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Abstract

We present some problems and results about variants of sunflowers in families of sets. In

particular, we improve an upper bound of the first author, Körner and Monti on the maximum

number of binary vectors of length n so that every four of them are split into two pairs by some

coordinate. We also propose a weaker version of the Erdős-Rado sunflower conjecture.

1 Introduction

Introduced by Erdős and Rado [10], sunflowers (also called strong ∆-systems) have a long history of

study and applications in extremal combinatorics and theoretical computer science. Recall that a

family H of r distinct subsets of [n] = {1, 2, . . . , n} is called a sunflower of size r if every i ∈ [n]

belongs to either 0, 1 or r of the sets in H.

Erdős and Rado famously conjectured that if F is a k-uniform family of sets (i.e., |A| = k for

every A ∈ F) not containing a sunflower of size r, then |F| ≤ Ck, where C is a constant depending

only on r. For many years, the best known upper bound was close to k! for any fixed r. A recent

breakthrough due to Alweiss, Lovett, Wu and Zhang [3] improved the bound to (log k)(1+o(1))k for

any fixed r, but the original conjecture is still open even for r = 3.

Seeking a bound that depends on the size n of the ground set rather than the uniformity k, Erdős

and Szemerédi [11] conjectured that if F is a family of subsets of [n] not containing a sunflower of

size r, then |F| ≤ cn, where c < 2 is a constant depending only on r. They showed (implicitly, made

explicit by Deuber et al. [6]) that their conjecture would follow from the Erdős-Rado conjecture.

The recent solution by Ellenberg and Gijswijt [8] of the cap set problem, confirmed the r = 3 case

of the Erdős-Szemerédi conjecture (via a reduction due to the first author, Shpilka and Umans [2]);

see also Naslund and Sawin [17] and Hegedűs [12] for explicit bounds. But the conjecture is still

open for r ≥ 4.

In this paper we introduce a weaker variant of sunflowers.
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Definition 1.1. A family H of r distinct subsets of [n] is called a near-sunflower of size r if every

i ∈ [n] belongs to either 0, 1, r − 1 or r of the sets in H.

The weakening consists in adding the option of belonging to r − 1 of the sets (this renders

the property interesting only for r ≥ 4). It is natural in that it makes the property symmetric:

if H is a near-sunflower then so is {[n] \ A : A ∈ H}. One may hope that when sunflowers are

replaced by near-sunflowers, the notoriously difficult conjectures of Erdős-Rado and Erdős-Szemerédi

will become easier. We show that this is indeed the case in the Erdős-Szemerédi setting (bound

depending on n), but leave the question in the Erdős-Rado setting (bound depending on k) open.

The following variant of near-sunflowers, in which one member of the family plays a distinguished

role, will be of interest. It is convenient to define it for binary vectors of length n instead of subsets

of [n] – henceforth we will pass freely between these two equivalent formalisms.

Definition 1.2. A family x(0), x(1), . . . , x(r−1) of r distinct vectors in {0, 1}n is focal with focus x(0)

if for every coordinate i ∈ [n] at least r − 2 of the r − 1 entries x
(1)
i , . . . , x

(r−1)
i are equal to x

(0)
i .

Thus, a focal family is a near-sunflower with the additional property that one of the vectors –

the focus – is always in the majority. Unlike near-sunflowers, focal families are interesting already

for r = 3. While sunflowers and focal families are both special kinds of near-sunflowers, they are

not logically comparable to each other.

The two extremal functions corresponding to our definitions are:

gns
r (n) = max{|F| : F ⊆ {0, 1}n contains no near-sunflower of size r}

gff
r (n) = max{|F| : F ⊆ {0, 1}n contains no focal family of size r}

It follows from the definitions that gns
r (n) ≤ gff

r (n). Our main result gives upper and lower

bounds for these functions.

Theorem 1.3. For r ≥ 3 we have:

(a) gns
r (n) ≤ gff

r (n) ≤ (r − 1)2d
(r−2)n
r−1

e.

(b) There exist positive constants cns
r and cff

r so that

gns
r (n) ≥ cns

r (
2

(r + 1)
1

r−1

)n,

gff
r (n) ≥ cff

r (
2

r
1

r−1

)n.

In particular, for r = 4, our bounds (ignoring constants) are 2
2n
3 from above and (8

5)
n
3 and 2

n
3

from below, for near-sunflowers and focal families, respectively. Families without near-sunflowers of

size 4 were previously studied (with different terminology) by the first author, Körner and Monti [1],

settling a problem suggested by Sós in the late 80’s. While their lower bound was the same as ours,

their upper bound was roughly 20.773n, with a proof based on Sauer’s lemma. It is remarkable that
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our short and elementary proof improves their bound. We note that they also extended their result

to r > 4, but with a different definition. Whereas our near-sunflowers allow an element to belong to

0, 1, r − 1 or r of the sets, their definition allows everything except one forbidden value.

We also remark that a concept analogous to our focal families, where instead of requiring “at

least r− 2” in Definition 1.2 one requires “at least 1,” was studied in coding theory under the names

separating codes (Cohen and Schaathun [5]) and frameproof codes (Blackburn [4]). This case is

somewhat simpler and the bounds obtained in those papers coincide with ours for the special case

r = 3.

More generally, our paper follows a long line of literature in extremal combinatorics, information

theory and coding theory. The common thread is bounding the largest possible cardinality of a

family of vectors of length n, so that for any r of them there exist coordinates displaying certain

desirable patterns. For r = 2, Sperner’s [18] classical theorem on antichains is a prime example.

For r = 3 we mention the theorem of Erdős, Frankl and Füredi [9] on families in which no set is

covered by the union of two others; the problem of cancellative families solved by Tolhuizen [19];

and a variety of related problems described by Körner [13]. For r = 4 there is Lindström’s [15]

theorem on determining two vectors from their sum modulo 2, and Körner and Simonyi’s [14] bounds

for two-different quadruples. For general r, we refer to the study of disjunctive codes (Dyachkov

and Rykov [7]). In all of these problems, and many others, the cardinality of the largest family

grows exponentially in n, but (with few exceptions) the asymptotic growth rate is not known. Our

problems are no exception.

The proof of Theorem 1.3 is given in the next section. In Section 3 we adapt the definition and

the bounds for focal families to vectors over larger alphabets, noting that the upper bound becomes

essentially tight when the size of the alphabet exceeds n. We show in Section 4 that the upper

bound in Theorem 1.3 can be improved if the family of vectors is closed under addition modulo 2

(i.e., forms a linear code). In Section 5 we consider one-sided focal families, where 0 and 1 entries

are treated asymmetrically, and obtain corresponding bounds. Finally, in Section 6 we discuss the

challenge of obtaining an exponential upper bound in terms of the uniformity k, and prove such a

bound under a stronger condition.

2 Proof of Theorem 1.3

The upper bound. Let F ⊆ {0, 1}n have cardinality |F| > (r − 1)2d
(r−2)n
r−1

e. We have to show

that F contains a focal family of size r. Fix a partition A1, . . . , Ar−1 of [n] into r − 1 parts of size

|Aj | ≥ b n
r−1c each. For a subset S ⊆ [r − 1] with |S| = r − 2, say that a vector x ∈ F is S-unique if

there is no other vector in F with the same projection on
⋃
j∈S Aj . Since |

⋃
j∈S Aj | ≤ d

(r−2)n
r−1 e, for

a given S the number of S-unique vectors in F is at most 2d
(r−2)n
r−1

e. It follows from our assumption

on |F| that there exists a vector x(0) ∈ F which is not S-unique for any S ⊆ [r− 1] with |S| = r− 2.

This means that we can find vectors x(1), . . . , x(r−1) ∈ F \ {x(0)} so that each x(j) agrees with x(0)

except possibly on coordinates in Aj . Note that x(1), . . . , x(r−1) are pairwise distinct, because if

two of them were equal they would have to coincide with x(0). By construction, the subfamily
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x(0), x(1), . . . , x(r−1) is focal with focus x(0).

The lower bounds. As is common in such problems, we use random choice with alterations. We

describe the argument for near-sunflowers, later pointing out how to adapt it to focal families.

We start by forming a random family G ⊆ {0, 1}n to which each vector x ∈ {0, 1}n belongs,

independently, with probability p (to be determined later). Then E(|G|) = 2np. Let NG be a

random variable counting the number of near-sunflowers of size r contained in G. By removing

at most NG vectors from G, we obtain a family F of cardinality at least |G| −NG which contains

no near-sunflower of size r. By linearity of expectation, E(|F|) ≥ 2np −Nns
r p

r, where Nns
r is the

number of near-sunflowers of size r in {0, 1}n.

To estimate Nns
r , note that the number of r × n binary matrices so that the number of 1 entries

in each column is 0, 1, r − 1 or r is (2r + 2)n. Since near-sunflowers correspond to such matrices

with distinct rows, and the order of the rows is immaterial, it follows that Nns
r ≤ 1

r!(2r + 2)n. Thus,

E(|F|) ≥ 2np− 1

r!
(2r + 2)npr,

and choosing p = c( 1

(r+1)
1

r−1
)n for a suitable c = c(r) > 0 yields E(|F|) ≥ cns

r ( 2

(r+1)
1

r−1
)n for some

cns
r > 0. Hence, there is a realization of F having at least this cardinality.

Moving to focal families, the argument is similar, but now we have to estimate the number Nff
r

of focal families of size r in {0, 1}n. The number of r × n binary matrices so that in each column

the first entry is repeated at least r − 2 times among the other entries is (2r)n. Since focal families

correspond to such matrices with distinct rows, and the order of the last r− 1 rows is immaterial, it

follows that Nff
r ≤ 1

(r−1)!(2r)
n. Thus,

E(|F|) ≥ 2np− 1

(r − 1)!
(2r)npr,

and choosing p = c( 1

r
1

r−1
)n for a suitable c = c(r) > 0 yields E(|F|) ≥ cff

r ( 2

r
1

r−1
)n for some cff

r > 0, as

required. �

3 Focal families over larger alphabets

Given any integer q ≥ 2, Definition 1.2 can be applied verbatim to vectors in [q]n to define q-ary

focal families. Let gq-ffr (n) be the corresponding extremal function. A straightforward adaptation of

the proof above yields the following version of Theorem 1.3 for q-ary focal families.

Theorem 3.1. For q ≥ 2 and r ≥ 3 we have

cq-ffr (
q

((q − 1)(r − 1) + 1)
1

r−1

)n ≤ gq-ffr (n) ≤ (r − 1)qd
(r−2)n
r−1

e

for some positive constant cq-ffr .
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When q ≥ n and q is a prime power, we can replace the probabilistic lower bound by a

constructive one which matches (up to a constant factor depending on r) the upper bound.

Proposition 3.2. If q ≥ n and q is a prime power then

gq-ffr (n) ≥ qd
(r−2)n
r−1

e.

Proof. The Reed-Solomon code with suitable parameters gives the desired lower bound. For

completeness, we describe the construction. We identify the elements of the finite field Fq with

the q symbols in our alphabet. We choose and fix n distinct elements a1, a2, . . . , an ∈ Fq, and

identify them with the coordinates 1, 2, . . . , n. There are qd
(r−2)n
r−1

e polynomials p(x) of degree less

than d (r−2)n
r−1 e over Fq. With every such polynomial we associate the vector (p(a1), p(a2), . . . , p(an)),

which gives a family F of q-ary vectors of length n, with |F| = qd
(r−2)n
r−1

e.

We claim that F contains no focal family of size r. Indeed, suppose that x(0), x(1), . . . , x(r−1) ∈ F

form such a family with focus x(0). Then by the pigeonhole principle, some x(j), j ∈ [r − 1], has to

agree with x(0) on at least d (r−2)n
r−1 e coordinates. This means that the corresponding polynomials

p(j) and p(0) agree on at least d (r−2)n
r−1 e elements of Fq. But this is impossible, as they are distinct

polynomials of degree less than d (r−2)n
r−1 e.

4 Improved upper bound in the linear case

While Proposition 3.2 shows that our upper bound is essentially tight when q ≥ n, we believe that

for q = 2 and large n it is not. To support this belief, we show here that the upper bound can be

significantly improved if we restrict attention to families of binary vectors which are linear codes

(i.e., closed under addition modulo 2). This can be done for any value of r, but for simplicity and

concreteness of the bound we do it for r = 4.

We are going to use a known bound on the tradeoff between cardinality and minimum Hamming

distance in a family F of binary vectors of length n. Recall that, by the linear programming bound

(McEliece, Rodemich, Rumsey and Welch [16]), if the Hamming distance between any two distinct

vectors in F is greater than δn, then

|F| ≤ 2(h( 1
2
−
√
δ(1−δ))+o(1))n,

where h(x) is the binary entropy function defined by

h(x) = −x log2 x− (1− x) log2(1− x).

We first prove the following theorem, which does not require linearity.

Theorem 4.1. Let F be a family of at least 20.44n subsets of [n], where n is large enough. Then

there exist three pairs of distinct sets in F such that their symmetric differences A4B, C 4D and

E 4 F are pairwise disjoint.
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Proof. We apply the above-mentioned bound repeatedly. First, a calculation shows that for

δ = 0.213, we have h(1
2 −

√
δ(1− δ)) < 0.44. As |F| ≥ 20.44n and n is large, the bound implies

the existence of distinct sets A,B ∈ F with |A4B| ≤ 0.213n. Next, by the pigeonhole principle,

we can find at least |F|
2|A4B| sets in F having the same intersection with A 4 B. Let F′ be the

family obtained by restricting these sets to [n] \ (A4B). A calculation shows that for δ′ = 0.287,

we have h(1
2 −

√
δ′(1− δ′)) < 0.28. As |F′| ≥ 20.44n−|A4B| > 20.28(n−|A4B|) and n is large, the

bound implies the existence of distinct sets C,D ∈ F such that (C 4 D) ∩ (A 4 B) = ∅ and

|C 4 D| ≤ 0.287(n − |A4 B|). Now |A4 B| + |C 4 D| < 0.44n, and again by the pigeonhole

principle we can find two distinct sets E,F ∈ F having the same intersection with (A4B)∪(C4D),

which completes the proof.

Corollary 4.2. Let F be a linear subspace of {0, 1}n of dimension at least 0.44n, where n is large

enough. Then F contains a focal family of size 4.

Proof. Viewing F as a family of subsets of [n], it is closed under symmetric difference. Hence the

theorem yields three pairwise disjoint non-empty sets X(1), X(2), X(3) ∈ F. Taking the empty set as

the focus X(0), we obtain a focal family of size 4.

5 One-sided focal families

The requirement defining a focal family may be separated into two one-sided requirements as follows.

Definition 5.1. Let b ∈ {0, 1}. A family x(0), x(1), . . . , x(r−1) of r distinct vectors in {0, 1}n is

b-focal with focus x(0) if for every coordinate i ∈ [n] such that x
(0)
i = b, at least r − 2 of the r − 1

entries x
(1)
i , . . . , x

(r−1)
i are equal to b.

The corresponding extremal functions for b = 0, 1 are:

gb-ffr (n) = max{|F| : F ⊆ {0, 1}n contains no b-focal family of size r}

It will be convenient to study the extremal questions first for k-uniform families. Let
([n]
k

)
be

the family of all k-element subsets of [n]. For b = 0, 1 let:

gb-ffr (n, k) = max{|F| : F ⊆
(

[n]

k

)
contains no b-focal family of size r}

Since H is 0-focal if and only if {[n] \ A : A ∈ H} is 1-focal, we have g0-ff
r (n) = g1-ff

r (n) and

g0-ff
r (n, k) = g1-ff

r (n, n− k). So we only need to study these questions for one value of b.

Theorem 5.2. For r ≥ 3 and 0 ≤ k ≤ n we have

g1-ff
r (n, k) ≤ (r − 1)

( n
d (r−2)k

r−1
e
)

( k
d (r−2)k

r−1
e
) .
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Proof. Let F be a family of k-element subsets of [n] containing no 1-focal family of size r. For a set

A ∈ F, we say that a set S is an own-subset of A if S ⊆ A and S * B for any B ∈ F \ {A}.
Consider an arbitrary (r − 1)-tuple A1, . . . , Ar−1 of pairwise disjoint b k

r−1c-element subsets of a

set A ∈ F. If for every j ∈ [r − 1] there exists a set Bj ∈ F \ {A} such that A \Aj ⊆ Bj , then the

sets A,B1, . . . , Br−1 form a 1-focal family of size r with focus A, contradicting our assumption on

the family F. Hence there exists j ∈ [r − 1] so that A \Aj is an own-subset of A.

We claim that for a fixed set A ∈ F, the probability that a uniformly random d (r−2)k
r−1 e-element

subset S of A is an own-subset is at least 1
r−1 . Indeed, consider the following two-step random

process. First, choose uniformly at random an (r − 1)-tuple A1, . . . , Ar−1 of pairwise disjoint b k
r−1c-

element subsets of A. Second, choose uniformly at random a value j ∈ [r − 1] and let S = A \Aj .
Clearly, the resulting S is uniformly distributed over the d (r−2)k

r−1 e-element subsets of A. Conditional

on the choice in the first step, the argument in the previous paragraph implies that the probability

that S is an own-subset of A is at least 1
r−1 . As this holds for any outcome of the first step, it also

holds unconditionally.

Thus, with each A ∈ F we can associate a family of at least 1
r−1

( k
d (r−2)k

r−1
e
)

own-subsets of A of

size d (r−2)k
r−1 e. The disjoint union of these families over all A ∈ F is contained in

( [n]

d (r−2)k
r−1

e

)
, implying

that |F| · 1
r−1

( k
d (r−2)k

r−1
e
)
≤
( n
d (r−2)k

r−1
e
)
. It follows that |F| ≤ (r − 1)

(
n

d (r−2)k
r−1 e

)

(
k

d (r−2)k
r−1 e

)
, as claimed.

Corollary 5.3. For r ≥ 3 and b = 0, 1 we have

gb-ffr (n) ≤ (r − 1)

n∑
k=0

( n
d (r−2)k

r−1
e
)

( k
d (r−2)k

r−1
e
) = (1 +

r − 2

(r − 1)
r−1
r−2

+ o(1))n.

Proof. As pointed out above, it suffices to treat the case b = 1. Let F be a family of subsets of [n]

containing no 1-focal family of size r. Then |F| =
∑n

k=0 |F ∩
([n]
k

)
|, and applying the theorem to the

families F ∩
([n]
k

)
yields the upper bound in summation form.

To obtain the asymptotic expression for the sum, we first use Stirling’s formula to approximate( k
d (r−2)k

r−1
e
)

up to a factor of order
√
k by ( (r−1)r−1

(r−2)r−2 )
k

r−1 . Plugging this approximation in the sum gives

n∑
k=0

(
n

d (r−2)k
r−1 e

)
(

r − 2

(r − 1)
r−1
r−2

)
(r−2)k
r−1

which, by the binomial formula, is Θ((1 + r−2

(r−1)
r−1
r−2

)n).

In the case r = 3, a 1-focal family is a triple of distinct sets satisfying A ⊆ B ∪ C, and

Corollary 5.3 reproduces the bound of (5
4 + o(1))n obtained by Erdős, Frankl and Füredi [9] for the

maximum possible cardinality of families not containing such triples. In the case r = 4, a 1-focal

family is a 4-tuple of distinct sets satisfying A ⊆ (B ∪C)∩ (B ∪D)∩ (C ∪D), and we get an upper

bound of roughly 20.47n for the corresponding extremal problem.
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Lower bounds on the extremal functions gb-ffr (n, k) and gb-ffr (n) may be obtained, as above, by

random choice with alterations. Here, however, one should start with a random subfamily of
([n]
k

)
instead of {0, 1}n. Optimizing the bounds requires rather messy calculations, which we omit.

6 Bounds in terms of the set size

We turn our attention now to bounding the cardinality of a family of k-element sets (on a ground

set of any size) not containing any near-sunflower of size r. Note that this question does not make

sense for focal families, because we may take arbitrarily many pairwise disjoint k-element sets,

avoiding focal families of size 3. With respect to near-sunflowers, however, any upper bound on

the cardinality of a k-uniform family not containing a sunflower of size r automatically applies to

our question, too; in particular, the recent bound of Alweiss, Lovett, Wu and Zhang [3] of order

(log k)(1+o(1))k. Can this be improved for near-sunflowers?

Conjecture 6.1. Let r ≥ 4, and let F be a family of k-element sets which contains no near-sunflower

of size r. Then |F| ≤ Ck, where C is a constant depending only on r.

This is a weaker version of the Erdős-Rado sunflower conjecture. In view of the fame and

difficulty of the latter, this weakening may turn out to be a more accessible goal. But we have not

been able to make progress, even for r = 4.

We do have an upper bound of the desired exponential form under a stronger condition. Saying

that a 4-tuple of distinct sets A,B,C,D is not a near-sunflower can be expressed as follows: there

is a way to partition {A,B,C,D} into two pairs with intersecting symmetric differences. A natural

strengthening is to require this for every pairing of A,B,C,D. Let F be a family of sets so that

for any (ordered) four distinct sets A,B,C,D ∈ F we have (A4 B) ∩ (C 4D) 6= ∅. Körner and

Simonyi [14] proved that if all sets are subsets of an n-element ground set then |F| ≤ 1.217n for

large n. But here we are interested in such families that are k-uniform on any ground set. Fixing

A,B, the condition implies that any C and D must differ within A4 B, which has at most 2k

elements, easily giving |F| ≤ 22k. The following theorem improves this bound.

Theorem 6.2. Let F be a family of k-element sets so that for any (ordered) four distinct sets

A,B,C,D ∈ F we have (A4B) ∩ (C 4D) 6= ∅. Then |F| ≤ 2.148k for large enough k.

Proof. Fix two sets A,B ∈ F so that |A ∩B| = t maximizes the intersection size over all pairs of

distinct sets in F.

For any set E, denote by [E]t a set which is E itself if |E| ≤ t, and otherwise it is an arbitrarily

chosen (t+ 1)-element subset of E. Let
(
A4B
≤t+1

)
be the family of all subsets of A4B of size at most

t+ 1. Define a mapping f : F \ {A,B} →
(
A4B
≤t+1

)
by f(C) = [C ∩ (A4B)]t.

We check that f is injective. Let C and D be two distinct sets in F \ {A,B}. We have to

show that [C ∩ (A4 B)]t 6= [D ∩ (A4 B)]t. If the sets on both sides have size at most t, then

C ∩ (A4 B) 6= D ∩ (A4 B) follows from (A4 B) ∩ (C 4 D) 6= ∅. If both [C ∩ (A4 B)]t and

[D ∩ (A 4 B)]t have size t + 1, they cannot be equal since that would imply |C ∩ D| ≥ t + 1,
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contradicting the maximality of t. Finally, if one of them has size at most t and the other has size

t+ 1, they are obviously not equal. This implies that

|F| − 2 ≤
t+1∑
j=0

(
2(k − t)

j

)
.

For large k, we want to bound the right-hand side from above by Ck for some C < 2.148. Let us

write x = t
2(k−t) . If x ≥ 1

2 then 2(k − t) ≤ k and the sum is bounded by 2k. Thus we may assume

that x < 1
2 and approximate the sum by 22(k−t)h(x) = 2

2h(x)
1+2x

k, where h(x) is the binary entropy

function. Routine calculations show that the maximum of 2
2h(x)
1+2x is attained when x = (1− x)3 and

its value is less than 2.148.

As in all these problems, the probabilistic method can be used to show the existence of a

k-uniform family F with pairwise intersecting symmetric differences, so that |F| is exponential in k.

Our argument gives |F| ≈ 1.25k, we omit the details.
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