Matching Nuts and Bolts Faster”

Noga Alon! Phillip G. Bradford? Rudolf Fleischer?

! Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel. E-mail: noga@math.tau.ac.il.

2 Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany.
E-mail: {bradford,rudolf}@mpi-sb.mpg.de.

Abstract. The problem of matching nuts and bolts is the following : Given
a collection of n nuts of distinct sizes and n bolts such that there is a one-
to-one correspondence between the nuts and the bolts, find for each nut
its corresponding bolt. We can only compare nuts to bolts. That is we can
neither compare nuts to nuts, nor bolts to bolts. This humble restriction on
the comparisons appears to make this problem very hard to solve. In fact,
the best explicit deterministic algorithm to date is due to Alon et al. [2]
and takes @(nlog®n) time. In this paper, we give a simpler O(nlog®n)
time algorithm. The existence of an O(nlogn) time algorithm has been
proved recently [6, 9].

1 Introduction
In [14], page 293, Rawlins posed the following interesting problem :

We wish to sort a bag of n nuts and n bolts by size in the dark. We can
compare the sizes of a nut and a bolt by attempting to screw one into the
other. This operation tells us that either the nut is bigger than the bolt; the
bolt is bigger than the nut; or they are the same size (and so fit together).
Because it is dark we are not allowed to compare nuts directly or bolts
directly.

How many fitting operations do we need to sort the nuts and bolts in the
worst case?

As a mathematician (instead of a carpenter) you would probably prefer to see
the problem stated as follows ([2]) :

* A preliminary version of the paper was presented at ISAAC’95 [5].

* The first author was supported in part by a USA Israeli BSF grant. The second and
the third author were partially supported by the EU ESPRIT LTR. Project No. 20244
(ALCOM-IT).

Given two sets B = {by,...,b,} and S = {s1,...,8,}, where B is a set
of n distinct real numbers (representing the sizes of the bolts) and S 1is
a permutation of B, we wish to find efficiently the unique permutation
o € S, so that b; = s,(;) for all i, based on queries of the form compare
b, and s;. The answer to each such query is either b, > s; or b; = s; or
b; < S;-

The obvious information theoretic lower bound shows that at least £2(nlogn)
comparisons are needed to solve the problem, even for a randomized algorithm. In
fact, there is a simple randomized algorithm which achieves an expected running
time of O(nlog n), namely Quicksort : Pick a random nut, find its matching bolt,
and then split the problem into two subproblems which can be solved recursively,
one consisting of the nuts and bolts smaller than the matched pair and one con-
sisting of the larger ones. The standard analysis of randomized Quicksort gives
the expected running time as stated above (see for example [7]).

Unfortunately, it is much harder to find an efficient deterministic algorithm.
The first o(n?) time algorithm, also based on Quicksort, was given by Alon et
al. [2]. To find a good pivot element which splits the problem into two subproblems
of nearly the same size, they run log n iterations of a procedure which eliminates
half of the nuts in each iteration while maintaining at least one good pivot; since
there i1s only one nut left in the end, this one must be a good pivot. This procedure
uses the edges of a highly efficient expander of degree O(log’n) to define its
comparisons. Therefore, finding a good pivot takes O(n log® n) time, and the entire
Quicksort takes @(nlog*n) time.

Recently, Bradford [6] and Komlés, Ma and Szemerédy [9] discovered indepen-
dently how to solve the nuts and bolts problem in O(nlogn) time. The former
paper does an O(n) selection of the nuts and bolts, whereas the latter one is based
on a modification of the famous AKS sorting network [1]. Unfortunately, both pa-
pers only prove the existence of an optimal algorithm by probabilistic arguments
with no hint how it could actually be constructed. Komlés et al. [9] also mention
(without giving any details) that they have found a fairly simple O(n(loglogn)?)
time algorithm for selecting a good pivot, and hence an O(nlog n(loglogn)?) time
algorithm for sorting nuts and bolts.

In this paper, we propose a simple and fast algorithm for finding a good pivot.
First, we connect the set of nuts with the set of bolts via some expander graph
of constant degree. We then choose greedily a maximal set of nuts which are con-
nected to a smaller bolt and a larger bolt. On these nuts we play a simple knockout
tournament where in each round half of the nuts are eliminated, guaranteeing that
the winner of the tournament is a good pivot. Since we can play each round of the
tournament in O(n) time, we can find a good pivot in O(nlogn) time. Therefore,
we can solve the nuts and bolts matching problem in O(nlog®n) time.

Alon et al. [2] mention two potential applications of this problem: the first is
local sorting of nodes in a given graph [8], and the second is selection of read only
memory with a little read /write memory [13].

3

In the next section, we describe the Quicksort algorithm more formally and
recall some facts about expanders. In Section 3, we show how we can efficiently
find a good pivot. We conclude with some remarks in Section 4.

2 Basic Definitions

Let S = {s1,...,8,} be a set of nuts of different sizes and B = {b;,...,b,} be a
set of corresponding bolts. For a nut s € S define rank(s) as |{t € B | s > t}|. The
rank of a bolt is defined similarly. For a constant ¢ < %, s 1s called a c-approzimate

median if cn < rank(s) < (1 — ¢)n . Similarly, define the relative rank of s with

respect to a subset 7' C B as rankr(s) := it € ZIILS = t}|)

The algorithm for matching nuts and bolts works as follows.

1) Find a c-approximate median s of the n given nuts (we will determine
C later).

(2) Find the bolt b corresponding to s.

(3) Compare all nuts to b and all bolts to s. This gives two piles of nuts
(and bolts as well), one with the nuts (bolts) smaller than s and one
with the nuts (bolts) bigger than s.

(4) Run the algorithm recursively on the two piles of the smaller nuts and
bolts and the two piles of the bigger nuts and bolts.

In the next section, we show how we can find a c-approximate median in
O(nlog n) time, where c is a small constant. Then our main result follows imme-
diately.

Theorem 1. We can match n nuts with their corresponding bolts in O(nlog” n)
time.

Proof. The correctness of the algorithm above follows immediately from the cor-
rectness of Quicksort. For the running time observe that each subproblem has size
at most (1—c)n, hence the depth of the recursion is only O(log n), and in each level
of the recursion we spend at most O(nlogn) time to compute the c-approximate
median and O(n) time to split the problem into the two subproblems. O

We now recall some facts about expanders (see for example [10] if you want to
learn more about expanders). An undirected graph G is called an (n, d, X)-graph if
it is a d-regular graph on n nodes, and the absolute value of each of the eigenvalues
of its adjacency matrix, besides the largest, is at most .

Call a sequence of integers dense if for every € > 0 there exists some mg = mo(¢€)
so that for every m > mg the sequence contains a member between m and (1+¢€)m.

4

Proposition 2 ([11, Th. 2.3],[12]). Let p be a prime congruent to 1 modulo 4

and d = p+ 1. Then there is a dense sequence of integers such that we can
explicitly construct in time O(d - n) an (n,d,2v/d — 1)-graph for every member n
of the sequence. O

Such graphs are called Ramanujan graphs in [11]. The construction of the
graphs is quite simple, just the proofs are involved. For more details on such
graphs see for example [4].

Proposition 3 ([4, Cor. 2.5, page 122]). Let G = (V, E) be an (n,d, X)-graph.
Then for every two sets of vertices B and C of G, where |B| = bn and |C| = cn,
we have |(#edges between B and C) — cbdn| < X - v/be - n. O

Theorem 4. We can construct in O(n) time a bipartite graph G = (X UY, E),
| X| = |Y| = n, with the property that any subset of X of size § is connected to at
least gn nodes in Y.

Proof. Let p = 197 (a prime congruent to 1 modulo 4), d = p + 1 = 198 and
A=2vd—1=2V197. Let € = 1% and n' be a member of the dense sequence of
integers mentioned in Prop. 2 such that n < n' < (14 ¢€)n. Let G' = (V, E’) be the
(n',d, X)-graph constructed in O(n) time in Prop. 2. Let X and Y be arbitrary
subsets of V' of size n each. Define G = (X UY, E) by joining z € X withy € YV
ifz=yor(z,y) € E.

Let B be any subset of X of size § and C any subset of ¥ of size T. Then
|B| =2 > 10.5"and |C| =2 > 12 .7n' and hence by Prop. 3 (# edges between

6 = 606 8 = 808
Band C) > [202- 202198 -n — 2 4/197 - /238 - 20 .] > [4.043n — 4.012n] > 0.
Hence G has the desired property. O

3 Finding a c-Approximate Median

Our algorithm to find a c-approximate median is based on a knockout tournament
played on some subset of the nuts. We start with a subset S; C S of the nuts
where each nut s € S; has a set T7(s) of two bolts associated with it, one smaller
than s and the other one larger than s. The sets Ti(s) are pairwise disjoint. We
describe later how to construct efficiently such a set S; of sufficient size.

We then play [log |S1|] rounds of the tournament, where in each round half
of the nuts survive for the next one. Intuitively, we take any two nuts together
with their sets of associated bolts, determine which nut splits the union of both
sets of bolts less equally, eliminate that nut, and give both sets of bolts to the
surviving nut. Unfortunately, pairing the nuts arbitrarily does not quite work, i.e.,
the winner of the tournament would not necessarily be a c-approximate median,
but pairing only nuts with small relative rank (or nuts with large relative rank,
respectively) is sufficient to yield the desired result.

5

In general, let S; be the set of nuts before we start round :. For each nut s € S;
let Ti(s) be the set of bolts associated with s and let r;(s) := rankg,,)(s) be the
relative rank of s with respect to its set of bolts Ti(s). Let SM&" .= {5 € §; |
ri(s) > 3} be the nuts in S; of high relative rank and S} := {s € S; | ri(s) < 3}
be the set of nuts in .5; of small relative rank.

We play the knockout tournament as follows.

1:=1;
while |S;| > 2 do

(1) Pair the nuts of S8 arbitrarily. If | S"®"| is odd then we eliminate
the single nut which did not get a partner.

(2) Let (s1,52) be a pair of nuts from S?igh. Compute the relative ranks
of s; and sy with respect to T;11 := Ti(s1) U T3(s2). Note that it is
sufficient to compare s; with all bolts in Tj(s;) and s, with all bolts
in Ti(51), because rankr,,(s;) = (rankngs)(s;) + rankri_,)(s5))
for j = 1,2 (this follows from Observation 5 (c)).

Whichever nut s has relative rank closer to % survives in S;;; and is
associated with T;1(s) := Ti41.

(3) Repeat steps (1) and (2) with Si°¥ instead of S?igh.
od

Let [be the value of i after the while-loop terminates, i.e., |S;| < 2. We
claim that if S; was sufficiently large then every nut in S; is a c-approximate
median, where ¢ is a small constant (see Lemma 6). But first we make a few
simple observations.

Observation 5. Assume we play the tournament starting with some set S, of
nuts. Then

(a) [log [S1]] =1 <1< [log |5

(b) Si # 0.

(c) |Ti(s)| = 2 fori=1,...,1 and all s € S;. In particular, |Ty(s)| > |‘S;—1| for all
s € 5.

(d) Each round needs O(|S1|) time.

Proof.

(a) In each round, we eliminate half of the nuts which could be paired, and at
most two unpaired nuts. Hence |S;41| > % We stop if at most two nuts
remain. It is now easy to show by induction on |S;| that [must be at least
log(|S1] + 2) — 1. This proves the first inequality.

The second inequality follows directly from |S;41| < |Zi|.

6

(b) We never eliminate all nuts.
(c) By induction on 3.

(d) Observe that in each round, every bolt is involved in at most one comparison
(in step (2)). Since we start with 2|S;| bolts in the first round, we do at most
2|S1| comparisons in each round. Furthermore, pairing the nuts, computing
the relative ranks, and merging the two sets of bolts does not increase the
asymptotic complexity. O

Lemma6. Let S; C S be of size Bn. Suppose each nut s € S; lies between the
two bolts in T1(s) = {biow(s), buign(s)}, 2.€., bow(s) < 8 < buign(s). If we play the
knockout tournament on Sy then any nut s in the final set S; is a T -approzimate
median.

Proof. Before the first round, we have r(s) = % for all s € S;, and hence i <
ra(s) < % for all s € S;. We now prove by induction that this inequality holds
after each round.

So assume we know that i < ri(s) < % for all s € S;. Let (s1,s2) be a pair
from Slhigh and w.l.o.g. 81 < s3. Let T;1; be the set T;(s;)UT;(s2). Since s; is larger
than half of the bolts in T;(s1), it must be larger than a quarter of the bolts in
T;+1. On the other hand, it is smaller than a quarter of the bolts in T;(s;) and
smaller than a quarter of the bolts in T;(s2) (because it is smaller than s;); hence
it 1s smaller than a quarter of the bolts in 7;,;. Therefore, the inequality holds
for s;, and we only eliminate s; if the relative rank of s, with respect to T5,; is
even closer to %

Now consider any arbitrary nut s in the final set S;. Since Tj(s) contains at
least 57’1 bolts by Observation 5 (c), we conclude from the inequality above that s is
%—approximate
median. O

larger than % bolts and smaller than another % bolts. Hence sis a

Now we show that we can construct in linear time a sufficiently large set S;
with the property needed in Lemma 6.

Lemma7. We can construct in time O(n) a set Sy C S of size at least 15 and
patrwise disjoint sets T1(s) = {biow($),buigh(s)} C T for all s € Sy, such that
biow(s) < 8 < buign(s) for all s € 5.

Proof. Connect the bolts T' with the nuts S using the bipartite graph G = (T'U
S, E) from Theorem 4 which can be constructed in O(n) time. Let S; be the empty
set. Then we choose arbitrary triples (1, s,t;) where (¢1,s) and (5, s) are edges
of G and t; < s < ty, whenever there are such triples. In this case, we add s to S;
and set biow($s) := t1 and byign(s) := ty; we also remove s from S and ¢4, ¢, from 7.
We stop if no more such triples can be found.

We claim that this greedy procedure always yields a set S; of size at least 5.
This can be seen as follows. Let Tj,w be the T bolts in T' of smallest rank, Thign

7
be the 3 bolts in 7' of highest rank, and Sy,.q be the 3 nutsin S of medium rank.
If the greedy procedure finds less than [t triples ¢; < s < 5, then more than %
bolts in Tiow, 7 bolts in Tiign, and more than 7 nuts in Sp.q have not been chosen.
Since both of these sets of T bolts are each connected to at least gn nuts, at least
one of the unchosen nuts in S,,.q must be connected to an unchosen bolt in Ti,y

and an unchosen bolt in Th;gn, a contradiction. O

n

We note that the proof of the Lemma above can be refined to give better
constants, but that would not have a considerable impact on the total complexity
of the algorithm.

Theorem 8. In O(nlogn) time, we can compute a ;—G-approm'mate median nut s

of S.

Proof. We can find a starting set S; of at least 7. nuts for the tournament in

O(n) time (Lemma 7). The tournament then takes O(|S1|log|S1|) = O(nlogn)

time (Observation 5 (a),(d)) and returns a %;-approximate median (Lemma 6).
g

4 Conclusions

We have presented an O(nlog®n) time deterministic algorithm for matching nuts
and bolts. This improves the previous O(nlog® n)-time solution of this problem,
given by Alon et al [2], by a factor of log’n. As already mentioned in [2], the
methods described in this (and their) paper seem not to be sufficient to reduce
the complexity below O(nlog®n).

On the other hand, [6] and [9] have proved the existence of a deterministic
O(nlog n) algorithm, the first paper based on O(n) selection, the second one
based on the AKS sorting network. It would be nice to find an explicit optimal
algorithm.

References

1. M. Ajtai, J. Komlés, and E. Szemerédy. An O(nlogn) sorting network. Proceedings
of the 15" ACM Symposium on the Theory of Computing (STOC’83), 1983, pp. 1-
9.

2. N. Alon, M. Blum, A. Fiat, S. Kannan, M. Naor, and R. Ostrovsky. Matching nuts
and bolts. Proceedings of the 5!* Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’94), 1994, pp. 690-696.

3. N. Alon, Z. Galil, and V.D. Milman. Better expanders and superconcentrators. Jour-
nal of Algorithms 8 (1987), pp. 337-347.

4. N. Alon, and J. Spencer. The Probabilistic Method. John Wiley and Sons Inc., New
York, 1992.

10.

11.

12.

13.

14.

. P.G. Bradford, and R. Fleischer. Matching nuts and bolts faster. Proceedings of the

6" International Symposium on Algorithms and Computation (ISAAC’95), 1995,
pp. 402-408.

. P.G. Bradford. Matching nuts and bolts optimally. Technical Report MPI-1-95-1-

025, Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany, September
1995.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

. W. Goddard, C.Kenyon, V. King, and L. Schulman. Optimal randomized algo-

rithms for local sorting and set-mazima. SIAM Journal on Computing 22 (1993),
pp- 272-283.

. J.Komlés, Y. Ma, and E. Szemerédi. Matching nuts and bolts in O(nlogn) time.

Proceedings of the 7** Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’96), 1996, pp. 232-241.

A. Lubotzky. Discrete Groups, Fzpanding Graphs and Invariant Measures.
Birkhauser Verlag, 1994.

A. Lubotzky, R. Phillips, and P. Sarnak. Ezplicit expanders and the Ramanujan con-
jectures. Proceedings of the 18%h
(STOC’86), 1986, pp. 240-246.
See also: A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinator-
ica 8 (1988), pp. 261-277.

ACM Symposium on the Theory of Computing

G.A. Margulis. Ezplicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and superconcentrators. Problemy
Peredachi Informatsii 24 (1988), pp. 51-60 (in Russian).

English translation in Problems of Information Transmission 24 (1988), pp. 39—46.

J.I. Munro, and M. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science 12 (1980), pp. 315-323.

G.J.E. Rawlins. Compared to What ? An Introduction to the Analysis of Algorithms.
Computer Science Press, 1992.

