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One of the main reasons for the fast development of Combinatorics during the recent years is

certainly the widely used application of combinatorial methods in the study and the development

of efficient algorithms. It is therefore somewhat surprising that many results proved by applying

some of the modern combinatorial techniques, including Topological methods, Algebraic methods,

and Probabilistic methods, merely supply existence proofs and do not yield efficient (deterministic

or randomized) algorithms for the corresponding problems.

We describe some representing non-constructive proofs of this type, demonstrating the applica-

tions of Topological, Algebraic and Probabilistic methods in Combinatorics, and discuss the related

algorithmic problems.

1 Topological methods

The application of topological methods in the study of combinatorial objects like partially ordered

sets, graphs, hypergraphs and their coloring have become in the last ten years part of the math-

ematical machinery commonly used in combinatorics. Many interesting examples appear in [12].

Some of the more recent results of this type deal with problems that are closely related to certain

algorithmic problems. While the topological tools provide a powerful technique for proving the

required results, they give us no clue on an efficient way for solving the corresponding algorithmic

questions.
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A typical result of this type is the following theorem, proved in [2].

Theorem 1.1 Let N be an opened necklace with kai beads of color i, 1 ≤ i ≤ t. Then one can cut

N in (k−1)t places and partition the resulting intervals into k collections, each containing precisely

ai beads of color i for all 1 ≤ i ≤ t.

The bound (k−1)t, conjectured in [17] (where it is proved for k = 2) is sharp. This can be seen by

considering the necklace in which the beads of each type appear contiguously. The proof supplies

no efficient procedure, which finds, given a necklace as above, a partition of it with the desired

properties. By an efficient procedure we mean here, and in what follows, either a deterministic

algorithm whose running time is polynomial (in the length of the input) or a randomized algorithm

whose expected running time (on the worst-case input) is polynomial.

Here is a sketch of the proof of the above theorem. A similar method is used in [6]. First we

need a continuous version of it. Let I = [0, 1] be the (closed) unit interval. An interval t-coloring

is a coloring of the points of I by t colors, such that for each i, 1 ≤ i ≤ t, the set of points

colored i is (Lebesgue) measurable. Given such a coloring, a k-splitting of size r is a sequence

of numbers 0 = y0 ≤ y1 ≤ . . . ≤ yr ≤ yr+1 = 1 and a partition of the family of r + 1 intervals

F = {[yi, yi+1] : 0 ≤ i ≤ r} into k pairwise disjoint subfamilies F1, . . . , Fk whose union is F , such

that for each j, 1 ≤ j ≤ k, the union of all intervals in Fj captures precisely 1/k of the total

measure of each of the t colors.

The following result is the continuous analogue of Theorem 1.1.

Proposition 1.2 Every interval t-coloring has a k-splitting of size (k − 1)t.

We note that a similar statement can be proved for general continuous probability measures instead

of those defined by the colors. This generalizes the Hobby-Rice Theorem on L1-approximation [18].

It is also related to one of the cake-splitting problems of Steinhaus. It is easy to see that the classical

theorem of Liapounoff [20] implies the existence of an even splitting in this more general setting,

but unlike the above result does not supply any finite bound on the number of cuts required to

form the splitting. For more details see [2].

It is not difficult to see that Proposition 1.2 implies Theorem 1.1. This is because any opened

necklace with
∑t
i=1 kai = kn beads as in the theorem can be converted into an interval t-coloring by
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partitioning the interval I into kn segments of equal size and by coloring the jth part by the color of

the jth bead of the necklace. By Proposition 1.2 there is a k splitting with (k−1)t cuts. Of course,

these cuts need not occur at the endpoints of the segments, but a simple induction argument can

be used to show that the cuts may be shifted until they form a partition of the discrete necklace

satisfying the assertion of Theorem 1.1. We omit the details.

Another simple observation, whose details we omit, is the fact that the validity of Proposition 1.2

for (t, k) and for (t, k′) implies its validity for (t, kk′). Therefore, it suffices to prove the proposition

for prime values of k. To do so we define, following [11], a CW -complex Y = Y (k,m) as follows.

For two integers k and m, put N = N(k,m) = (k − 1)(m + 1) and let ∆ = ∆N denote the

N -dimensional simplex; i.e., ∆ = {(x0, . . . , xN ) : xi ≥ 0,
∑N
i=0 xi = 1}. The support of a point

x ∈ ∆, denoted by Supp(x), is the minimal face of ∆ that contains x. Define

Y = Y (k,m) = {(y1, . . . , yk) : y1, . . . , yk ∈ ∆, Supp(yi) ∩ Supp(yj) = ∅ for all 1 ≤ i < j ≤ k}.

The cyclic group Zk acts freely on Y by letting its generator ω cyclically shift the coordinates of

each point y ∈ Y , i.e., ω(y1, . . . , yk) = (y2, . . . , yk, y1).

The following lemma is proved in [11].

Lemma 1.3 If k is a prime, m ≥ 1, N = N(k,m) = (k − 1)(m+ 1) and Y = Y (k,m) and ω are

as in the preceding paragrapah, then Y is N −k connected and hence for every continuous mapping

h : Y 7→ Rm there is a whole orbit of the Zk action on Y that is mapped by h into one point. I.e.,

there is a y ∈ Y such that h(y) = h(ω(y)) = . . . = h(ωk−1(y))

We can now prove Proposition 1.2 for primes k. Let c be an interval t-coloring. Define N =

N(k, t− 1) = (k − 1)t, Y = Y (k, t− 1) and consider the continuous function h : Y 7→ Rt−1 defined

as follows.

Suppose y = (y1, . . . , yk) ∈ Y . By the definition of Y , each yi is a point of ∆N , i.e., a real vector

of length N with nonnegative coordinates whose sum is 1. Moreover, the supports of the points yi

are pairwise disjoint. Put x = (x0, . . . , xN ) = 1
k

∑k
i=1 yi, and define a partition of the [0, 1]-interval

I into N + 1 intervals I0, . . . , IN by

I0 = [0, x0] and Ij = [
j−1∑
l=0

xl,
j∑
l=0

xl], (1 ≤ j ≤ N).
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Observe that since the supports of the points yi are pairwise disjoint, then for each interval Ij with

a positive length there is a unique l such that the jth coordinate of yl is positive.

For each l, 1 ≤ l ≤ k, let Fl be the family of all the intervals Ij such that the jth coordinate

of yl is positive. Note that the sum of lengths of the intervals in each Fl is precisely 1/k, and that

F1, . . . , Fl form a partition of all the intervals Ij whose lengths are positive. For each i, 1 ≤ i ≤ t−1,

define hi(y) to be the measure of the ith color in the union of the intervals of F1. The function h(y)

is now defined by h(y) = (h1(y), . . . , ht−1(y)).

This function is clearly continuous. Also, for every 1 ≤ l ≤ k and 1 ≤ i ≤ t − 1, hi(ωl−1(y))

is precisely the measure of the ith color in the union of the intervals of Fl. By Lemma 1.3 there

is a y ∈ Y such that h(y) = h(ω(y)) = . . . = h(ωk−1(y)). This means that each of the k families

Fl corresponding to this point y captures precisely 1/k of the measure of each of the first t − 1

colors. Since the total measure of each Fl is 1/k, it follows that the last color is evenly distributed

between the families as well. This completes the proof for the case of prime k, and hence implies

the validity of Proposition 1.2 and Theorem 1.1. 2

The main topological tool in the above proof is the Borsuk-type theorem stated in Lemma 1.3.

This proof does not seem to supply an efficient way of producing a partition whose existence is

guaranteed by the theorem.

In the classification of algorithmic problems according to their complexity, it is customary to try

and identify the problems that can be solved efficiently, and those that probably cannot be solved

efficiently. A class of problems that can be solved efficiently is the class P of all problems for which

there are deterministic algorithms whose running time is polynomial in the length of the input. A

class of problems that probably cannot be solved efficiently are all the NP -complete problems. An

extensive list of such problems appears in [16]. It is well known that if any of them can be solved

efficiently, then so can all of them, since this would imply that the two complexity classes P and

NP are equal.

It is not too difficult to show that the following problem is NP -complete: Given a necklace

satisfying the assumptions of Theorem 1.1, decide if one can form an even k-splitting of it by

using less than b cuts. On the other hand, we know that (k − 1)t cuts always suffice, so although

the problem of finding the minimum possible number of cuts cannot be solved efficiently, unless

P = NP , it is considerable and seems likely that the problem of finding an even k-splitting using
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(k − 1)t cuts is much easier. We do not know any efficient algorithm for this problem.

Another result whose (simple) proof applies the Borsuk-Ulam theorem is the following fact,

proved in [1]:

Theorem 1.4 Let A1, . . . , Ad be d pairwise disjoint subsets of Rd, each containing precisely n

points, and suppose that no hyperplane contains d+ 1 of the points in the union of all the sets Aj.

Then there is a partition of ∪Aj into n pairwise disjoint sets S1, . . . , Sn, each containing precisely

one point from each Aj, such that the n simplices conv(S1), . . . , conv(Sn) are pairwise disjoint.

Here, again, the proof does not supply an efficient way of finding the sets Si if the sets Aj are given,

(although the proof does provide an efficient way of doing it for each fixed dimension d.)

2 Algebraic methods

Many combinatorial proofs rely on methods from linear and multilinear algebra. Extensive survey

of results of this type is given in [9]. These proofs rarely supply constructive procedures for the

corresponding algorithmic problems. Here is a simple example, which is a special case of one of the

results in [5].

Proposition 2.1 Every (not necessarily simple) graph with maximum degree 5 and average degree

greater than 4, contains a 3-regular subgraph.

The proof relies on the classical theorem of Chevalley and Warning (see, e.g., [10]). This

theorem, that deals with the number of solutions of a system of multi-variable polynomials over a

finite field, is the following.

Theorem 2.2 Let Pj(x1, . . . , xm), (1 ≤ j ≤ n) be n polynomials over a finite field F of character-

istic p. If the number of variables, m, is greater than the sum of the degrees of the polynomials then

the number of common zeros of the polynomials (in Fm) is divisible by p. In particular, if there is

one common zero then there is another one.

The proof is extremely simple; If F has q elements, then the number N of common zeros satisfies

N ≡
∑

x1,...,xm∈F

n∏
j=1

(1− Pj(x1, . . . , xm)q−1) (mod p).
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By expanding the right hand side we get a linear combination of monomials of the form
∏m
i=1 x

ki
i

and for each such monomial at least one of the exponents ki is strictly smaller than q − 1. This

implies that in F ,
∑
xi∈F x

ki
i = 0, showing that the contribution of each monomial to the sum

expressing N is 0(mod p) and completing the proof. 2

We can now prove Proposition 2.1. Given a graph G = (V,E) satisfying the assumptions of

the proposition, let n denote the number of its vertices. For each edge e ∈ E and for each vertex

v ∈ V , let a(v, e) be 0 if e is not incident with v, 1 if e is a non-loop incident with v, and 2 if e is

a loop incident with v. For each e ∈ E let xe be a variable and consider the following system of

polynomial equations over GF (3): ∑
e∈E

a(v, e)x2
e = 0 (v ∈ V ).

This is a system of n degree-2 polynomial equations with |E| > 2n variables. Moreover, it clearly

has the trivial solution xe = 0 for all e. Hence there is, by Theorem 2.2, a non-trivial solution

(ye : e ∈ E). Let H be the subgraph of G consisting of all edges e for which ye 6= 0. By the

equations above, the degree of every vertex of H is divisible by 3, and since the maximum degree

in G is 5 it follows that H is 3-regular, completing the proof. 2

It is known that the decision problem: ”Given a graph G, decide if it contains a 3-regular

subgraph”, is NP -complete. By the proposition above in certain cases we know that the answer

to the decision problem is ”yes” and yet the proof does not yield an efficient procedure for finding

such a subgraph.

Another result proved by applying some extensions of the Chevalley- Warning Theorem is the

following statement, proved in [7]. Recall that a hypergraph is a pair (V,F) (sometimes denoted

only by F), where V is a finite set of vertices, and F is a finite set of subsets of V . The degree of

a vertex is the number of edges that contain it.

Theorem 2.3 Let q be a prime power, and let F = {F1, . . . , Fd(q−1)+1} be a hypergraph whose

maximal degree is d. Then there exists ∅ 6= F0 ⊂ F , such that |
⋃
F∈F0

F | ≡ 0 (mod q).

Here, again, we do not know how to quickly find such a subset F0. Moreover, it can be shown that

the problem of finding such an F0 is equivalent to the following problem: Given a polynomial h of

degree at most d with d(q− 1) + 1 variables over GF (q), suppose that h(0) = 0. Find another zero

of h(x) in which each variable is either 0 or 1.
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3 Probabilistic methods

Probabilistic methods have been useful in combinatorics for almost fifty years. Many examples can

be found in [14] and in [21].

In a typical application of the probabilistic method we try to prove the existence of a combina-

torial structure (or a substructure of a given structure) with certain prescribed properties. To do

so, we show that a randomly chosen element from an appropriately defined sample space satisfies

all the required properties with positive probability. In most applications, this probability is not

only positive, but is actually high and frequently tends to 1 as the parameters of the problem tend

to ∞. In such cases, the proof usually supplies an efficient randomized algorithm for producing a

structure of the desired type, and in many cases this algorithm can be derandomized and converted

into an efficient deterministic one.

There are, however, certain examples, where one can prove the existence of the required com-

binatorial structure by probabilistic arguments that deal with rare events; events that hold with

positive probability which is exponentially small in the size of the input. Such proofs usually

yield neither randomized nor deterministic efficient procedures for the corresponding algorithmic

problems.

A class of examples demonstrating this phenomenon is the class of results proved by applying

the Local Lemma. This result, proved in [13] (see also, e.g., [21]), supplies a way of showing that

certain events hold with positive probability, although this probability may be extremely small.

The exact statement (for the symmetric case) is the following.

Lemma 3.1 Let A1, . . . , An be events in an arbitrary probability space. Suppose that the probability

of each of the n events is at most p, and suppose that each event Ai is mutually independent of all

but at most b of the other events Aj. If ep(b + 1) < 1 then with positive probability none of the

events Ai holds.

One of the applications of this lemma, given already in the original paper [13], deals with

hypergraph coloring. A hypergraph is k-uniform if each of its edges contains precisely k vertices. It

is k-regular if each of its vertices is contained in precisely k edges. A hypergraph is 2-colorable if

there is a two-coloring of the set of its vertices so that none of its edges is monochromatic. Erdös

and Lovász proved the following result.
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Proposition 3.2 For each k ≥ 9, every k-regular, k-uniform hypergraph is two colorable.

The proof follows almost immediately from lemma 3.1. Let (V,E) be a k-uniform, k-regular hy-

pergraph, and let f : V 7→ {0, 1} be a random 2-coloring obtained by choosing, for each v ∈ V

randomly and independently, f(v) ∈ {0, 1} according to a unifrom distribution. For each e ∈ E let

Ae denote the event that f restricted to e is a constant, i.e., that e is monochromatic. It is obvious

that Prob(Ae) = 2−(k−1) for every e, and that each event Ae is mutually independent of all the

events Af but those for which f ∩ e 6= ∅. Since there are at most k(k − 1) edges f that intersect

e we can substitute b = k(k − 1) and p = 2−(k−1) in Lemma 3.1 and conclude that for k ≥ 9 with

positive probability none of the events Ae holds, completing the proof. 2

We note that a different, algebraic proof of the statement of the last proposition (that works for

all k ≥ 8) is given in [4]. Both proofs do not supply an efficient way of finding a proper two-coloring

for a given hypergraph satisfying the assumptions of the proposition. Note that, in general, the

problem of deciding whether a hypergraph is 2-colorable is NP -complete.

Another application of the Local Lemma, which appears in [8], is the following.

Proposition 3.3 Every directed simple graph D = (V,E) with minimum outdegree δ and maximum

indegree ∆ contains a directed (simple) cycle of length 0(mod k), provided e(∆δ + 1)(1− 1
k )δ < 1.

The proof here first applies the Local Lemma to show that there exists a function f : V 7→

{0, 1, . . . , k} such that for every v ∈ V there is a vertex u ∈ V such that (v, u) is a directed edge of

D and f(u) ≡ f(v) + 1(mod k).

Given such an f , the rest of the proof is very simple. We just choose, for every vertex v ∈ V ,

some vertex p(v) such that (v, p(v)) is a directed edge and f(p(v)) ≡ f(v) + 1(mod k). Suppose

v ∈ V and consider the sequence

v0 = v, v1 = p(v0), v2 = p(v1), . . .

Let j be the minimum index such that there is an i < j with vi = vj . The cycle vivi+1 . . . vj−1vj = vi

is a directed cycle of length 0(mod k), as needed.

Here, again, the proof is not constructive in the sense that it does not provide an efficient way

of finding such a cycle in a directed graph satisfying the assumptions. This is because the proof

that a function f as above exists is non-constructive.
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We note that it is not known if the related decision problem ” Given a directed graph, decide

if it contains a directed even cycle” is polynomial, but it is easy to deduce from the results of [15]

that the similar problem ” Given a directed graph and an edge e in it, decide if there is an even

cycle containing e” is NP -complete.

The proof of the next result also relies on the Local Lemma, but contains several additional

ingredients as well. The details appear in [3].

Theorem 3.4 There is an absolute constant c with the following property: For any two graphs

G1 = (V,E1) and G2 = (V,E2) on the same set of vertices, where G1 has maximum degree at most

d and G2 is a vertex disjoint union of cliques of size cd each, the chromatic number of the graph

G = (V,E1 ∪ E2) is precisely cd.

The proof, again, does not supply an efficient (deterministic or randomized) algorithm for producing

a proper cd-vertex coloring of G.

We close this section mentioning the following result of J. Spencer, whose proof, given in [22],

which combines the probabilistic method with a counting argument, also fails to supply an efficient

procedure for the corresponding algorithmic problem.

Theorem 3.5 Let v1, . . . , vn be n real vectors of length n each, and suppose that the l∞-norm

of each vi is at most 1. Then there are ε1, . . . , εn ∈ {−1, 1}, such that the l∞-norm of the sum∑n
i=1 εivi is at most 6

√
n.

4 Concluding remarks

We have seen several examples of combinatorial results proved by topological, algebraic or proba-

bilistic methods. One natural question that arises is whether these methods are necessary. After all,

we may tend to believe that simply stated combinatorial results should have simple combinatorial

proofs. Although this sounds plausible, there are no known natural combinatorial proofs for any

of the results mentioned here (as well as for various other known similar examples).

Another question that should be addressed is whether the proofs given here are really inher-

ently non-constructive. Is it possible to modify them so that they yield efficient ways of solving

the corresponding algorithmic problems? There are no known efficient algorithms for any of the
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problems mentioned here. However, it seems very likely that such algorithms do exists. This is

related to questions regarding the complexity of search problems that have been studied by several

researchers. See, e.g., [19].

In the study of complexity classes like P and NP one usually considers only decision problems,

i.e., problems for which the only two possible answers are ”yes” or ”no.” However, the definitions

extend easily to the so called ”search” problems, which are problems where a more elaborate output

is sought. The search problems corresponding to the complexity classes P and NP are sometimes

denoted by FP and FNP .

Consider, for example, the obvious algorithmic problem suggested by Theorem 1.1, namely,

given a necklace satisfying the assumptions of the theorem, find a partition of it satisfying the

conclusions of the theorem. This problem is in FNP , since it is a search problem, and given a

proposed solution for it we can check in polynomial time that it is indeed a solution.

Notice that this problem always has a solution, by Theorem 1.1, and hence it seems plausible

that finding one should not be a very difficult task. The situation is similar with all the other

algorithmic problems corresponding to the various results mentioned here. Still, the problem of

solving efficiently the corresponding search problems remains an intriguing open question.
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