). We also show that relaxation Ω(n1/(d+1)) is sometimes necessary. In contrast, the best
bounds on the worst-case distortion required are O(n1/(d−1)) and Ω(n1/d) [Gup00]. The proof
techniques required for the ordinal case are also substantially different (in particular because the
usual “packing” arguments fail) and lead to approximation algorithms described below. We show
that ultrametrics can be ordinally embedded into O(lg n)-dimensional `p space with relaxation 1.
In contrast, the best known metric embedding of ultrametrics into c lg n-dimensional space has
distortion 1 + Ω(1/

√
c) [BM04], and ordinary (no-relaxation) ordinal embeddings require n − 1

dimensions. For general metrics, we show a lower bound of Ω(lg n/(lg d+lg lg n)) on the relaxation
of any ordinal embedding into d-dimensional `p space for fixed integers p or p = ∞. In particular,
for d = Θ(lg n), this lower bound is Ω(lg n/ lg lg n), leaving a gap between the upper bound of
O(lg n) which follows from Bourgain embedding. In contrast, for metric embeddings, there is an
Ω(lg n) lower bound on distortion for d = Θ(lg n) [LLR95,Mat97].

We also develop approximation algorithms for finding the minimum possible relaxation for
an ordinal embedding of a specified metric. Specifically, we give a 3-approximation for ordinal
embedding of the shortest-path metric of a specified unweighted tree into the line. In contrast, only
O(n1/3)-approximation algorithms are known for the same problem with distortion [BDG+05]. In
general, approximation algorithms for embedding are a central challenge in the field, and few are
known [HIL03,Iva00,B0̆3,ABF+99,FK99,BDHI04]. We also expect that our techniques will extend
to obtain approximation algorithms for more general ordinal embedding problems.

2 Definitions

In this section, we define ordinal embeddings and relaxation, as well as the standard notions of
metric embeddings and distortion.

Consider a finite metric D : P × P → [0,∞) on a finite point set P—the source metric—and a
class T of metric spaces (T, d) ∈ T where d is the distance function for space T—the target metrics.
An ordinal embedding (with no relaxation) of D into T is a choice (T, d) ∈ T of a target metric
and a mapping φ : P → T of the points into the target metric such that every comparison between
pairs of distances has the same outcome: for all p, q, r, s ∈ P , D(p, q) ≤ D(r, s) if and only if
d(φ(p), φ(q)) ≤ d(φ(r), φ(s)). Equivalently, φ induces a monotone function D(p, q) 7→ d(φ(p), φ(q)),
and for this reason ordinal embeddings are also called monotone embeddings. An ordinal embedding
with relaxation α of D into T is a choice (T, d) ∈ T and a mapping φ : P → T such that every
comparison between pairs of distances not within a factor of α has the same outcome: for all
p, q, r, s ∈ P with D(p, q)/D(r, s) > α, d(φ(p), φ(q)) > d(φ(r), φ(s)). Equivalently, we can view
a relaxation α as defining a partial order on distances D(p, q), where two distances D(p, q) and
D(r, s) are comparable if and only if they are not within a factor of α of each other, and the ordinal
embedding must preserve this partial order on distances.

An ordinal embedding with relaxation 1 is a different notion from ordinal embedding with no
relaxation, because the former allows violation of equalities between pairs of distances. Indeed, we
will show in Section 6.1 that the two notions have major qualitative differences. We define ordinal
embedding with relaxation in this way, instead of making the > α inequality non-strict, because
otherwise our notion of relaxation 1 would have to be phrased as “relaxation 1 + ε for any ε > 0”.
Another consequence is that we can define the minimum possible relaxation α∗ = α∗(D, T ) of an
ordinal embedding of D into T , instead of having to take an infimum. (The infimum will be realized
provided the space T is closed.)

We pay particular attention to contrasts between ordinal embedding and “standard” embedding,
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which we call “metric embedding” for distinction. A contractive metric embedding with distortion c
of a source metric D into a class T of target metrics is a choice (T, d) ∈ T and a mapping
φ : P → T such that no distance increases and every distance is preserved up to a factor of c:
for all p, q ∈ P , 1 ≤ D(p, q)/d(φ(p), φ(q)) ≤ c. Similarly, we can define an expansive metric
embedding with distortion c with the inequality 1 ≤ d(φ(p), φ(q))/D(p, q) ≤ c. When c = 1, these
two notions coincide to require exact preservation of all distances; such an embedding is called a
metric embedding with no distortion or an isometric embedding. In general, c∗ = c∗(D, T ) denotes
the minimum possible distortion of a metric embedding of D into T . (This definition is equivalent
for both contractive and expansive metric embeddings, by scaling.)

3 Comparison between Distortion and Relaxation

The following propositions relate α∗ and c∗.

Proposition 1 For any source and target metrics, α∗≤c∗.

Proof: Consider a contractive metric embedding φ into (T, d) with distortion c. We show that
φ is also an ordinal embedding into (T, d) with relaxation α ≤ c. Consider a pair of distances
D(p, q) and D(p′, q′) with ratio D(p, q)/D(p′, q′) larger than c. (Thus, in particular, we label
p, q, p′, q′ so that D(p, q) > D(p′, q′).) Then d(φ(p), φ(q))/d(φ(p′), φ(q′)) ≥ D(p, q)/(cD(p′, q′))
by expansiveness of D(p, q) and distortion of D(p′, q′). Thus d(φ(p), φ(q))/d(φ(p′), φ(q′)) > 1, so
d(φ(p), φ(q)) > d(φ(p′), φ(q′)) as desired. 2

Next we show that c∗ and α∗ can have an arbitrarily large ratio, even when the target metric
is the real line.

Proposition 2 Embedding a uniform metric (where D(p, q) = 1 for all p 6= q) into the real line
has c∗ = n− 1 and α∗ = 1.

Proof: The mapping φ(p) = 0, for all p ∈ P , is an ordinal embedding with no relaxation, because
every distance remains equal (albeit 0). Any expansive metric embedding into the real line must
have distance at least 1 between consecutively embedded points, so the entire embedding must
occupy an interval of length at least n− 1. The two points embedded the farthest away from each
other therefore have distance at least n−1, for a distortion of at least n−1. On the other hand, any
embedding in which consecutively embedded points have distance exactly 1 has distortion n−1. 2

Next we give a general bound on α∗ that is essentially always finite. Define the diameter
diam(D) of a metric D to be the ratio of the maximum distance to the minimum distance. (If the
minimum distance is zero and the maximum distance is positive, then diam(D) = ∞; if both are
zero, then diam(D) = 1.)

Proposition 3 For any source metric D and any target metrics, α∗ ≤ diam(D).

Proof: The mapping φ(p) = 0, for all p ∈ P , has ordinal relaxation diam(G), because all non-
equal comparisons between distances are violated, and the largest ratio between any two distances
is precisely diam(D). 2

No such general finite upper bound exists for c∗, as evidenced by “cut metrics”. A cut metric
is defined by a partition P = A ∪B of the point set P into two disjoint sets A and B. The metric
assigns a distance of 0 between pairs of points in A and pairs of points in B, and assigns a distance
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of 1 between other pairs of points. If the source metric D has no zero distances and the target
metrics are the cut metrics, then c∗ = ∞, because some distance must become 0 which requires
infinite distortion.

In contrast, α∗ remains at most diam(D), and in some sense measures the quality of a clustering
of the points into two clusters. Furthermore, the optimal α∗ and clustering can be computed
efficiently:

Proposition 4 The minimum-relaxation ordinal embedding of a specified metric into a cut metric
can be computed in polynomial time.

Proof: First we guess the optimal relaxation α∗ among O(n4) possibilities (the ratio of the distance
between any two pairs of points). Second we guess a pair (p, q) of points on different sides of the
cut and with minimum distance D(p, q). Thus all pairs (r, s) of points with smaller distance
D(r, s) < D(p, q) must have r and s on the same side of the cut. Also, if there is any ordinal
embedding of relaxation α∗, there cannot be pairs (r, s) of points with distance larger by a factor
of α∗, i.e., with D(r, s) > αD(p, q), because such distances will be mapped to a distance smaller
or equal to 1, the mapped distance of (p, q). Similarly, there cannot be pairs (r, s) and (r′, s′) of
points with distance less than D(p, q) and with D(r, s) > αD(r′, s′), because those pairs are forced
to map to equal distances of 0. Finally, all pairs (r, s) of points with D(p, q) ≤ D(r, s) ≤ αD(p, q)
must have r and s on different sides of the cut if there is another distance D(r′, s′) < D(r, s)/α,
and otherwise are unconstrained.

All constraints of the form “r and s must be on the same side of the cut” and “r and s must
be on different sides of the cut” can be phrased as a 2-SAT instance. Each point r has a variable
xr which is 0 if it placed in set A and 1 if it placed in set B. Each constraint thus has the form
xr = xs or xr 6= xs, which can be phrased in 2-CNF. Thus we can find an ordinal embedding into
a cut metric with relaxation at most the guessed value of α∗, if one exists. 2

Next we consider the related problem of ordinal embedding into the real line, which is a general-
ization of cut metrics. First we show that we can decide whether α∗ = 1 in this case. The algorithm
requires more sophistication (namely, guessing) than the trivial algorithm for metric embedding
with distortion 1, where one can incrementally build an embedding in any Euclidean space in linear
time.

Proposition 5 In polynomial time, we can decide whether a given metric can be ordinally embedded
into the line with relaxation 1.

Proof: The algorithm guesses the leftmost point p and greedily places every point q at position
D(p, q) on the line. (In particular, the algorithm places p at position 0.) It is easy to show that
this embedding has ordinal relaxation 1 whenever such an embedding exists. 2

Next we consider the worst case for ordinal embedding into the line. We show in particular
that the cycle requires large relaxation. The cycle also requires large distortion into the line, but
the proof technique for ordinal relaxation is very different from the usual “packing argument” that
suffices for metric distortion.

Proposition 6 Ordinal embedding of the shortest-path metric of an unweighted cycle of even length
n into the line requires relaxation at least n/2.

Proof: Suppose to the contrary that there is an ordinal embedding φ of the cycle into the line with
relaxation less than n/2. Label the vertices of the cycle 1 through n in cyclic order. Assume without
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loss of generality that φ(1) < φ(n/2 + 1). We must also have φ(2) < φ(n/2 + 1), because otherwise
|φ(2) − φ(1)| ≥ |φ(n/2 + 1) − φ(1)|, contradicting that α < n/2. Similarly, φ(2) < φ(n/2 + 2),
because otherwise |φ(n/2+2)−φ(n/2+1)| ≥ |φ(n/2+2)−φ(2)|, again contradicting that α < n/2.
Repeating this argument shows that φ(3) < φ(n/2 + 3), etc., and finally that φ(n/2 + 1) < φ(1), a
contradiction. 2

Section 5 shows that some trees also require Ω(n) ordinal relaxation into the line.

4 `p Metrics are Universal

In this section we show that every distance matrix can be ordinally embedded without relaxation
into `p space of a polynomial number of dimensions, for any fixed 1 ≤ p ≤ ∞. This result is
surprising in comparison to metric embeddings. Every metric can be embedded into `p using
O(lg n) distortion [Bou85, LLR95], and in the worst case Ω(lg n) distortion is necessary for any
p < ∞, as proved in [LLR95] for p = 2 and in [Mat97] for all other values of p. In particular, the
shortest-path metric of a constant-degree expander graph requires Ω(lg n) distortion.

Theorem 1 Every distance matrix can be ordinally embedded without relaxation into O(n5)-dimensional
`p space, for any fixed 1 ≤ p ≤ ∞.

The same result was established independently in [BL04] using an algebraic proof. Specifically,
they show that every distance matrix can be ordinally embedded into (n−1)-dimensional Euclidean
space, and then use the property that any Euclidean metric can be isometrically embedded into
any `p space with at most

(
n
2

)
dimensions. In constrast, our proof is purely combinatorial.

We can also reduce the number of dimensions for some values of p. For example, for p = 2, a
simple rotation reduces the number of dimensions to n− 1.

Our proof proceeds in two steps. First we show that 0/1 Hamming metrics are universal in
the same sense as Theorem 1. To conclude the proof, we note that there is an ordinal embedding
without relaxation from 0/1 Hamming metrics into any `p metric. In fact, the pth root of the
distances in a 0/1 Hamming metric can be metrically embedded without distortion into `p with
the same number of dimensions. This second part is merely an observation, so the main work is in
showing that 0/1 Hamming metrics are universal:2

Lemma 1 Every distance matrix can be ordinally embedded without relaxation into a 0/1 Hamming
metric with O(n5) dimensions. In other words, any desired ordering on the distances between pairs
of n points can be realized by a 0/1 Hamming metric on those n points.

Proof: Given a partial order P on a set of distances, we construct a 0/1 Hamming metric H such
that Pi,j < Pk,l implies Hi,j < Hk,l. If P is non-total, then we can take any topological sort of P
and realize it as a Hamming metric. This ordinal embedding will satisfy the original partial order,
so from now on, we assume that P is a total order. Because P is an order on distances, defined by
pairs of points, we can define it as a sequence of pairs P = [(a0, b0), (a1, b1), . . . , (a(n

2)
, b(n

2)
)], where

in each pair, we arbitrarily select which node is a and which is b.
2Note that finite 0/1 Hamming metrics and finite Hamming metrics are essentially the same, because one can be

converted into the other with a dimension blowup that is multiplicative in the number of points. Thus our result
could have been established with general Hamming metrics. However, our construction directly yields a 0/1 Hamming
metric, so we do not need this extra conversion detail.
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We now must produce a 0/1 vector for each point of the space so that the Hamming metric
induced preserves the order P. We assume that n is a power of 2; otherwise we can simply round
n up to the next power of two.

Our main tool will be Hadamard matrices, defined as follows. Let H0 = [0], and

Hi−1 =
(

Hi Hi

Hi Hi

)
where Hi is the bitwise negation of Hi. Notice that the first row is the all-0 vector, denoted ~0.
Also, each row other than the first row consists of half 0s and half 1s. More strikingly, any two
rows of Hi have Hamming distance 2i−1, that is, they differ in half their positions. Finally, ~1 has
Hamming distance 2i−1 from any row except the first row, with which it has Hamming distance 2i.

We generate a set of dimensions that code for each distance Pi and concatenate all the dimen-
sions at the end. To code for distance Pi = (ai, bi), we set ai’s bits to be 0in and bi’s bits to be 1in.
Every other point in the space besides these two gets a distinct row from the Hadamard matrix,
repeated i times. Now the induced distances are in/2 for any pair of points except for ai and bi,
which are at distance in.

Let the total number of dimensions be d = n
(
n
2

)
(
(
n
2

)
+ 1)/2.

Consider now the distances between any pair a and b resulting from the concatenation of all d
dimensions, and assume that a = ai and b = bi, that is, their pairwise distance is the ith in the
list. Then their pairwise distance is (d + in)/2. Thus, this embedding assigns to the ith smallest
distance in P the ith smallest distance in the Hamming metric. 2

5 Approximation Algorithms for Unweighted Trees into the Line

In this section, we give a 3-approximation algorithm for ordinally embedding the shortest-path
metric induced by an unweighted tree into the line with approximately minimum relaxation. In
contrast, the best approximation algorithm known for metrically embedding trees into the line with
approximately minimum distortion is a recently discovered O(n1/3)-approximation [BDG+05].

First we find a structure for proving lower bounds on the optimal relaxation:

Lemma 2 Given n such that 3 divides n− 1, ordinal embedding of the shortest-path metric of an
unweighted 3-spider with (n− 1)/3 vertices on each leg of the spider (i.e., a 3-star with each edge
subdivided into a path of (n− 1)/3 edges) requires relaxation at least (n− 1)/3.

Proof: Suppose to the contrary that there is an ordinal embedding φ of the 3-spider into the line
with relaxation α < (n−1)/3. Label the vertices as follows: 0 denotes the root, and a1, . . . , a(n−1)/3,
b1, . . . , b(n−1)/3, and c1, . . . , c(n−1)/3 denote the nodes on the legs of the spider in order of their
distance from the root 0. Because α < (n − 1)/3, |φ(a(n−1)/3) − φ(0)| > 0, and the same holds
for b(n−1)/3 and c(n−1)/3. Because the spider has three legs, two of a(n−1)/3, b(n−1)/3, c(n−1)/3 are
on the same side of the root 0 on the line. Without loss of generality, assume that the a and b
legs are both to the right of 0, and that φ(a(n−1)/3) ≥ φ(b(n−1)/3) > φ(0). Let k be such that
φ(ak) < φ(b(n−1)/3) < φ(ak+1) (where the label a0 refers to the root 0). Such a k exists because
α < (n − 1)/3, so φ(ak) 6= φ(b(n−1)/3) for all k, and because φ(0) < φ(b(n−1)/3) < φ(a(n−1)/3). It
follows that |φ(b(n−1)/3)−φ(ak+1)| < |φ(ak+1)−φ(ak)|. In contrast, in the 3-spider graph, b(n−1)/3

and ak+1 have distance at least (n−1)/3, and ak+1 and ak have distance 1. Therefore α > (n−1)/3.
2
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Definition 1 Given a tree T , a tripod (a, b, c) is the union of shortest paths in T connecting every
pair of vertices among {a, b, c}. The root r of the tripod is the common vertex among all three
shortest paths. The length of the tripod is k = min{D(r, a), D(r, b), D(r, c)}.

Any tripod of length k induces a 3-spider with k vertices on each leg, by truncating all longer
arms of the tripod to length k. Thus by Lemma 2, any tree with a tripod of length k must have
ordinal relaxation at least k. Using this lower bound, we obtain a constant-factor approximation
algorithm.

Theorem 2 Given a tree T , there is an ordinal embedding φ : T → R of T into the line with
relaxation 2k + 1, where k is the length of the largest tripod of T . The embedding can be computed
in polynomial time.

Proof: If there are at most two leaves in the tree T , then T can be trivially embedded into the
line without distortion or relaxation. Otherwise, T has a tripod. Let (A,B, C) be a longest tripod,
let r be its root, and let k be its length. We view T as rooted at r. Let (a, b, c) be a tripod rooted
at r that maximizes D(r, a)+D(r, b)+D(r, c). This tripod corresponds to taking the longest three
paths starting from different neighbors of r. In particular all three paths have length at least k, so
the tripod (a, b, c) has length k. Relabel {a, b, c} so that D(r, a) = k.

Claim 1 For any d ∈ {a, b, c}, for any d′ 6= r on the path from r to d, and for any descendant x
of d′, D(d′, x) ≤ D(d′, d).

Proof: Assume, to the contrary, that D(d′, x) > D(d′, d). If d = a, then there would be a
larger tripod (x, b, c) rooted at r. Otherwise, assume without loss of generality that d = b. Then
there would be a tripod (a, x, c), of the same length, and such that D(r, a) + D(r, x) + D(r, c) >
D(r, a) + D(r, b) + D(r, c), a contradiction. 2

Claim 2 For any d ∈ {b, c}, for any d′ 6= r on the path from r to d, and for any descendant x of
d′, such that the path from x to d′ intersects the path from r to d only at vertex d′, D(d′, x) ≤ k.

Proof: Suppose to the contrary that D(d′, x) > k. By the definition of d′, D(d′, a) > D(r, a) = k.
By Claim 1, D(d′, d) ≥ D(d′, x). If D(d′, d) ≤ k, then D(d′, x) ≤ D(d′, d) ≤ k, a contradiction.
If D(d′, d) > k, then the tripod (x, d, a) (rooted at d′) has length at least k + 1, which is again a
contradiction. 2

Now we construct the embedding φ as follows. For every vertex x on the shortest path between
b and c, we contract every subtree that intersects the path only at x into the single vertex x. The
resulting graph is the same path from b to c, but where each vertex represents several vertices of
the original graph. We embed this path into the line, placing the ith vertex along the path at
coordinate i. This embedding places several vertices of the original graph at the same point in the
line.

We claim that the depth of each contracted tree is at most k. For each subtree rooted at r
(e.g., the one containing a), no vertex x in the subtree can have D(r, x) > k because then we
could have chosen that vertex as a and increase the objective function D(r, a) + D(r, b) + D(r, c),
a contradiction. For each subtree rooted at another node b′ 6= r on the path from b to c, we can
apply Claim 2 and obtain that D(b′, x) ≤ k for any vertex x in the subtree rooted at b′. Therefore
the depth of each contracted tree is at most k.
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Finally we claim that the ordinal relaxation of this mapping is at most 2k + 1. Consider two
vertices x and y belonging to contracted subtrees rooted at s and t, respectively. Their original
distance is at most 2k + D(s, t), and their new distance is D(s, t). Therefore the distance changes
order with respect to distances at least D(s, t), for a worst-case ratio of (2k+D(s, t))/D(s, t). This
ratio is maximized when D(s, t) = 1 in which case it is 2k + 1. 2

Corollary 1 There is a polynomial-time algorithm to find φ of Theorem 2. The algorithm is a
3-approximation algorithm for ordinally embedding trees into a line.

Proof: The proof of Theorem 2 is constructive, thus it gives an algorithm. Since the length of the
largest tripod is a lower bound of embedding ordinally the tripod into a line, we obtain that the
algorithm is a (2 + 1/k)-approximation algorithm. 2

6 Ultrametrics

In this section we establish several results about ordinal embedding when the source metric or the
target metrics are ultrametrics.

6.1 Ultrametrics into `p with Logarithmic Dimensions

First we demonstrate that ultrametrics can be ordinally embedded into O(lg n)-dimensional `p

space, for any fixed 1 ≤ p ≤ ∞, with relaxation 1. Here we exploit the minor difference be-
tween “relaxation 1” and “no relaxation”—that equality constraints can be violated—because, as
described in the introduction, any ordinal embedding without relaxation of any ultrametric into
Euclidean space requires n − 1 dimensions. Thus the ordinal dimension of an ultrametric is “just
barely” n−1; the slightest relaxation allows us to obtain a much better embedding. Our result also
contrasts metric embeddings where ultrametrics can be embedded into Euclidean space with 1 + ε
distortion, but such an embedding requires ε−2 lg n dimensions [BM04]. The number of dimensions
in our ordinal embeddings is independent of any such ε.

Our construction is based on monotone stretching of the discrepancy between different distances:

Lemma 3 For any k > 1, and for any ultrametric M = (P,D), there is an ultrametric M ′ =
(P,D′) such that, for any p, q, r, s ∈ P , if D(p, q) = D(r, s), then D′(p, q) = D′(r, s), and if
D(p, q) > D(r, s), then D′(p, q) ≥ kD′(r, s).

Proof: Because M is an ultrametric, we can construct a weighted tree T , with P forming the
set of leaves, such that the weights are nondecreasing along any path of T starting from the root.
Moreover, for any u, v ∈ P , the ultrametric distance D(u, v) is equal to the maximum weight of an
edge along the path from u to v in T .

For u, v ∈ P , define r(D(u, v)) = i where D(u, v) is equal to the ith smallest distance in M .
Consider now the weighted tree T ′ obtained from T by replacing an edge of weight w by an edge
of weight kr(w). Let M ′ be the resulting ultrametric induced by T ′. If D(p, q) = D(r, s), then
r(D(p, q)) = r(D(r, s)), so D′(p, q) = D′(r, s). Finally, if D(p, q) > D(r, s), then r(D(p, q)) ≥
r(D(r, s)) + 1, so D′(p, q) ≥ kD′(r, s). 2

We combine this lemma with a result for the metric case:

Lemma 4 (Bartal and Mendel [BM04]) For any 1 ≤ p ≤ ∞, any n-point ultrametric can be
metrically embedded into O(ε−2 lg n)-dimensional `p space with distortion at most 1 + ε.
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Now we are ready to prove the main result of this subsection:

Theorem 3 For any 1 ≤ p ≤ ∞, any n-point ultrametric can be ordinally embedded into O(lg n)-
dimensional `p space with relaxation 1.

Proof: Given an ultrametric M = (P,D), by Lemma 3, we can obtain an ultrametric M ′ = (P,D′)
such that, for any p, q, r, s ∈ P , if D(p, q) = D(r, s), then D′(p, q) = D′(r, s), and if D(p, q) >
D(r, s), then D′(p, q) ≥ 2D′(r, s). Applying Lemma 4 with ε = 1/2, we obtain a contractive
metric embedding φ of P into O(lg n)-dimensional `p space such that, for any p, q, r, s ∈ P , if
D(p, q) > D(r, s), then ‖φ(p)− φ(q)‖ ≥ 2

3D′(p, q) ≥ 4
3D′(r, s) ≥ 4

3‖φ(r)− φ(s)‖. Therefore φ is an
ordinal embedding with relaxation 1. 2

6.2 Arbitrary Distance Matrices into Ultrametrics

In this subsection, we give a polynomial-time algorithm for computing an ordinal embedding of an
arbitrary metric into an ultrametric with minimum possible relaxation.

We will show that the optimal ordinal embedding of a distance matrix M into an ultrametric
is the subdominant of M [FKW95]. One recursive construction of the subdominant is as follows.
First, we compute a partition P = P1∪P2∪· · ·∪Pk, for some k ≥ 2, such that the minimum distance
between any Pi and Pj is maximized. Such a partition can be found by computing a minimum
spanning tree T of M , and partitioning the points by removing all the edges of T of maximum
length. Let ∆ be the maximum distance between any two points in P . We create a hierarchical tree
representation for an ultrametric by starting with a root vP and k children vP1 , . . . , vPk

. The length
of the edge {vP , vPi} is equal to ∆ for each i ∈ {1, 2, . . . , k}. We recursively compute hierarchical
tree representations for the metrics induced by the point sets P1, P2, . . . , Pk, and then we merge
these trees by identifying, for each i ∈ {1, 2, . . . , k}, the root of the tree for Pi with the node vPi . In
fact this entire construction can be carried out with a single computation of the minimum spanning
tree, and thus takes linear time.

Lemma 5 Let ∆ = maxp,q∈P D(p, q) and let δ be the minimum distance between two points in
different sets Pi and Pj. Then any ordinal embedding has relaxation at least ∆/δ.

Proof: Suppose that the maximum distance ∆ is attained by points u, v with u ∈ Pi and v ∈ Pj ,
where i 6= j. Consider an optimal ordinal embedding φ of M into a hierarchical tree representation
T of an ultrametric. Thus the distance between two leaves p and q is equal to the maximum length
of an edge along the unique path between p and q. No matter how φ splits P into subsets at the root
of T , there exist r, s ∈ P such that D(r, s) = δ and the path from r to s in T visits the root of T .
Thus the path from r to s passes through the maximum edge in T . Hence, the maximum distance
along the path between u and v in T cannot be larger than the maximum distance along the path
between r and s in T . Therefore d(φ(u), φ(v)) ≤ d(φ(r), φ(s)), while D(u, v) = ∆ > δ = D(r, s), so
the relaxation is at least ∆/δ. 2

Theorem 4 Given any distance matrix M , we can compute in polynomial time an optimal ordinal
embedding of M into an ultrametric.

Proof: Let φ be the ordinal embedding of M = (P,D) computed by the algorithm, with a
hierarchical tree representation T . The maximum relaxation α of φ is attained for some p, q, r, s ∈ P
such that D(p, q) ≥ αD(r, s) and d(φ(p), φ(q)) < d(φ(r), φ(s)). It follows that there exists an
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internal node v of T , with children v1 and v2, such that leaves p and q are descendants of v1, while
only one of the leaves r or s is a descendant of v1. Assume without loss of generality that r is a
descendant of v1 and s is a descendant of v2.

Consider the recursive call of the algorithm on a subset of points P ′ ⊆ P in which the node v
was created. Because r and s are in different subtrees of v, it follows that, in the partition of the
set P ′ of points computed by the algorithm, the minimum distance between distinct sets is at most
D(r, s). On the other hand, the maximum distance between pairs of points in P ′ is at least D(p, q).
Thus, by Lemma 5, the optimal relaxation for ordinal embedding of M into an ultrametric is at
least D(p, q)/D(r, s) ≥ α. 2

By a similar argument it can be shown that the same algorithm also computes a metric em-
bedding of M into an ultrametric with minimum possible distortion. Furthermore, the distortion
is equal to the relaxation in this embedding. In the next section we show that ultrametrics are
essentially the only case where this can happen universally.

6.3 When Distortion Equals Relaxation

Finally we show that, in a certain sense, ultrametrics are the only target metrics that have equal
values of α∗ and c∗, or even a universally bounded ratio between α∗ and c∗.

Theorem 5 If a set T of target metrics is closed under inclusion (i.e., closed under taking the
submetric induced on a subset of points), and there is a constant C such that every distance matrix
D has c∗/α∗ ≤ C (when embedding D into T ), then every metric in T is an ultrametric.

Proof: Consider any metric M in T . We claim that M has more than one diameter pair. Suppose
to the contrary that only p and q attain the maximum distance in M . Let M+d be the distance
matrix identical to M except for M+d(p, q) = M(p, q)+d. Let d be any positive real greater than the
sum of the second- and third-largest distances. Then M+d is not in T because it violates the triangle
inequality and T is a family of metrics. Because no other distance in M is equal to M(p, q), M+d

can be ordinally embedded with no relaxation into T simply by taking M . However, M+d cannot
be metrically embedded into T without distortion, because M+d is not in T . Furthermore M+cd

cannot be metrically embedded into T with distortion less than c, because any contractive metric
embedding must reduce the distance between p and q by a factor of c. Therefore the ratio between
the minimum metric distortion c∗ and the minimum ordinal relaxation α∗ cannot be bounded.

Now by inclusion, any submetric of M induced by three points is also in T , and therefore has a
non-unique maximum edge. Thus all triangles in M are tall isosceles, which is one characterization
of M being an ultrametric. 2

In fact, this theorem needs only that the set T of target metrics is closed under taking the
induced metric on any triple of points.

7 Worst Case of Unweighted Trees into Euclidean Space

In this section, we consider the worst-case relaxation required for ordinal embedding of the shortest-
path metric of an unweighted tree T into d-dimensional `2 space. Our work is motivated by that
of Gupta [Gup00] and Babilon, Matoušek, Maxová, and Valtr [BMMV03]. We show that, for any
d ≥ 2, and for any unweighted tree T on n nodes, α∗ = Õ(n1/d). We complement this result
by exhibiting a family of trees with optimal ordinal relaxation Ω(n1/(d+1)). In contrast, the best
bounds on the worst-case distortion required are Õ(n1/(d−1)) and Ω(n1/d) [Gup00]. These ranges
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overlap at the endpoint of Θ̃(n1/d), but it seems that ordinal embedding and metric embedding
behave fundamentally differently, in particular because different proof techniques are required for
both the upper and lower bounds.

First we prove the upper bound. At a high level, the algorithm finds nodes that can be con-
tracted to a single point, which can be an effective ordinal embedding, unlike metric embedding
where it causes infinite distortion.

Theorem 6 Any weighted tree can be ordinally embedded into d-dimensional `2 space with relax-
ation Õ(n1/d).

Proof: Let T = (V (T ), E(T )) be an unweighted tree with |V (T )| = n. We show how to obtain an
ordinal embedding of T into d-dimensional `2 space with relaxation Õ(n1/d).

We construct a new tree T ′ as follows. Initially, we set T ′
0 := T . For i = 1, . . . , n1/d, we repeat

the following process: Set T ′
i := T ′

i−1. For any leaf v of T ′
i−1, we remove v from T ′

i . Let T ′ := T ′
n1/d .

Define the function p : V (T ) → V (T ′), such that for any v ∈ V (T ) \ V (T ′), p(v) is the node in
V (T ′), which is closest to v, and for any v ∈ V (T ′), p(v) = v. It is easy to see that for every leaf v
of T ′, there are at least n1/d nodes u ∈ V (T ) \ V (T ′), with p(u) = v. Thus, the number of leaves
of T ′ is at most n

d−1
d .

It follows that using Gupta’s algorithm [Gup00], we can compute an expansive metric embedding
φ′ of T ′ into d-dimensional `2 space with distortion at most kn1/d, for some k = polylog(n). To
obtain an embedding φ of T , we simply set φ(v) = φ′(p(v)) for each v ∈ V (T ).

It remains to show that φ′ has ordinal relaxation Õ(n1/d). Let v1, v2, v3, v4 ∈ V (T ), with v3 6= v4

and
dT (v1, v2) > (2 + k)n1/ddT (v3, v4).

We have

‖φ(v1)− φ(v2)‖ = ‖φ′(p(v1))− φ′(p(v2))‖
≥ dT ′(p(v1), p(v2))
≥ dT (v1, v2)− 2n1/d

> (2 + k)n1/ddT (v3, v4)− 2n1/d

≥ kn1/ddT (v3, v4)
≥ kn1/ddT ′(p(v3), p(v4))
≥ ‖φ′(p(v3))− φ′(p(v4))‖
= ‖φ(v3)− φ(v4)‖.

Thus, we obtain that φ has ordinal relaxation at most (2 + k)n1/d = Õ(n1/d). 2

Next we prove the worst-case lower bound. The main novelty here is a new packing argument
for bounding relaxation. Let F (m,L) denote the m-spider with arms of length L, that is, an m-star
with each edge refined into a path of length L.

Lemma 6 Any ordinal embedding of F (m, L) into d-dimensional `2 space requires relaxation Ω(min{L,m1/d}).

Proof: Let T = F (m,L), and let r ∈ V (T ) be the only vertex of T with degree greater than 2.
For any i, with 0 ≤ i ≤ L, let Ui = {v ∈ V (T ) | dT (r, v) = i}.
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Consider an optimal embedding φ : V (T ) → Rd with relaxation α. We define

µi = min
u,v∈V (T )

{‖φ(u)− φ(v)‖ | dT (u, v) = i},

λi = max
u,v∈V (T )

{‖φ(u)− φ(v)‖ | dT (u, v) = i}.

Observe that, if µ2L = 0, then there exist u, v ∈ UL such that φ(u) = φ(v). It follows that, if
α < 2L, then for any {x, y} ∈ E(T ), φ(x) = φ(y), which implies that all the vertices are mapped
to the same point, and thus α = Ω(L).

It remains to show that the assertion is true in the case µ2L > 0. Consider the nodes of UL.
For any u, v ∈ UL, we have dT (u, v) = 2L, and thus ‖φ(u)− φ(v)‖ ≥ µ2L. For any v ∈ UL, let Bv

be the ball of radius µ2L/2 centered at φ(v). It follows that, for any u, v ∈ UL, the balls Bu, Bv

can intersect only on their boundary. Thus,∣∣∣∣∣∣
⋃

v∈UL

Bv

∣∣∣∣∣∣ =
∑

v∈UL

|Bv|

= Ω(mµd
2L)

By a packing argument, we obtain that there exist u, v ∈ UL such that ‖φ(u)−φ(v)‖ = Ω(m1/dµ2L),
which implies

λ2L = Ω(m1/dµ2L). (1)

Now consider two nodes u, v ∈ UL such that ‖φ(u)− φ(v)‖ = λ2L, and let p be the path from u to
v in T . It follows that there exist nodes x, y ∈ p with dT (x, y) = 2L/α and ‖φ(x)−φ(y)‖ ≥ λ2L/α.
Thus

λ2L/α ≥ λ2L

α
. (2)

Also, by the definition of the ordinal relaxation, we have

µ2L > λ2L/α. (3)

Combining (1), (2), and (3), we obtain αλ2L/α = Ω(m1/dµ2L) = Ω(m1/dλ2L/α). Thus we have
shown that, if µ2L > 0, then α = Ω(m1/d). The lemma follows. 2

Theorem 7 For any n > 0 and any d ≥ 2, there is a tree T on n nodes for which every ordinal
embedding has relaxation Ω(n1/(d+1)).

Proof: The theorem follows from Lemma 6, for T = F (nd/(d+1), n1/(d+1)). 2

8 Arbitrary Metrics into Low Dimensions

By Lemma 1, a general O(lg n) upper bound on relaxation carries over from metric embeddings
of any n-point metric space into O(lg n)-dimensional Euclidean space, using theorems of Bourgain
and of Johnson and Lindenstrauss. For metric distortion, this bound is tight [LLR95], but one
might suspect that the ordinal relaxation can be smaller. Here we show that it cannot be much
smaller: some n-point metric spaces require relaxation Ω(log n/ log log n). This claim is a special
case of the following result.

13



Theorem 8 There is an absolute constant c > 0 such that, for every d and n, there is a metric
space T on n points such that the relaxation of any ordinal embedding of T into d-dimensional
Euclidean space is at least log n

log d+log log n+c − 1.

The proof is based on two known results. The first is a bound of Warren on the number of sign
patterns of a system of real polynomials. The second is the existence of dense graphs with no short
cycles. We first state these two results.

Let Pj = Pj(x1, . . . , x`), j = 1, . . . ,m, be m real polynomials. For a point u = (u1, . . . , u`) ∈ R`,
the sign pattern of the Pj ’s at u is the m-tuple (ε1, . . . , εm) ∈ (−1, 0, 1)m, where εj = sign Pj(u).
Let s(P1, P2, . . . , Pm) denote the total number of sign patterns of the polynomials P1, P2, . . . , Pm,
as u ranges over all points of R`.

The following result is derived in [Alo95] as a slight modification of a theorem of Warren [War68].

Theorem 9 Let P1 . . . Pm be m real polynomials in ` real variables, and suppose the degree of each
Pj does not exceed k. If 2m ≥ `, then s(P1 . . . Pm) ≤ (8ekm/`)`.

The following statement follows from a result of Erdős and Sachs [ES63], and can be also proved
directly by a simple probabilistic argument.

Lemma 7 For every g ≥ 3 and every n ≥ 3, there are (connected) graphs on n vertices with at
least 1

4n1+1/g edges, and with no cycle of length at most g.

We note that there are slightly better known results based on certain algebraic constructions, but
for our purpose here the above estimate suffices.

We can now prove Theorem 8. Throughout the proof and the rest of the section, we assume
that n is large, whenever this is needed, and omit all floor and ceiling signs whenever these are not
crucial.
Proof of Theorem 8: Without trying to optimize the constants, define g = log n

log d+log log n+5 .
We will show that some n-point metric spaces require relaxation at least g − 1. Without loss of
generality, assume g−1 is bigger than 1, as otherwise there is nothing to prove. By Lemma 7, there
is a graph G = (V,E) on a set V = {1, 2, . . . , n} of n labeled vertices, with m ≥ 1

4n1+1/g > 7nd log n
edges, and with no cycles of length at most g. For every subset E′ ⊂ E of precisely m/2 edges, the
subgraph (V,E′) of G defines a metric space T (E′) on the set V (if the subgraph is disconnected,
some distances can be defined to be infinite; alternatively, we can fix a spanning tree in G and
include it in all subgraphs to make sure they are all connected). This gives us a collection of
2(1+o(1))m metric spaces on V , with the following property.

(*) For every two distinct spaces (T, d) and (T ′, d′) in the collection, there are two pairs of points
x, y and z, w so that d(x, y) = 1 and d′(x, y) > g − 1, whereas d′(z, w) = 1 and d(z, w) > g − 1.

Indeed, this follows from the fact that, for every two distinct subgraphs in our collection, there
is an edge {x, y} belonging to the first one and not to the second, and vice versa. As the shortest
cycle in G is of length exceeding g, the claim in (*) follows.

Fix a space T is our collection, and let φT be a minimum relaxation embedding of it into
d-dimensional Euclidean space. Let φT (i) = (xT

i,1, . . . , x
T
i,d). Then the square of the Euclidean

distance between each two points in the embedding can be expressed as a polynomial of degree 2 in
the dn variables xT

i,j . The difference between two such squares of distances is thus also a polynomial
of degree 2 in these variables. It follows that the order of all

(
n
2

)
distances is determined by the
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signs of
(
n
2

)2
< n4/4 polynomials of degree 2 each, in dn variables. By Theorem 9, the total number

of such orders is at most (
16en4

4dn

)dn

≤ n(3+o(1))dn = 2(3+o(1))nd log n.

This is smaller than the number of spaces in our collection, and hence, by the pigeonhole principle,
there are two distinct spaces T and T ′ in our collection, so that the orders of the distances in their
embeddings are the same. This, together with (*), implies that the relaxation in at least one of
these embeddings is at least g − 1, completing the proof. 2

The last proof easily extends to embeddings into d-dimensional `p space for any even integer p.
The only difference is that, in this case, the pth power of the distance between a pair of given
points in the embedding is a polynomial of degree p in the dn variables describing the embedding.
Working out the computation in the proof above, this yields the following result.

Theorem 10 There is an absolute constant c > 0 such that, for every d and n, and for every even
integer p, there is a metric space T on n points such that the relaxation in any ordinal embedding
of T into d-dimensional `p space is at least log n

log d+log(log n+log p)+c − 1.

The above argument, combined with an additional trick, can in fact be extended to handle
ordinal embeddings into d-dimensional `p space for odd integers p, as well as embeddings into
d-dimensional `∞ space.

Theorem 11 (i) For every n ≥ d, there is a metric space T on n points such that the relaxation
in any ordinal embedding of T in d-dimensional `∞ space is at least log n

log d+log log n+O(1) − 1.
(ii) For every n ≥ d, and for every odd positive integer p, there is a metric space T on n

points such that the relaxation of any ordinal embedding of T into d-dimensional `p space is at least
log n

log(2d2+3d log n+d log p+O(d))
− 1.

Proof: As before, the result is proved by a counting argument: we prove that the number of
possible orders between all distances in a set of n points in the relevant spaces is not too large, and
use the fact that there are many significantly different metric spaces on n points, concluding that
for two such metric spaces the embedding orders the distances identically, and hence deriving the
required lower bound on relaxation.

(i) We start by bounding the number of possible orders of all distances in a set X of n points in
d-dimensional `∞ space. Given such a set, define, for each ordered set (x, y, z, w) of (not neces-
sarily distinct) four points of X, and for each two indices i, j in {1, 2, . . . , d}, the following linear
polynomial in the dn variables representing the coordinates of the points: (xi− yi)− (wj − zj). By
Theorem 9 these d2n4 polynomials have at most (O(1)dn3)dn ≤ 2(4+o(1))dn log n sign patterns. (In
fact, because the polynomials here are linear, there is a slightly better, and simpler, estimate than
the one provided by Warren’s Theorem here—see [Har67]—but the asymptotic of the logarithm in
this estimate is the same.) We claim that the signs of all these polynomials determine completely
the order on all the

(
n
2

)
distances between pairs of the points. Indeed, the signs of the polynomials

(xi − yi)− (xj − yj), (xi − yi)− (yj − xj) (and their inverses) determines a coordinate i such that
||x − y||∞ is xi − yi or yi − xi (as this is simply the maximum of all 2d differences of the form
(xi−yi), (yi−xi)). Suppose, now, that ||x−y||∞ = xi−yi and ||w− z||∞ = wj − zj . Then the sign
of (xi − yi) − (wj − zj) determines which of the two distances is bigger. It follows that the total
number of orders of the distances of n points in d-dimensional `∞ space is at most 2(4+o(1))dn log n.
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Define g = log n
log d+log log n+5 , take a graph G = (V,E) as in the proof of Theorem 8, and construct

a collection of 2(1+o(1))7nd log n metric spaces on a set of n points satisfying (*). The desired result
follows, just as in the proof of Theorem 8.

(ii) As in the proof of part (i), we first bound the number of possible orders of all distances in a
set X of n points in d-dimensional `p space. Given such a set, define, for each two (not necessarily
distinct) pairs {x, y} and {z, w} of points, and each two sign vectors

(ε1, ε2, . . . , εd), (δ1, δ2, . . . , δd) ∈ {−1, 1}d,

the following polynomial in the dn coordinates of the points:

d∑
i=1

εi(xi − yi)p −
d∑

j=1

δj(zj − wj)p.

This is a set of 22dn4 polynomials, each of degree p, and thus, by Theorem 9, the number of their
sign patterns is bounded by

22d2n+3dn log n+dn log p+O(dn). (4)

As before, it is not difficult to see that the signs of all these polynomials determine completely
the order of all distances between pairs of points. Therefore, the number of such orders does not
exceed (4). The desired result now follows as before, by considering metrics induced by subgraphs
with half the edges of a graph on n vertices with at least 1

4n1+1/g edges, and no cycles of length at
most g, where g = log n

log(2d2+3d log n+d log p+O(d))
. 2

9 Conclusion and Open Problems

We have introduced minimum-relaxation ordinal embeddings and shown that they have distinct
and sometimes surprising behavior. Yet many problems remain to be explored in this context; our
hope is that this paper forms the foundation of a fruitful body of research. Here we highlight some
of the more important directions for future exploration.

An important line of study is to continue comparing ordinal embeddings with metric embed-
dings. One interesting question is whether the dimensionality-reduction results of Bourgain [Bou85]
and Johnson and Lindenstrauss [JL84] can be improved for ordinal relaxation. From Theorem 8
and Proposition 1, we know that the optimal worst-case relaxation for an ordinal embedding of
a general metric into O(lg n)-dimensional Euclidean space is between Ω(lg n/ lg lg n) and O(lg n).
Closing this Θ(lg lg n) gap is an intiguing open problem; a better upper bound would improve on
Bourgain-based metric embeddings into O(lg n) dimensions. Another problem is how much relax-
ation is required for dimensionality reduction of a metric already embedded in arbitrary dimensional
`p space. For p = 2, we obtain an ideal relaxation of 1 + ε using Johnson-Lindenstrauss combined
with Proposition 1. For p = ∞, dimensionality reduction is impossible, by Theorem 11(i), because
`∞ is universal in the metric sense. For p 6= 2,∞, the problem is open; in contrast, it is known for
metric embeddings that dimensionality reduction is impossible for `1 [BC03,LN04].

Another important direction is to develop more approximation algorithms for minimum-relaxation
ordinal embedding. Unlike general upper bounds on distortion, existing approximation algorithms
for minimum-distortion metric embedding do not carry over to ordinal embedding because the op-
timum solution is generally smaller. Our O(1)-approximation result in Section 5, and the lack of a
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matching result for metric embedding despite much effort, shows that in some contexts ordinal em-
bedding problems may prove more easily approximable than metric embedding. We expect that our
approximation result can be generalized using similar techniques to unweighted graphs, weighted
trees, and/or higher dimensions, and that it can be strengthened to a PTAS. A related open prob-
lem is to consider trees as target metrics, and find the tree metric into which a given metric can
be ordinally embedded with approximately minimum relaxation. Another family of approximation
problems arise with the related notion of additive relaxation, in contrast to (multiplicative) relax-
ation, where pairs of distances within an additive α must have their relative order preserved. In
some cases, approximation results may be harder for ordinal embedding than metric embedding.
For example, in the problem of approximating the minimum additive distortion/relaxation for an
ordinal embedding of an arbitrary metric into the line, the simple greedy algorithm of Proposition 5
is a 3-approximation for metric embedding but can be arbitrarily bad for ordinal embedding.3

A final direction to consider is finding other applications of ordinal embedding. In particular,
in the context of approximation algorithms for other problems, when are low-relaxation ordinal
embeddings as useful as (and more powerful than) low-distortion metric embeddings? Nearest
neighbor is a simple example where only the order of distances is relevant, but we expect there are
several other such problems.
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