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Abstract

Let f(n, k) denote the smallest number so that every connected graph with n vertices and

minimum degree at least k contains a spanning tree in which the number of non-leaves is at

most f(n, k). An early result of Linial and Sturtevant asserting that f(n, 3) = 3n/4 + O(1)

and a related conjecture suggested by Linial led to a significant amount of work studying this

function. It is known that for n much larger than k, f(n, k) ≥ n
k+1 (1 − ε(k)) ln(k + 1), where

ε(k) tends to zero as k tends to infinity. Here we prove that f(n, k) ≤ n
k+1 (ln(k + 1) + 4) − 2.

This improves the error term in the best known upper bound for the function, due to Caro,

West and Yuster, which is f(n, k) ≤ n
k+1 (ln(k + 1) + 0.5

√
ln(k + 1) + 145). The proof provides

an efficient deterministic algorithm for finding such a spanning tree in any given input graph

satisfying the assumptions.

1 Introduction

For integers n > k > 1 let f(n, k) denote the smallest integer so that every connected graph with n

vertices and minimum degree k contains a spanning tree with at most f(n, k) non-leaves. Trivially

f(n, 2) = n − 2 for all n > 2. An n-vertex graph obtained from m = b n
k+1c cliques, each of size

k + 1 or k + 2, by removing an edge from each clique and by connecting the resulting subgraphs

along a cycle by adding edges that ensure the minimum degree is k shows that for every n > k > 1

f(n, k) ≥ 3
n

k + 1
− c(k). (1)

An early unpublished result of Linial and Sturtevant [13] (c.f. [7], [5]) is that (1) is tight for k = 3

(the regular case has been proved even earlier by Storer [14].) Kleitman and West [11] proved that

(1) is tight for k = 4, and Griggs and Wu [10] showed it is tight for k = 5 as well. Improved

results assuming the graph does not contain certain subgraphs appear in [9], [4], [5]. The results

above may suggest that for every fixed k, f(n, k) ≤ 3 n
k+1 − c(k), and indeed Linial suggested this

conjecture (c.f., [10], [8]). This is, however, false, since as observed in [1] (and more explicitly in

[2], [3]) with high probability a random k-regular graph on n vertices does not contain a spanning

tree with less than (1 − ok(1))n ln(k+1)
k+1 non-leaves. Indeed, with high probability any dominating
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set in such a graph has at least that many vertices. Despite this fact, this is an illustration of the

remarkable ability of Nati Linial to raise interesting questions. Even when the answer to one of

his questions is negative, and even when it is clear he has not spent much time thinking about it

seriously, it often leads to extensive subsequent research.

For a connected graph G = (V,E), let γ(G) denote the minimum size of a dominating set in

it, that is, the minimum cardinality of a set of vertices X ⊂ V so that each v ∈ V − X has at

least one neighbor in X. Let γc(G) denote the minimum size of a connected dominating set of G,

that is, the minimum cardinality of a dominating set of vertices X so that the induced subgraph

of G on X is connected. Note that γc(G) is exactly the minimum possible number of non-leaves in

a spanning tree of G. Thus the function f(n, k) discussed above is exactly the maximum possible

value of γc(G), as G ranges over all connected graphs with n vertices and minimum degree at least

k. Throughout the rest of this short paper it will be convenient to consider the parameter γc(G)

instead of the function f(n, k).

It is well known that if the minimum degree in G is k and its number of vertices is n, then

γ(G) ≤ n(ln(k+1)+1)
k+1 . See [12] or [2], Theorem 1.2.2 for a proof. As mentioned above this is

asymptotically tight for large k, see, e.g., [3] for a proof that for any ε > 0 and k > k0(ε) a random

k-regular graph on n vertices is unlikely to contain a dominating set of size at most (1− ε)n ln k
k .

Caro, West and Yuster [7] proved that for every connected graph G with n vertices and minimum

degree k, γc(G) is also not much larger than n ln(k+1)
k+1 . The precise statement of their result is as

follows.

Theorem 1.1 ([7]). Let G be a connected graph with n vertices and minimum degree at least k.

Then

γc(G) ≤
n(ln(k + 1) + 0.5

√
ln(k + 1) + 145)

k + 1

Here we prove several results improving the error term in this estimate, and consider the cor-

responding algorithmic problem.

2 Results

The first result we prove here, obtained together with Michael Krivelevich, is the following slight

improvement of Theorem 1.1.

Theorem 2.1. Let G be a connected graph with n vertices and minimum degree at least k. Then

γc(G) ≤ n(ln(k + 1) + lndln(k + 1)e+ 4)

k + 1
.

The main merit here is not the improved estimate, but the proof, which is much simpler than

the one in [7]. Like the proof in [7], it provides a simple efficient algorithm for finding a connected

dominating set of the required size for a given input graph. As a byproduct of the proof we get an

upper bound for the difference between γ(G) and γc(G), as stated in the following theorem.

Define a monotone increasing piecewise linear function f = fn,k mapping [1,∞) to [0,∞) (or

[0,∞) to [−2,∞)) as follows. The pieces have x ranging from (i − 1)N to iN for i = 1, 2, 3, . . .,
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where N = n/(k + 1), f(0) = −2 and the slopes in the pieces are 2, 1, 1/2, 1/3, 1/4, . . . in order.

An equivalent formulation is the following. For any real x ≥ 1, let x = (y + z) n
k+1 with y ≥ 0 an

integer and z ∈ [0, 1] a real:

1. If y = 0 then f(x) = n
k+12z − 2 = 2x− 2

2. If y = 1 then f(x) = n
k+1( zy + 2)− 2 = n

k+1(z + 2)− 2.

3. If y ≥ 2 then f(x) = n
k+1( zy + 1

y−1 + · · ·+ 1
1 + 2)− 2.

The function f is piecewise linear and monotone increasing. Its derivative, which exists in all points

of (1,∞) besides the integral multiples of n
k+1 , is (weakly) decreasing, thus f is concave. In addition

it satisfies the following. For every x = (w + z) n
k+1 >

n
k+1 with w ≥ 1 an integer and z ∈ [0, 1] a

real, and for every integer w′ satisfying w ≤ w′ ≤ x− 1

f(x) ≥ f(x− w′) + 1 (2)

Indeed, this follows from the fact that the slope of f is at least 1
w for every z in (x−w′, x] and thus

f(x)− f(x− w′) ≥ w′ · 1w ≥ 1.

Theorem 2.2. Let G be a connected graph with n vertices, minimum degree at least k and domi-

nation number γ = γ(G). Then γc(G) ≤ γ + fn,k(γ). Therefore

γc(G) < γ +
n

k + 1
(lndln(k + 1)e+ 3).

We also describe an improved argument that provides a better estimate than the ones in The-

orems 1.1, 2.1.

Theorem 2.3. Let G be a connected graph with n vertices and minimum degree at least k. Then

γc(G) ≤ n

k + 1
(ln(k + 1) + 4)− 2.

The proof here too provides an efficient randomized algorithm for finding a connected dominat-

ing set with expected size as in the theorem. This algorithm can be derandomized and converted

into an efficient deterministic algorithm.

3 Proofs

In the proofs we use the following simple lemma.

Lemma 3.1. Let G = (V,E) be a connected graph with n vertices and minimum degree at least

k. Let S ⊂ V be a dominating set of G, let H be the induced subgraph of G on S, and suppose

the number of its connected components is x = (y + z) n
k+1 where y is a nonnegative integer and

0 ≤ z ≤ 1 is a real. Then γc(G) ≤ |S|+ f(x), where f = fn,k is the function defined in the previous

subsection.
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Proof: Starting with the dominating set S we prove, by induction on x, that it is always possible

to add to it at most f(x) additional vertices to get a connected dominating set. For x = 1 the given

set is already connected, and as f(1) = 0 the result in this case is trivial. If 1 < x ≤ n
k+1 we note

that as long as there are at least two components, each one C can be merged to another one by

adding at most two vertices. Indeed, every vertex in the second neighborhood of C is dominated,

hence adding the two vertices of a path from C to any such vertex merges C to another component.

This means that by adding at most 2(x − 1) = f(x) vertices to S we get a connected dominating

set, as needed.

If x > n
k+1 pick arbitrarily one vertex v = v(C) in each of the x connected components of H and

let N(v) denote its closed neighborhood consisting of v and all its neighbors in G. This set is of size

at least k+1. Therefore there is a vertex u of G that belongs to at least d(k+1)x/ne of these closed

neighborhoods. (This can in fact be slightly improved as none of the vertices of the dominating

set belongs to more than one such closed neighborhood, but we do not use this improvement here).

Define S′ = S ∪{u} and note that adding u merges at least d(k+ 1)x/ne components. Therefore, if

x > w n
k+1 for an integer w ≥ 1, then the number of connected components of the induced subgraph

of G on the dominating set S′ is max{x−w′, 1} for some integer w′ ≥ w. If this maximum is 1 we

have added a single vertex to S to get a connected dominating set, and the required result clearly

holds as f(x) ≥ 1. Otherwise, by induction one can add to S′ at most f(x−w′) additional vertices

to get a connected dominating set, and the desired result follows from (2). �

The proof clearly supplies an efficient deterministic algorithm for finding a connected dominating

set of the required size, given the initial dominating set S.

Proof of Theorem 2.2: This is an immediate consequence of Lemma 3.1 together with the

obvious fact that if γ(G) = γ then G contains a dominating set S of size γ with at most |S| = γ

connected components. The known fact that γ ≤ n
k+1(ln(k + 1) + 1) implies that γ ≤ n

k+1(y + z)

with y = dln(k + 1)e and z = 1. The definition of the function f = fn,k thus implies that

fn,k(γ) ≤ n

k + 1
(
1

y
+

1

y − 1
+ . . .+

1

1
+ 2)− 2 <

n

k + 1
(ln y + 3),

completing the proof. �

Proof of Theorem 2.1: This follows from Theorem 2.2 together with the fact that γ(G) ≤
n

k+1(ln(k + 1) + 1). �

In order to prove Theorem 2.3 we need two simple lemmas. The first one is a known fact, cf.,

e.g., [6], Formula (3.2). For completeness we include a short proof.

Lemma 3.2. For a positive integer k and a real p ∈ (0, 1), let B(k, p) denote the Binomial random

variable with parameters k and p. Then the expectation of 1
B(k,p)+1 satisfies

E[
1

B(k, p) + 1
] =

1

(k + 1)p
− (1− p)k+1

(k + 1)p
.
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Proof: By definition

E[
1

B(k, p) + 1
] =

k∑
i=0

1

i+ 1

(
k

i

)
pi(1− p)k−i = (1− p)k

k∑
i=0

1

i+ 1

(
k

i

)
(

p

1− p
)i.

By the Binomial formula (1 + x)k =
∑k

i=0

(
k
i

)
xi. Integrating we get

(1 + x)k+1 − 1

k + 1
=

k∑
i=0

1

i+ 1

(
k

i

)
xi+1.

Dividing by x and plugging x = p
1−p the desired result follows. �

Lemma 3.3. Let H = (V,E) be a graph. For every v ∈ V let dH(v) denote the degree of v in H.

Then the number of connected components of H is at most D(H) =
∑

v∈V
1

dH(v)+1 .

Proof: The contribution to D(H) from the vertices in any connected component C of H with m

vertices is ∑
v∈C

1

d(v) + 1
≥
∑
v∈C

1

m
= 1.

�

Proof of Theorem 2.3: Recall that the function f = fn,k defined in the previous subsection

is concave. Therefore, by Jensen’s Inequality, for every positive random variable X, E[f(X)] ≤
f(E[X]).

Let G = (V,E) be a connected graph with n vertices and minimum degree at least k. By

Lemma 3.1 if there is a dominating set S of G and the induced subgraph of G on S has x connected

components, then

γc(G) ≤ |S|+ f(x). (3)

For a dominating set S, let H = H(S) be the induced subgraph of G on S, and put D(H) =∑
v∈S

1
dH(v)+1 where dH(v) is the degree of v in H. By Lemma 3.3 the number of connected

components of H is at most D(H), and since the function f = fn,k defined above is monotone

increasing this implies, by (3), that

γc(G) ≤ |S|+ f(D(H)) = |S|+ f(
∑
v∈S

1

dH(v) + 1
). (4)

We next describe a random procedure for generating a dominating set S and complete the proof

by upper bounding the expectation of the right-hand-side of (4). The procedure is the standard

one described in [2], Theorem 1.1.2 for generating a dominating set. Define p = ln(k+1)
k+1 and let T

be a random set of vertices of G obtained by picking, randomly and independently, each vertex of

G to be a member of T with probability p. Let Y = YT be the set of all vertices of G that are not

dominated by T , that is, all vertices in V − T that have no neighbors in T . The set S defined by

S = T ∪YT is clearly dominating. The expected size of T is np. The expected size of YT is at most

n(1−p)k+1, since for any vertex v the probability it lies in YT is exactly (1−p)dG(v)+1 ≤ (1−p)k+1,
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and the bound for the expectation of |YT | follows by linearity of expectation. We proceed to bound

the expectation of f(
∑

v∈S
1

dH(v)+1). By Jensen’s Inequality and the convexity of f mentioned

above this is at most f(E[
∑

v∈S
1

dH(v)+1 ]). Since f is monotone increasing it suffices to bound the

expectation E[
∑

v∈S
1

dH(v)+1 ].

Fix a vertex v. The probability it belongs to YT (and hence has degree 0 in H) is (1 − p)d+1,

where d is its degree in G. The probability it belongs to T and has degree i in H is p
(
d
i

)
pi(1−p)d−i.

Therefore, the expectation of 1
dH(v)+1 is, by Lemma 3.2,

(1− p)d+1 + p(
1

(d+ 1)p
− (1− p)d+1

(d+ 1)p
) < (1− p)k+1 +

1

k + 1
.

Since (1− p)k+1 ≤ e−p(k+1) = 1
k+1 this implies, by linearity of expectation, that

E[
∑
v∈S

1

dH(v) + 1
] ≤ 2n

k + 1
.

Using, again, linearity of expectation and the fact that fn,k( 2n
k+1) = 3 n

k+1 − 2 we conclude that the

expectation of the right-hand-side of (4) is at most

np+ n(1− p)k+1 + 3
n

k + 1
− 2 ≤ n

k + 1
(ln(k + 1) + 4)− 2.

Therefore there is a dominating set S for which this expression is at most the above quantity,

completing the proof. �

4 Algorithm

The proof of Theorem 2.3 clearly supplies an efficient randomized algorithm generating a connected

dominating set of expected size at most as in the theorem in any given connected input graph

G = (V,E) with n vertices and minimum degree at least k. This algorithm can be derandomized

using the method of conditional expectations, yielding a polynomial time deterministic algorithm

for finding such a connected dominating set. Here is the argument. Let v1, v2, . . . , vn be an arbitrary

numbering of the vertices of G. The algorithm generates a dominating set S satisfying

|S|+ f(D(H)) = |T |+ |YT |+ f(
∑
v∈S

1

dH(v) + 1
) ≤ n

k + 1
(ln(k + 1) + 4)− 2,

where f = fn,k is the function defined in the proof of Theorem 2.3, H is the induced subgraph of

G on S = T ∪ YT and D(H) =
∑

v∈S
1

dH(v)+1 . Once such an S is found it is clear that the proof of

the theorem provides an efficient way to construct a connected dominating set of the required size

using it.

The algorithm produces S as above by going over the vertices vi in order, where in step i the

algorithm decides whether or not to add vi to S. Let Si denote S ∩ {v1, v2, . . . , vi}. Thus S0 = ∅.
For each i, 0 ≤ i ≤ n, define a potential function ψi in terms of the conditional expectations
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of |S| = |T | + |YT | given Si, which is denoted by E[|S||Si] and the conditional expectation of∑
v∈S

1
dH(v)+1 given Si, denoted by E[

∑
v∈S

1
dH(v)+1 |Si]. In this notation

ψi = E[|S||Si] + f(E[D(H)|Si] = E[|T ||Si] + E[|YT ||Si] + f(E[
∑
v∈S

1

dH(v) + 1
|Si]).

Given the graph G and the set Si, it is not difficult to compute ψi in polynomial time. Indeed, by

linearity of expectation, the conditional expectation E[|T ||Si] is computed by adding the contribu-

tion of each vertex v = vj to it. For j ≤ i this contribution is 1 if vj ∈ T and 0 if vj 6∈ T . For j > i

the contribution is p. The contribution of vj to E[YT |Si] is 0 if vj is already dominated by a vertex

in Si, and if it is not, then it is (1 − p)s, where s is the number of neighbors of vj (including vj

itself if j > i) in the set V − {v1, v2, . . . , vi}.
The conditional expectation E[

∑
v∈S

1
dH(v)+1 |Si] is also computed using linearity of expectation,

where the contribution of each vertex vj is E[ 1
dH(vj)+1 |Si]. This is also simple to compute in all

cases. We describe here only one representative example. If j > i, q of the neighbors of vj appear

in Si, and the number of its neighbors in G which lie in V − {v1, v2, . . . , vi} is s, then

E[
1

dH(vj) + 1
|Si] = p ·

s∑
a=0

(
s

a

)
pa(1− p)s−a 1

q + 1 + a
.

A similar expression exists in every other possible case.

Put ψi = ψ
(T )
i + ψ

(Y )
i + ψ

(f)
i , where ψi(T ) = E[|T ||Si], ψi(Y ) = E[|YT ||Si], and ψ

(f)
i =

f [E(D(H)|Si]. By the definition of conditional expectation

ψ
(T )
i = pE[|T | | Si+1 = Si ∪ vi+1] + (1− p)E[|T | | Si+1 = Si] (5)

and

ψ
(Y )
i = pE[|YT | | Si+1 = Si ∪ vi+1] + (1− p)E[|YT | | Si+1 = Si] (6)

Similarly, using the fact that the function f is concave

ψ
(f)
i = f(pE[

∑
v∈H

1

dH(vj) + 1
|Si+1 = Si ∪ vi+1] + (1− p)E[

∑
v∈H

1

dH(vj) + 1
|Si+1 = Si])

≥ pf(E[
∑
v∈H

1

dH(vj) + 1
|Si+1 = Si ∪ vi+1]) + (1− p)f(E[

∑
v∈H

1

dH(vj) + 1
|Si+1 = Si])

≥ min{f(E[
∑
v∈H

1

dH(vj) + 1
|Si+1 = Si ∪ vi+1]) , f(E[

∑
v∈H

1

dH(vj) + 1
|Si+1 = Si])}.

Let ψ+
i+1 denote the value of ψi+1 with Si+1 = Si ∪ vi+1 and ψ−i+1 denote the value of ψi+1 with

Si+1 = Si.

By adding the last inequality and (5),(6) we conclude that

ψi ≥ min{ψ+
i+1, ψ

−
i+1}.

Therefore, if the algorithm decides in each step i+ 1 whether or not to add vi+1 to Si in order to

get Si+1 by choosing the option that minimizes the value of ψi+1, then the potential function ψi
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is a monotone decreasing function of i. Since ψ0 is at most n
k+1(ln(k + 1) + 4)− 2 by the proof of

Theorem 2.3, so is ψn. However, ψn is exactly |S|+ f(D(H)) for the dominating set S constructed

by the algorithm. This completes the description of the algorithm and its correctness.

5 Problem

We conclude this short paper with the following problem.

Problem: Determine or estimate the maximum possible value of the difference γc(G) − γ(G),

where the maximum is taken over all connected graphs G with n vertices and minimum degree at

least k (≥ 3).

By Theorem 2.2 this maximum is at most n
k+1(lndln(k+1)e+3). It is not difficult to show that it is

at least 2b n
k+1c−O(1). This is shown by the example discussed in the introduction, as we proceed

to describe. Assume, for simplicity, that k + 1 divides n and put m = n
k+1 . For each 0 ≤ i < m let

Ki be the graph obtained from a clique on k + 1 vertices by deleting a single edge xiyi. Let G be

the k-regular graph obtained from the vertex disjoint union of the m graphs Ki by adding the edges

yixi+1 for all 0 ≤ i < m, where xm = x0. For this cycle of cliques G, γ(G) = m = n
k+1 as shown

by a dominating set consisting of one vertex in each Ki − {xi, yi} - this is a minimum dominating

set as G is k-regular. On the other hand the induced subgraph on any connected dominating set

must contain at least m− 1 of the edges yixi+1 and their endpoints, and it is not difficult to check

that it must contain at least one additional vertex in each of the cliques besides at most 2, and

two additional vertices. Thus γc(G) = 2(m − 1) + m = 3 n
k+1 − 2. It will be interesting to close

the ln ln(k + 1) gap between the upper and lower bounds and decide whether or not the above

maximum is Θ( n
k+1).
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