
Separable Partitions

Noga Alon ∗ Shmuel Onn †

Abstract

An ordered partition of a set of n points in the d dimensional Euclidean space is called
a separable partition if the convex hulls of the parts are pairwise disjoint. For each fixed
p and d we determine the maximum possible number rp,d(n) of separable partitions into
p parts of n points in real d-space up to a constant factor. Of particular interest are
the values rp,d(n) = Θ(nd(

p
2)) for every fixed p and d ≥ 3, and rp,2(n) = Θ(n6p−12) for

every fixed p ≥ 3. We establish similar results for spaces of finite Vapnik-Chervonenkis
dimension and study the corresponding problem for points on the moment curve as well.

1 Introduction

A separable p-partition of a set of n points in the d-dimensional Euclidean space Rd is an
ordered tuple π = (π1, . . . , πp) of p nonempty sets whose disjoint union is S, where the convex
hulls of the sets πj are pairwise disjoint. Let rp,d(n) denote the maximum possible number
of separable p partitions of a set of n points in Rd. It is easy to see that rp,1(n) = p!

(n−1
p−1

)
=

Θ(np−1). The following theorem determines the asymptotic behavior of rp,d(n) for every
fixed p, d, when n is large.

Theorem 1.1

• For every fixed p ≥ 2, rp,1(n) = Θ
(
np−1

)
.

• r2,2(n) = Θ
(
n2
)

and for every fixed p ≥ 3, rp,2(n) = Θ
(
n6p−12

)
.

• For every fixed p ≥ 2 and d ≥ 3,

rp,d(n) = Θ
(
nd(

p
2)
)
.
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We also obtain similar estimates for the maximum possible number of separable partitions
in spaces of finite Vapnik-Chervonenkis dimension [16]. Here are the relevant definitions. A
space is a pair (X,H) with H a collection of subsets of a set X. A p-partition π = (π1, . . . , πp)
of a subset S ⊆ X in a space (X,H) is an ordered partition of S into p pairwise disjoint parts.
It is separable if for each pair 1 ≤ r < s ≤ p there is a member Hr,s ∈ H such that πr ⊆ Hr,s

and πs ⊆ X \Hr,s. A subset S ⊆ X is shattered if all 2-partitions of S are separable. A space
(X,H) has finite VC-dimension d if X contains a shattered d-subset but not a shattered
(d+ 1)-subset. An important example, which is of major concern in this article, is provided
by real Euclidean d-space, which is the space (X,H) with X = IRd and H the collection of
closed halfspaces in IRd. In this space, a partition is separable if and only if the convex hulls
of the parts are pairwise disjoint, as defined earlier. The VC-dimension of this space is d+ 1.

Let vp,d(n) denote the maximum possible number of separable p-partitions of a set of n
points in a space of finite VC-dimension d. We provide an upper bound on vp,d(n) which,
together with the lower bound on rp,d(n) from Theorem 1.1, gives the following statement.

Theorem 1.2 For every fixed p ≥ 2 and d ≥ 4,

Ω
(
n(d−1)(p2)

)
≤ vp,d(n) ≤ O

(
nd(

p
2)
)
.

The special case p = 2 of 2-partitions in the real Euclidean space had been considered
thirty years ago by Harding [7], who proved that r2,d(n) = 2

∑d
i=1

(n−1
i

)
= Θ(nd) for all d.

The case p = d = 2 of 2-partitions in the real plane under additional size constraints has
been extensively studied ever since [9]. The upper bound in Theorem 1.1 for real Euclidean
space with arbitrary p and d ≥ 3 has been recently derived in [8] in the course of the study
of a broad class of hard optimization problems over partitions. For p = 2 and an arbitrary
space of finite VC-dimension d, an upper bound is available through the so-called Sauer’s
lemma [14].

The article is organized as follows. In the next Section we provide our lower bounds for
the numbers rp,d(n). In Section 3 we describe the upper bounds in Theorems 1.1 and 1.2,
and discuss the related problem for spaces of finite V C dimension. In Section 4 we study the
problem of estimating the number of separable partitions of sets of points on the moment
curve in IRd and show that it is closely related to the study of long Davenport-Schinzel
sequences. The final Section 5 contains some concluding remarks.

2 The lower bounds

Throughout this section we restrict attention to the real Euclidean space. We assume some
familiarity with the rudiments of convex polytopes theory (such as in [6, 17]), but include a
compact description of all notions and facts that we use.

An orientation of a hyperplane H in IRd is a designation of the closed and open halfspaces
H≤,H< below it and the closed and open halfspaces H≥,H> above it. A presentation of H
as the zero set of a linear form H = {x ∈ IRd : h0 + hTx = 0} gives an orientation of
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H in the obvious way. The hyperplane spanned by an ordered list (v1, . . . , vd) of d affinely
independent points will be oriented by the linear form det[x̄, v̄1, . . . , v̄d], where v̄ is used to
denote the vector in IRd+1 obtained by appending a first coordinate 1 to the vector v ∈ IRd.
We need the following building block. Let H = {x ∈ IRd : h0 + hTx = 0} be an oriented
hyperplane in IRd, let v be a point in H, let m be a positive integer and let ε > 0. A set
S ⊂ IRd will be called an (H, v,m, ε)-set if S is contained in the ball B(v, ε) of radius ε about
v and is of the form

S = ∪di=1{vi + j · δ · h : j = 1, . . . ,m}

where (v1, . . . , vd) is an ordered list of affinely independent points which span the oriented
hyperplane H, and δ is a positive real. Thus, S consists of md points ε-close to v and
above H, evenly spread on d parallel lines orthogonal to H. The canonical partition of
S associated with 1 ≤ j1, . . . , jd ≤ m is defined to be the 2-partition (π1, π2) of S with
π1 = ∪di=1{vi + j · δ · h : 1 ≤ j ≤ ji} and π2 = S \ π1. The canonical hyperplane of S
associated with 1 ≤ j1, . . . , jd ≤ m is defined to be the oriented hyperplane spanned by the
list (v1 + j1 · δ · h, . . . , vd + jd · δ · h). The verification of the following simple proposition is
left to the reader.

Proposition 2.1 Let S be an (H, v,m, ε)-set and let Ĥ and (π1, π2) be, respectively, the
canonical hyperplane and the canonical partition of S associated with 1 ≤ j1, . . . , jd ≤ m.
Then π1 ⊂ Ĥ≤ and π2 ⊂ Ĥ>. In particular, every canonical partition of S is separable.

A polytopal complex is a nonempty finite collection P of convex polytopes in some IRd such
that the face of any member of P is also in P and such that the intersection of any two
members of P is a common face of both. A polytopal complex is pure d-dimensional if all
(inclusion) maximal polytopes of P have the same dimension d. Two maximal polytopes in a
pure d-dimensional polytopal complex are adjacent if their intersection is (d−1)-dimensional,
i.e. a facet of both. The graph G(P) of a pure polytopal complex is the graph whose vertices
are the maximal polytopes of P and whose edges are the pairs of adjacent maximal polytopes.
We define a (p, d)-complex to be a pure d-dimensional polytopal complex embedded in IRd

and containing p maximal polytopes.

Lemma 2.2 For any fixed p, d, k, if the graph of some (p, d)-complex contains k edges then
rp,d(n) = Ω(ndk).

Proof. Let P be a (p, d)-complex whose graph contains k edges. Let P1, . . . , Pp be the
maximal polytopes in P. For each pair 1 ≤ r 6= s ≤ p, let Frs = Fsr := Pr ∩ Ps which
is a common face of Pr and Ps, and let Hrs = Hsr be a hyperplane such that Hrs ∩ Pr =
Hrs ∩Ps = Frs (note that if Pr, Ps are adjacent, then Frs is a common facet of both and Hrs

is uniquely defined). Let Hr,s be the orientation of Hrs with Pr below Hr,s and Ps above it
and let Hs,r be the opposite orientation.

For each r let Nr := {s : Pr, Ps adjacent} be the set of indices of neighbors of Pr. For
each adjacent pair Pr, Ps, choose a point vrs = vsr in the relative interior of Frs. Then for all
1 ≤ r 6= s ≤ p the following hold: every point vri with i ∈ Nr \ {s} lies strictly below Hr,s,
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and every point vjs with j ∈ Ns \ {r} lies strictly above Hr,s. For any given m it is therefore
possible to choose an ε > 0 sufficiently small, and an (Hr,s, vrs,m, ε)-set Srs = Ssr for each
adjacent pair Pr and Ps with r < s, such that the following hold for all 1 ≤ r < s ≤ p:

• Every set Sri with i ∈ Nr\{s} lies strictly below Hr,s, and every set Sjs with j ∈ Ns\{r}
lies strictly above Hr,s.

• If Pr and Ps are adjacent and Ĥ is the canonical hyperplane of Srs associated with any
1 ≤ j1, . . . , jd ≤ m then every set Sri with i ∈ Nr \ {s} lies strictly below Ĥ and every
set Sjs with j ∈ Ns \ {r} lies strictly above Ĥ.

Now, let S be the union of all the Srs. So S consists of mdk points. For each adjacent
pair Pr, Ps with r < s choose a canonical partition πr,s := (πr,s1 , πr,s2 ) of Srs and let Ĥr,s

be the corresponding canonical hyperplane which separates it. Now define a p-partition
π = (π1, . . . , πp) of S as follows: for i = 1, . . . , p let

πi :=

 ⋃
j∈Ni, j>i

πi,j1

⋃ ⋃
j∈Ni, j<i

πj,i2

 .
We claim that π is a separable partition of S. Indeed, it follows from the discussion above
together with Proposition 2.1 that, for each pair r < s, we have that if ε is sufficiently small
πr and πs are separated by Hr,s if Pr and Ps are not adjacent, and by Ĥr,s if Pr and Ps are
adjacent.

As there are md canonical partitions for each Srs, we obtain this way mdk separable
p-partitions of the mdk-set S.

Now, given any positive integer n, let m := b ndkc. Then, as claimed,

rp,d(n) ≥ rp,d(mdk) ≥ mdk ≥ (
n

2dk
)dk = Ω(ndk).

We proceed to describe a simple construction of (p, d)-complexes with dense graphs for all
p and d. In particular, for every p and every d ≥ 3 there is a (p, d)-complex whose graph is
complete, a fact first established half a century ago by Rado [12].

In what follows, G(P ) denotes the graph of 0-faces and 1-faces of a convex polytope P .

Lemma 2.3 Let P be a (d+ 1)-polytope with p+ 1 vertices and let v be an arbitrary vertex
in its graph G(P ). Then there exists a (p, d)-complex P with G(P) isomorphic to G(P )− v.

Proof. Assume without loss of generality that P is full dimensional, let a be any interior
point of P , and let Q be a polar of P ,

Q := (P − a)∗ = {x ∈ IRd+1 : (y − a)Tx ≤ 1 for all y ∈ P}.

Then the face lattice of Q is the poset-dual of the face lattice of P . In particular, there is a
bijection v 7→ Fv from the vertices of P to the facets of Q.
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Let v be an arbitrary vertex of P and let Fv be the facet of Q corresponding to v. Define
the polytopal complex P to be a Schlegel diagram of Q at Fv (see [6, 17] for details). Briefly,
it is defined as follows. Let H = aff(Fv) = {x : h0 + hTx = 0} be the hyperplane supporting
Q at Fv oriented so that Q ⊂ H≤. Choose any point b in the relative interior of Fv and let
u := b + ε · h ∈ H>, with ε > 0 sufficiently small, so that for every point x ∈ Q \ Fv, the
intersection point x′ of the line segment [u, x] with H is in the relative interior of Fv. The
Schlegel diagram of Q at Fv is the (p, d)-complex P whose polytopes are the images of all
proper faces of Q but Fv under the radial projection x 7→ x′ (transformed by an affine map
taking H onto IRd). The face poset of P is then isomorphic to the poset of all proper faces
of Q but Fv. Since the face lattice of P determines its graph G(P ) and the face poset of P
determines its graph G(P), it follows that G(P) is isomorphic to G(P )− v as desired.

We can now obtain our lower bounds.

Lemma 2.4 For all d ≥ 3 we have rp,d(n) = Ω(nd(
p
2)).

Proof. Let C(p, d) := conv{Md(1), . . . ,Md(p)}, with Md(i) := [i, i2, . . . , id], denote the
cyclic polytope with p vertices in IRd. It is well known (cf. [17]) that the graph of C(p, d) is
complete for all d ≥ 4. Now, given any p ≥ 1 and d ≥ 3, let P := C(p+ 1, d+ 1), and let v be
any vertex in G(P ). By Lemma 2.3, there is a (p, d)-complex P whose graph G(P) is isomor-
phic to G(P )−v and hence is complete and has

(p
2

)
edges. The bound follows by Lemma 2.2.

Lemma 2.5 For all p ≥ 3 we have rp,2(n) = Ω(n6p−12).

Proof. First, we note that for every p ≥ 3 there is a graph Gp with the following prop-
erties: it is planar; it is 3-connected; it is simplicial (i.e., all its faces are triangles in every
planar embedding); it has p+ 1 vertices and 3(p− 1) edges; and it has a vertex of degree 3.
Clearly G3 := K4, the 4-clique, satisfies these properties. Proceeeding by induction, suppose
Gp has been constructed and embedded in the plane. Choose any triangular face, insert a
new vertex and connect it to each of the three vertices of that triangle. Clearly, this new
graph Gp+1 has again all desired properties. Now, each 3-connected planar graph is isomor-
phic to the graph of a 3-polytope by Steinitz’ Theorem (see e.g. [10]). Given p ≥ 3, let P be
a 3-polytope with p+ 1 vertices whose graph G(P ) is isomorphic to Gp, and choose a vertex
v of degree 3 in that graph. By Lemma 2.3, there is a (p, 2)-complex P whose graph G(P)
is isomorphic to G(P )− v. Since Gp hence G(P ) have 3(p− 1) edges and v has degree 3 in
G(P ), the graph of the (p, 2)-complex P has 3p−6 edges. The bound follows by Lemma 2.2.

3 The upper bounds

We now derive our upper bounds on rp,d(n) and vp,d(n). We start with real Euclidean space.
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Lemma 3.1 For any fixed p, d, k, if for every collection S of p compact, convex, pairwise
disjoint sets in real d-space, there is a collection H of k hyperplanes such that any two
members of S are separated by at least one hyperplane of H, then rp,d(n) = O(ndk).

Proof. Suppose that the hypothesis holds for p, d, k. Consider any set S of n points in
IRd, and consider any separable p-partition π = (π1, . . . , πp) of S. By the hypothesis, there is
a collection of k hyperplanes that separate each pair among conv(π1), . . . , conv(πp). Clearly
we may assume that each of these hyperplanes contains no point of S. Thus, by Harding’s
theorem mentioned above there are only O(nd) choices for each hyperplane. Suppose, now,
that we are given S and the collection H of the k hyperplanes together with the information,
for each of the convex hulls conv(πi) and each of the hyperplanes H inH, if conv(πi) intersects
H and in case it does not, in which side of H it lies. Then we can easily reconstruct the
whole partition, as each πi is simply the intersection of S with all the corresponding half
spaces supported by members of H which contain it. It thus follows that the total number
of separable p-partitions of S is bounded by 3pk (which is fixed for fixed p, k) times the
number of distinct collections H of k hyperplanes, which is bounded by O(ndk), by Harding’s
Theorem.

Since
(p
2

)
hyperplanes always suffice to pairwise separate p compact, convex, pairwise

disjoint sets in any real space, an immediate consequence of this lemma is the following
upper bound, which was first proved (by a slightly different argument) in [8, Lemma 4.1].

Lemma 3.2 For all d and p ≥ 2 we have rp,d(n) = O(nd(
p
2)).

We now turn to derive the following tighter upper bound for the real plane.

Lemma 3.3 For all fixed p ≥ 3 we have rp,2(n) = O(n6p−12).

This lemma will follow at once from Lemma 3.1 and the following result, which is proved
implicitly in [5] and [4] (see also [11]), and also follows from Lemma 8 of [2]. For the sake of
completeness we sketch a proof.

Lemma 3.4 For every collection S of p compact, convex, pairwise disjoint sets in the plane,
there is a collection H of 3p − 6 lines such that any two sets of S are separated by at least
one line of H.

Proof. We begin by constructing pairwise disjoint circumscribing polygons around the
sets in S and then we circumscribe a triangle T around all these polygons. Let A denote
the set of these p polygons. It is convenient to assume that all directions of the sides of A
and T have pairwise distinct slopes. Next we grow the polygons in A so as to maximize
their area, thus obtaining polygons with overlapping boundaries but disjoint interiors. This
is done by moving the sides of the polygons, one by one, until each polygon is of maximal
area subject to the interiors of the polygons being disjoint, and subject to staying within
the triangle T . The precise expansion process is done by choosing, arbitrarily, a side of a
polygon and moving the corresponding half-plane in the direction perpendicular to the side
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and away from the polygon’s interior. The side stops moving further only when it touches
another polygon’s corner or it reaches the boundary of T or when it shrinks to a point and
vanishes.

Once this process is finished, observe that the set of all lines containing all sides of the
polygons without the lines containing the edges of T can serve as our separating set H. Thus
it suffices to show that the total number of such lines is at most 3p−6. To this end we define,
following [4], a graph whose vertices are all polygons, where two are adjacent iff a side of one
of them intersects the boundary of another, where the side is considered here as a relatively
open set (i.e., it does not contain its endpoints). As proved in Lemma 1 of [4] this graph is
planar and hence its number of edges is at most 3p− 6. Moreover, as shown in Lemma 2 of
[4] there is a simple way to embed this graph in the plane so that each line containing a side
of a polygon which is not part of a side of T is crossed by at least one edge of this graph,
and each edge of the graph crosses only one such line. This supplies the desired bound and
completes the proof of the lemma.

Another interesting consequence of Lemmas 2.4, 2.5, 3.1 and 3.4, is the following result.

Proposition 3.5 Let s(p, d) be the smallest number k such that for every collection S of p
compact, convex, pairwise disjoint sets in real d-space, there is a collection H of k hyperplanes
such that any two members of S are separated by at least one hyperplane of H. Then:

• For every fixed p ≥ 2, s(p, 1) = p− 1.

• s(2, 2) = 1 and for every fixed p ≥ 3, s(p, 2) = 3p− 6.

• For every fixed p ≥ 2 and d ≥ 3, s(p, d) =
(p
2

)
.

Note that the construction in Section 2 is not really needed in order to prove that for
p ≥ 2 and d ≥ 3, s(p, d) =

(p
2

)
. Indeed, it is easier to observe that a collection of p lines

in general position in R3 cannot be separated, in the sense of Lemma 3.1, by less then
(p
2

)
planes, and it is a simple matter to replace the lines with compact sets and to extend the
result for higher dimensions as well. Note, also, that the assertion of Lemma 3.1 can be
strengthened, with essentially the same proof, yielding the following result.

Proposition 3.6 We say that a collection H of hyperplanes separates a collection S of
compact, convex pairwise disjoint sets, if for any S ∈ S the intersection of all half spaces
bounded by an element of H which contain S contains no point of any other member of S. If
for some fixed p, d, k, every collection S of p compact, convex, pairwise disjoint sets in real
d-space, is separated by a collection H of k hyperplanes, then rp,d(n) = O(ndk).

Therefore, the construction in Section 2 provides examples of p compact, convex, pairwise
disjoint sets in Rd which cannot be separated by less than

(p
2

)
hyperplanes even according to

the separation as defined in the last proposition.
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We proceed to derive an upper bound on vp,d(n). We use the following construction,
which is similar to the one used in [8] for the real Euclidean space. Let S be any set and let
p ≥ 2. With each list (πr,s = (πr,s1 , πr,s2 ) : 1 ≤ r < s ≤ p) of

(p
2

)
2-partitions of S associate a

p-tuple π = (π1, . . . , πp) of subsets of S as follows: for i = 1, . . . , p put

πi :=

 p⋂
j=i+1

πi,j1

⋂i−1⋂
j=1

πj,i2

 .
Since πr ⊆ πr,s1 and πs ⊆ πr,s2 for all 1 ≤ r < s ≤ p, the πi are pairwise disjoint. If moreover
∪pi=1πi = S then π will be called the p-partition of S associated with the given list. The
following lemma extends the one provided in [8] to any space.

Lemma 3.7 For any space (X,H) and p ≥ 2, the set of separable p-partitions of any subset
S of X equals the set of p-partitions associated with lists of

(p
2

)
separable 2-partitions of S.

Proof. Fix a subset S of X. Consider any p-partition π associated with a list of
(p
2

)
separable 2-partitions of S. For each pair 1 ≤ r < s ≤ p, since πr,s is a separable 2-partition,
there is an Hr,s ∈ H such that πr ⊆ πr,s1 ⊆ Hr,s and πs ⊆ πr,s2 ⊆ X \Hr,s. It follows that π is
separable. Conversely, let π = (π1, . . . , πp) be any separable p-partition. Consider any pair
1 ≤ r < s ≤ p. By definition, there exists an Hr,s ∈ H such that πr ⊆ Hr,s and πs ⊆ X \Hr,s.
Let πr,s := (πr,s1 , πr,s2 ) be the separable 2-partition of S defined by πr,s1 := S ∩ Hr,s and
πr,s2 := S \Hr,s. Let π′ be the p-tuple associated with the list of πr,s obtained that way. Then
the π′i are pairwise disjoint and for i = 1, . . . , p we have

πi ⊆

 p⋂
j=i+1

πi,j1

⋂i−1⋂
j=1

πj,i2

 = π′i.

Since
S = ∪pi=1πi ⊆ ∪

p
i=1π

′
i ⊆ S,

it follows that equality holds hence π = π′ is the p-tuple associated with the constructed list
of
(p
2

)
separable 2-partitions.

This lemma allows to extend upper bounds on the number of 2-partitions in any space
to upper bounds on the number of p-partitions in that space. For instance, it implies that
any set in any real space has at most one separable p-partition per each list of

(p
2

)
separable

2-partitions, hence rp,d(n) ≤ r2,d(n)(
p
2). This together with the known bound r2,d(n) = O(nd)

gives a second proof (which is the one provided in [8]) of Lemma 3.2 above.
For spaces of finite VC-dimension, the so-called Sauer’s lemma, suitably rephrased, pro-

vides the following upper bound on the number of separable 2-partitions.

Lemma 3.8 [14]. Let (X,H) be a space of VC-dimension d. Then the number of separable
2-partitions of any set of n points in X is at most

∑d
i=0

(n
i

)
= O(nd).
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We obtain the following upper bound.

Lemma 3.9 For every p, d, the maximum number of separable p-partitions of any set of n
points in any space of VC-dimension d satisfies

vp,d(n) = O
(
nd(

p
2)
)
.

Proof. By Lemma 3.7, any n-subset of X has at most one separable p-partition per each
list of

(p
2

)
separable 2-partitions. Since the number of separable 2-partitions of any n-subset

is O(nd) by Lemma 3.8, the bound follows.

We can now combine all the necessary ingredients and obtain Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Follows from Lemmas 2.4, 2.5, 3.2 and 3.3.

Proof of Theorem 1.2. Follows from Lemma 2.4, the fact that real Euclidean d-space has
VC-dimension d+ 1, and Lemma 3.9.

4 Separable partitions on the moment curve

Recall that the moment curve in IRd is the image of the map

Md : IR −→ IRd : t 7→


t
t2

...
td

 .
The moment curve is totally ordered in the obvious way. Therefore, we can and will identify
any set S of n points on the moment curve with [n] = {1, . . . , n}, and partitions of S with
partitions of [n]. We will regard a p-partition π of [n] also as the function π : [n] −→ [p]
defined by π(j) = i for all j ∈ πi and as the sequence π = [π(1), . . . , π(n)]. We shall move
freely among these representations of π.

Let mp,d(n) denote the maximum number of separable p-partitions of a set of n points on
the moment curve in Rd. In this section we first provide a combinatorial characterization of
separable partitions of point sets on the moment curve, and then use it in estimating mp,d(n).
Our characterization implies that, in fact, any set of n points on the moment curve admits
the same number mp,d(n) of separable p-partitions.

A (p, d)-sequence is a sequence π = [π(1), . . . , π(n)] with π(i) ∈ [p] for all i ∈ [n], and with
the property that for any pair 1 ≤ r 6= s ≤ p, the length of any subsequence [r, s, r, s, . . .] of
π whose elements alternate between r and s is at most d+ 1. For instance,

[1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 2, 3, 2, 3] (1)

9



is a (3, 5)-sequence with a (non unique) longest alternating subsequence [1, 2, 1, 2, 1, 2]. The
following lemma links the geometric property of a separable p-partition on the moment curve
in IRd to the combinatorial property of a (p, d)-sequence.

Lemma 4.1 A p-partition π = (π1, . . . , πp) of a set of n points on the moment curve in IRd

is separable if and only if [π(1), . . . , π(n)] is a (p, d)-sequence.

Proof. Let π = (π1, . . . , πp) be a p-partition of a set of n points on the moment curve in
IRd. The claim being trivial for p = 1 assume that p ≥ 2. Now, π is separable if and only if
for each pair 1 ≤ r 6= s ≤ p the 2-partition (πr, πs) is separable. It suffices then to show that
for each such pair, (πr, πs) is separable if and only if the subsequence of π consisting of all
occurrences of r, s does not contain an alternating subsequence [r, s, r, s, . . .] of length d+ 2.
This is essentially known, see, e.g., [1]. For completeness, we include the short proof.

Consider any such pair 1 ≤ r 6= s ≤ p, and let V := πr ∪ πs. Then V = {v1, . . . , vm}
with vi = Md(ti) for some t1 < . . . < tm. Let µ := [µ(1), . . . , µ(m)] denote the sequence
which is the restriction of π to V , so that µ(i) = r if vi ∈ πr and µ(i) = s if vi ∈ πs.
If µ contains an alternating subsequence of length d + 2, then it is obvious that πr and
πs cannot be separated, since any hyperplane intersects the moment curve in at most d
points. On the other hand, if there is no such subsequence, then there are d real numbers
y1 < y2 < y3 . . . < yd whose images on the moment curve split it into d+ 1 intervals, so that
each element of πr lies in one of the even intervals and each element of πs lies in one of the
odd intervals. Put

∏d
i=1(t− yi) = c0 + c1t+ . . .+ cd−1t

d−1 + td. It is easy to check that the
hyperplane H = {(x1, x2, . . . , xd) : c0 + c1x1 + c2x2 + . . .+ cd−1xd−1 + xd = 0} separates πr
and πs.

Concluding, we see that for each pair 1 ≤ r 6= s ≤ p, the 2-partition (πr, πs) is sepa-
rable if and only if the length of any alternating subsequence [r, s, r, s, . . .] of π is at most
d+1, and so π = (π1, . . . , πp) is separable if and only if [π(1), . . . , π(n)] is a (p, d)-sequence.

Lemma 4.1 implies that the number of (p, d)-sequences of length n is equal to mp,d(n).
We proceed to estimate the asymptotics of this number.

A DS(p, d)-sequence, or Davenport-Schinzel (p, d)-sequence (termed so in [13] and intro-
duced in [3]), is a (p, d)-sequence π = [π(1), . . . , π(n)] in which π(i+ 1) 6= π(i) for all i. For
example, the sequence in equation (1) above is a DS(3, 5)-sequence of maximum possible
length 14. A k-composition of n is a k-tuple α = (α1, . . . , αk) of positive integers summing
up to n. Clearly, each (p, d)-sequence of length n is uniquely obtainable as the replication
[µ(1)α1 , . . . , µ(k)αk ] of a DS(p, d)-sequence [µ(1), . . . , µ(k)] by a k-composition (α1, . . . , αk)
of n. Therefore, an estimate on the total number of DS(p, d)-sequences of each length will
lead to an estimate on the number mp,d(n) of (p, d)-sequences of length n. But for our pur-
pose here it suffices to consider the replications of a single long DS(p, d)-sequence, since the
number of such sequences is a function of p and d (and does not depend on n). Let λd(p)
denote the maximum length of any DS(p, d)-sequence. It is easy to see that λd(p) is finite
and satisfies λd(p) ≤ d

(p
2

)
+ 1. We have the following simple estimate on mp,d(n), where p

and d are regarded as fixed parameters.
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Proposition 4.2 For every fixed p, d, the number of (p, d)-sequences of length n satisfies

mp,d(n) = Θ
(
nλd(p)−1

)
.

Proof. Let µ be any DS(p, d)-sequence of length k = λd(p). This sequence gives rise to(n−1
k−1

)
replications, one for each k-compositions of n. This way,

(n−1
k−1

)
distinct (p, d)-sequences

of length n are obtained. The upper bound follows in a similar manner, using the fact that
the number of DS(p, d)-sequences is a function of p and d only.

A (p, d)-sequence is normal if the first occurrence of i precedes that of i+1 for all i. In [13],
the following recursive construction of a long normal DS(p, d)-sequence µ(p, d) was described
for all d ≥ p. For p = 1 and any d set µ(p, d) = [1]. For d ≥ p ≥ 2 construct µ(p, d) as follows:
start with a sequence of length (p−1)bd−1

2 c+1 of 1’s; next, insert (p−1)bd−1
2 c symbols so as

to separate each pair of 1’s, where the first bd−1
2 c of the new symbols are p, the next bd−1

2 c
are p − 1, and so on; then, append to the right the normal sequence µ(p − 1, d − 1) on the
symbols {2, 3, . . . , p}, and, if d is even, an additional last symbol 1 to its right; finally, apply
the necessary permutation of [p] to the elements of the sequence so as to make it normal.
For example, the sequence in equation (1) above is precisely the normal DS(3, 5)-sequence
µ(3, 5) obtained this way. With some care, the results of [13] can be shown to imply the
following bound on the length of µ(p, d) and hence on the value of λd(p).

Proposition 4.3 The bound λd(p) ≥ (d− 1
2p)
(p
2

)
+ 1 holds for all d ≥ p.

Propositions 4.2 and 4.3 give the following lower bound on mp,d(n).

Proposition 4.4 For every fixed p, d with d ≥ p,

mp,d(n) = Ω
(
n(d− 1

2
p)(p2)

)
.

Theorem 4.5 Let 0 < ε ≤ 1
2 be any constant. For every p, d with d ≥ 1

2εp, the number
mp,d(n) of separable p-partitions of any set of n points on the moment curve in real d-space
satisfies

Ω
(
n(1−ε)d(p2)

)
≤ mp,d(n) ≤ O

(
nd(

p
2)
)
.

Proof. If 0 < ε ≤ 1
2 and d ≥ 1

2εp then d ≥ p and d− 1
2p ≥ (1− ε)d. The lower bound then

follows from Proposition 4.4. The upper bound follows from Lemma 3.2 and the inequality
mp,d(n) ≤ rp,d(n).

5 Conclusions and remarks

Theorem 1.1 determines the asymptotic behavior of rp,d(n) for all fixed admissible p and d
up to a constant factor. However, the bounds for spaces of finite VC-dimension d given in
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Theorem 1.2 are not that tight. It might be interesting to close the gap between the lower
and upper bounds here.

For points on the moment curve, the asymptotic behavior of mp,d(n) is reduced, in Propo-
sition 4.2, to the well studied problem of determining or estimating the maximum possible
length λd(p) of a DS(p, d)-sequence. The known bounds for this function can be found in
[15]. In particular, λ2(p) = 2p − 2, λ3(p) = Θ(pα(p)) and λ4(p) = Θ(p2α(p)), where α(p) is
the inverse of Ackermann’s function. Thus λ3(p) is already a superlinear function of p.
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