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Abstract

The study of sum and product problems in finite fields motivates the investigation of additive

structures in multiplicative subgroups of such fields. A simple known fact is that any multiplicative

subgroup of size at least q3/4 in the finite field Fq must contain an additive relation x + y = z.

Our main result is that there are infinitely many examples of sum-free multiplicative subgroups

of size Ω(p1/3) in prime fields Fp. More complicated additive relations are studied as well. One

representative result is the fact that the elements of any multiplicative subgroup H of size at least

q3/4+o(1) of Fq can be arranged in a cyclic permutation so that the sum of any pair of consecutive

elements in the permutation belongs to H. The proofs combine combinatorial techniques based on

the spectral properties of Cayley sum-graphs with tools from algebraic and analytic number theory.

1 Introduction

Some of the most interesting developments in the recent extensive work in Additive Combinatorics

deal with the interplay between the two operations sum and product in finite fields. The basic result

here, motivated by a similar phenomenon that holds for real numbers, as discovered by Erdős and

Szemerédi in [11], is the intriguing fact that not-too-large subsets of prime finite fields that are nearly

closed under multiplication, are far from being closed under sum. This has first been proved in [7] and

has led to applications in several areas including incidence geometry, analytic number theory, group

theory, theoretical computer science and more. In the present paper we study an extremal version

of this phenomenon, studying additive relations in subsets of finite fields that are completely closed

under multiplication, namely, multiplicative subgroups. It is easy and well known (see, e.g., [29]) that

if a subgroup of F ∗q is of size at least q3/4, then it must contain relations of the form x + y = z,

(equivalently, it must contain relations of the form a+ b = 1). Our main result here is that there are

infinitely many examples showing that this is not necessarily the case for multiplicative subgroups of

size Θ(p1/3) in prime fields Fp.
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Theorem 1.1 There is an absolute constant c > 0 so that there are infinitely many examples of a

prime p and a multiplicative subgroup A in the finite field Fp such that |A| ≥ cp1/3 and there are no

x, y ∈ A so that x+ y ∈ A.

We also consider more complicated additive patterns in multiplicative subgroups. A representative

example is the following.

Theorem 1.2 There exists an absolute positive constant c so that for any prime power q and for any

multiplicative subgroup A of the finite field Fq of size

|A| = d ≥ cq
3/4(log q)1/2(log log log q)1/2

log log q

there is a numbering a0, a1, . . . , ad−1 of the elements of A so that ai + ai+1 ∈ A for all i, where the

indices are reduced modulo d.

In particular this implies that for any sufficiently large prime p there is a cyclic permutation of

all k = (p − 1)/2 quadratic residues modulo p so that the sum of any two adjacent elements in the

permutation is also a quadratic residue modulo p. A recent conjecture of Sun [30] asserts that this is

the case for all p > 13. This is indeed correct, as shown in Theorem 2.1 below.

It is worth noting that for proper prime powers q there are known examples of much bigger

multiplicative subgroups of finite fields Fq which contain no relation of the form x+ y = 1. These are

called cyclic caps in projective spaces, and have been studied extensively, see, for example, [31], [33],

[13] and the references therein. In particular, by modifying the construction in [33] we can prove the

following.

Proposition 1.3 For every integer k ≥ 0 if q = 24k+1
and

d = (22·4k + 1)(22·4k−1
+ 1) · · · (22 + 1) (= Ω(q2/3) )

then the multiplicative subgroup of order d in Fq contains no solution to x+ y = 1.

A proof appears in the appendix. The case of prime fields treated in Theorem 1.1 above seems more

difficult, and we are not aware of any earlier results for prime fields.

The problem of ensuring a single relation of the form x+y = z with x, y, z ∈ A seems more natural

than that of ensuring a cyclic permutation of all elements with all sums of consecutive pairs in the

group. The following known result can be proved by standard techniques.

Proposition 1.4 (see, e.g., [29]) Let q be a prime power and let A be a multiplicative subgroup of

the finite field Fq of size |A| = d ≥ q1/2. Then, for any two subsets B,C ⊂ Fq satisfying |B||C| ≥ q3

d2

there are x ∈ B and y ∈ C so that x+ y ∈ A. In particular, if |A| ≥ q3/4 there are x, y, z ∈ A so that

x+ y = z.
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We prefer to formulate some of our proofs here using eigenvalues of Cayley sum-graphs. This is

essentially equivalent to the standard harmonic analysis approach, but is useful for establishing more

involved additive relations, by combining the basic spectral approach with graph theoretic arguments.

This can provide more complicated (though less natural) additive structures in multiplicative groups.

Here are two examples.

Proposition 1.5 For any multiplicative subgroup A of the finite field Fq that satisfies |A| ≥ q1−1/(2r−2)

and for any subset B of the field satisfying |B| ≥ 2 q
(2r−1)/2

|A|r−1 there are r distinct elements a1, a2, . . . , ar ∈
B so that for all 1 ≤ i < j ≤ r, ai + aj ∈ A. In particular, if |A| > 21/rq1−1/(2r) there are such

a1, a2 . . . , ar in A.

Proposition 1.6 If q is a sufficiently large prime power and d > q11/12(log q)1/5 is divisible by 3 and

divides q − 1, then the elements of the multiplicative subgroup A of size d in the finite field Fq can be

partitioned into d/3 disjoint triples so that all sums of pairs of elements in the same triple belong to

A.

The rest of this paper is organized as follows. In Section 2 we prove that large multiplicative

subgroups must contain various additive structures. Section 3 contains the proof of Theorem 1.1 and

several stronger variants. Section 4 contains some concluding remarks, extensions and open problems,

and the proof of Proposition 1.3 appears in the appendix.

2 Finding additive structures

2.1 Quadratic residues

In this subsection we prove the following statement, conjectured in [30].

Theorem 2.1 For any prime p > 13 there is a numbering a0, a1, . . . , ak−1 of the k = p−1
2 quadratic

residues of Fp so that ai + ai+1 is also quadratic residue modulo p for all 0 ≤ i < k − 1, and so is

ak−1 + a0.

The proof is rather simple, but as we wish to get the result for all primes p > 13 it involves some

computation that can be avoided if we only wish to prove the result for sufficiently large primes. We

need the following result of Jackson.

Lemma 2.2 ([21]) For each integer r ≥ 2, any 2-connected r-regular graph with m ≤ 3r vertices is

Hamiltonian.

We also need the following simple lemma.
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Lemma 2.3 Let p ≥ 5 be a prime, let Q denote the set of the (p − 1)/2 quadratic residues modulo

p, and let χ : Fp 7→ {0,−1, 1} denote the quadratic character defined by χ(0) = 0, χ(x) = 1 if x is a

quadratic residue and χ(x) = −1 if x is a quadratic nonresidue. Then:

(i) For each x ∈ Q there are exactly

r =
p− 6− χ(−1)− 2χ(2)

4

y ∈ Q− {x} so that x+ y ∈ Q.

(ii) For any two subsets X,Y ∈ Zp satisfying |X|(|Y | − 1)2 > |Y |(p − |Y | + 1) there are x ∈ X and

y ∈ Y so that x+ y ∈ Q.

Proof. Clearly ∑
x∈Fp

χ(x) = 0. (1)

Similarly, for every two distinct y, y′ ∈ Fp,∑
x∈Fp

χ(x+ y)χ(x+ y′) =
∑

x∈Fp,x 6=−y
χ(
x+ y′

x+ y
) =

∑
x∈Fp,x 6=−y

χ(1 +
y′ − y
x+ y

) = −1, (2)

where the last equality holds, since y′ − y 6= 0, and hence as x ranges over all elements of Fp − {−y}
the quantity 1 + y′−y

x+y ranges over all elements in Fp − {1}.

(i) Given x ∈ Q, note that the quantity

(χ(y) + 1)(χ(x+ y) + 1)

4

is 1 iff both y and the sum x+ y lie in Q, and is zero iff either y or x+ y is a quadratic non-residue.

Therefore the number d of y ∈ Q− {x} so that x+ y ∈ Q satisfies

d =∑
y∈Fp

(χ(y) + 1)(χ(x+ y) + 1)

4
− (χ(0) + 1)(χ(x) + 1)

4
− (χ(−x) + 1)(χ(0) + 1)

4
− (χ(x) + 1)(χ(2x) + 1)

4

=
∑
y∈Fp

(χ(y) + 1)(χ(x+ y) + 1)

4
− 5 + χ(−1) + 2χ(2)

4
.

By (1), (2) we conclude that ∑
y∈Fp

(χ(y) + 1)(χ(x+ y) + 1)

4
=
p− 1

4

implying the assertion of (i).
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(ii) Suppose there are no x ∈ X and y ∈ Y so that x+ y ∈ Q. Then for each x ∈ X and each y ∈ Y
either x + y = 0 or χ(x + y) = −1. This means that for each x ∈ X (

∑
y∈Y χ(x + y))2 ≥ (|Y | − 1)2.

Therefore, using (2),

|X|(|Y | − 1)2 ≤
∑
x∈X

(
∑
y∈Y

χ(x+ y))2 ≤
∑
x∈Fp

(
∑
y∈Y

χ(x+ y))2

≤
∑
x∈Fp

(|Y |+
∑

y 6=y′∈Y
χ(x+ y)χ(x+ y′)) = p|Y | − |Y |(|Y | − 1) = |Y |(p− |Y |+ 1),

as needed. 2

Proof of Theorem 2.1 Let p > 13 be a prime, and let Q denote the set of all k = (p − 1)/2

quadratic residues modulo p. Let G be the graph whose vertices are the elements of Q, where x, y ∈ Q
are connected iff x + y ∈ Q. By Lemma 2.3, G is r-regular, where r = p−6−χ(−1)−2χ(2)

4 ≥ p−9
4 . If

p ≥ 29 then k = (p − 1)/2 ≤ 3(p − 9)/4 ≤ 3r, that is, in this case the graph G satisfies the degree

condition in Lemma 2.2.

We next show that if p ≥ 29 then the graph G is 2-connected. Assume this is false, and there is a

vertex v of G so that G − v is disconnected. Let X be the smallest connected component of G − v.

Since the degree of every vertex in G is r, each vertex u of X has at least r − 1 neighbors in X, and

hence |X| ≥ r ≥ p−9
4 . Put Y = Q − (X ∪ {v}) and note that there are no edges between X and Y .

Thus, by Lemma 2.3, part (ii) |X|(|Y | − 1)2 ≤ |Y |(p− |Y |+ 1). Since |X|+ |Y |+ 1 = |Q| = p−1
2 it is

not difficult to check that the maximum possible value of the left hand side in the last inequality for

|X| ≥ p−9
4 and p ≥ 29 is obtained when |X| = p−9

4 and |Y | = p+3
4 . As the right hand side is clearly at

most (p+1)2

4 we conclude that

p− 9

4
(
p− 1

4
)2 ≤ (p+ 1)2

4
,

that is (p − 9)(p − 1)2 ≤ 16(p + 1)2. However, it is easy to check that this is incorrect for all p ≥ 29.

By Lemma 2.2 it follows that the graph G is Hamiltonian for all primes p ≥ 29. It remains to check

the cases p ∈ {17, 19, 23}. For p = 19, by quadratic reciprocity (or directly), the degree of regularity

of the graph G is r = 19−6−χ(−1)−2χ(2)
4 = 4 and its number of vertices is |Q| = 19−1

2 = 9 ≤ 3 ·4 hence it

satisfies the degree condition in Lemma 2.2. If there is a vertex v of G so that G− v is disconnected,

then any connected component of G − v must be of size at least 4, hence there are two components,

each of size 4. But this is impossible, as it implies that all vertices of G− v have at most 3 neighbors

in their components, and hence all must be connected to v, contradiction, as G is 4-regular.

For p = 17 the graph G is 2-regular, and is in fact a cycle: (1, 8, 13, 2, 16, 9, 4, 15) (note that all

sums of adjacent elements in this cycle are quadratic residues). For p = 23 the set of quadratic residues

is Q = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}, the corresponding graph is 4-regular and it is not difficult to

find in it a Hamilton cycle: (1, 2, 16, 8, 4, 9, 3, 6, 18, 13, 12).

This completes the proof. 2
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2.2 Smaller subgroups

In this subsection we prove Theorem 1.2 as well as Propositions 1.5 and 1.6. We also present a simple

proof of the known Proposition 1.4 using our graph theoretic terminology. This proof is essentially

equivalent to the known standard ones, but the description given here is useful as the same basic

approach yields more sophisticated results when combined with additional graph theoretic arguments.

We need several known results about the spectral properties of Cayley sum-graphs of Abelian groups

and about the relation between the spectrum of a graph and its structure.

A graph G is called an (n, d, λ)-graph if it is d-regular, has n vertices, and the absolute value of

each nontrivial eigenvalue of its adjacency matrix is at most λ. This notion was introduced by the

first author in the 80s, motivated by the observation that such graphs in which λ is much smaller than

d exhibit strong pseudo-random properties. See [24] for a survey about the properties of such graphs

(and other pseudo-random graphs).

The following simple lemma is proved in [2].

Lemma 2.4 Let G be an (n, d, λ)-graph and let U ⊂ V be a set of vertices of G. Then the number of

edges e(U) in the induced subgraph of G on U satisfies

|e(U)− |U |
2d

2n
| ≤ λ|U |(1− |U |

n
) ( < λ|U |).

A similar argument gives the following, sometimes called the expander mixing lemma (c.f., e.g.,

[5], Corollary 9.2.5).

Lemma 2.5 Let G be an (n, d, λ)-graph and let U and W be two subsets of vertices of G. Then the

number of edges e(U,W ) with an end point in U and another in W (where edges with both endpoints

in U ∩W are counted twice) satisfies

|e(U,W )− |U ||W |d
n

| < λ
√
|U ||W |.

A crucial ingredient in the proof of Theorem 1.2 is the following result of Krivelevich and Sudakov.

Lemma 2.6 ([23]) Let G be an (n, d, λ) graph and assume n is sufficiently large. If

λ < (log log n)2d/(1000 log n log log log n)

then G is Hamiltonian.

For an abelian group B and a subset T ⊂ B, the Cayley sum graph G = G(B, T ) of B with

respect to T is the graph whose set of vertices is B, in which yz is an edge for each y, z ∈ B satisfying

y+z ∈ T . It is easy and well known (c.f., e.g., [3]) that the eigenvalues of G can be expressed in terms

of T and the characters of B. Indeed, the eigenvalues of the square of the adjacency matrix of G are all

the expressions |
∑

s∈T χ(s)|2, where χ is a character of B, and the characters are the corresponding
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eigenvectors. Therefore each nontrivial eigenvalue of the graph G = G(B, T ) is, in absolute value,

|
∑

s∈T χ(s)| for some nontrivial character χ of B.

For our purpose here we consider Cayley sum-graphs G = G(Fq, A), where Fq is the finite field

with q elements and A is a multiplicative subgroup of Fq. In this case, the nontrivial character

sums providing the eigenvalues of G can be bounded using Weil’s Theorem [32] (the special case of a

multiplicative subgroup is simpler than the general case and can be proved directly by expressing the

sums in terms of Gauss sums). This gives the following.

Lemma 2.7 Let A be a multiplicative subgroup in the finite field Fq and let G = G(Fq, A) be the

Cayley sum-graph of Fq with respect to A. Thus x, y ∈ Fq are adjacent iff x + y ∈ A. Then G is a

(q, |A|, q1/2)-graph, that is, it has q vertices, is regular of degree |A| and every nontrivial eigenvalue of

it has absolute value at most q1/2.

Note that the graph G = G(Fq, A) may have loops, indeed if 2x ∈ A then (x, x) is a loop at the

vertex x. There can be at most one loop in each vertex, and such a loop contributes 1 to the degree

of the vertex.

The proofs of Theorem 1.2 and Propositions 1.4, 1.5 and 1.6 are now simple consequences of the

above lemmas. The details follow.

Proof of Theorem 1.2 Let G = G(Fq, A) denote the Cayley sum-graph of Fp with respect to A. By

Lemma 2.7 this is a (q, d, q1/2)-graph. Let H be the induced subgraph of G on the set of vertices A. It

is clear that H is regular, since if x+ y = z for some x, y, z ∈ A, x 6= y and g ∈ A, then gx+ gy = gz.

The mapping f(y) = gy is a bijection between the neighbors of x in H and the neighbors of gx in H.

Let r denote the degree of regularity of H. By Lemma 2.4, and since by assumption q3/2 = o(d), it

follows that r = (1 + o(1))d
2

q . By interlacing of eigenvalues it follows that H is a (d, r, q1/2)-graph.

For an appropriate choice of the constant c in Theorem 1.2 this graph thus satisfies the assumption

of Lemma 2.6 and it is therefore Hamiltonian, providing the assertion of Theorem 1.2. 2

Proof of Propositions 1.4, 1.5 and 1.6 As before, consider the Cayley sum-graph G = G(Fq, A),

which is a (q, d, q1/2)-graph, by Lemma 2.7. By Lemma 2.5 the number of edges in this graph connecting

a vertex of B and a vertex of C is bigger than

|B||C|d
q

− q1/2
√
|B||C| ≥ 0,

where the last inequality follows from the assumption that |B||C| ≥ q3

d2 . Thus there is an edge

connecting some x ∈ B and y ∈ C, implying the assertion of Proposition 1.4.

The proof of Proposition 1.5 follows from the same reasoning, by applying the fact proved in [4]

(Lemma 2.1) that asserts that any set of at least

(λ+ 1)n

d
(1 +

n

d
+ . . .+ (

n

d
)r−2)
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vertices in an (n, d, λ)-graph contains a complete graph on r vertices. Thus, in our case any set B of

size at least
(q1/2 + 1)q

|A|
(1 +

q

|A|
+ . . . (

q

|A|
)r−2)

contains r elements with all sums of pairs in A, as claimed in Proposition 1.5.

The proof of Proposition 1.6 proceeds as in the proof of Theorem 1.2. As in that proof, the induced

subgraph of G(Fq, A) on A is a (d, r, q1/2)-graph, with r = (1 + o(1))d
2

q . The result now follows from

the main result of [25] that asserts that any (n, d, λ)-graph in which the number of vertices is divisible

by 3, n is sufficiently large and

λ = o(
d3

n2 log n
)

contains n/3 pairwise vertex disjoint triangles. Since by assumption here

q1/2 = o(
r3

q2 log q
),

the desired result follows. 2

3 Sum-free subgroups

In this section we prove Theorem 1.1 and several more precise statements, as follows.

Theorem 3.1 For any positive integer d which is not divisible by 6 there is a set E(d) of at most
d2

log d primes so that for any prime p ≡ 1(mod d) which does not belong to E(d), there are no x, y, z in

the subgroup H of cardinality d of Z∗p that satisfy x+ y = z (equivalently, there are no x′, y′ ∈ H with

x′ + y′ = 1.) Every member of E(d) is smaller than 3d and in addition the following holds.

(i) For most values of d that are not divisible by 6 the smallest prime p ≡ 1( mod d), p 6∈ E(d) satisfies

p = O(d3). The same assertion holds for most primes d. Here ”most d” means that the proportion of

values of d in the range [D, 2D] for which the above assertion fails is o(D).

(ii) For every integer d which is not divisible by 6 the smallest prime p ≡ 1( mod d), p 6∈ E(d) satisfies

p = O(d5).

(iii) There is a fixed ε > 0 so that for every integer d which is not divisible by 6 and does not have a

prime factor that exceeds dε, the smallest prime p ≡ 1(mod d), p 6∈ E(d) satisfies p = O(d3).

The assumption that d is not divisible by 6 in the above theorem is essential, as shown by the

following simple observation.

Claim 3.2 If d is divisible by 6 then any multiplicative subgroup H of size d in any finite field Fq

contains a solution to x+ y = 1.
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Proof. Since the multiplicative group of a finite field is cyclic, so is its subgroup H, and it thus

contains an element z of order 6. Therefore z3 = −1 and hence

z + z5 − 1 = z + z5 + z3 = z(1 + z2 + z4) =
z(z6 − 1)

z2 − 1
= 0,

showing that x = z and y = z5 satisfy x+ y = 1. 2

We proceed with the proof of the theorem. Let d be an integer not divisible by 6. Put ξ = e2πi/d,

let K = Q[ξ] be the cyclotomic field obtained by adjoining ξ to the rationals Q, and let O = OK

denote the ring of integers in K. Hence the degree of the extension [K : Q] = φ(d) is the Euler φ

function.

For 0 < j < d define zj = ξj − 1 and for 0 < j1 ≤ j2 < d define zj1,j2 = ξj1 + ξj2 − 1. Each zj is

clearly nonzero. Note that since d is not divisible by 6, each number zj1,j2 is also nonzero. Indeed,

any solution of the equation x + y = 1 with x = a + ib, y = a′ + ib′ of absolute value 1 must satisfy

b′ = −b and hence |a| = |a′| (=
√

1− b2). Since a+ a′ = 1 this shows that the only solution is

{x, y} = {1 + i
√

3

2
,
1− i

√
3

2
} = {e2πi/6, e−2πi/6},

and these numbers are not powers of ξ.

Define

A = A(ξ) =
∏

0<j<d

zj
∏

0<j1,j2<d

zj1,j2 . (3)

Note that A is invariant under Galois conjugation, since A(ξ) = A(ξr) for (r, d) = 1. Therefore A is a

nonzero integer and is divisible by each of the norms Nj = NormK/Q(zj) and Nj1,j2 = NormK/Q(zj1,j2)

(recall that the norm of each element of K is the product of its φ(d) conjugates).

Clearly |A| < 2d3d
2

and therefore it has at most d2/ log d prime factors. (We note, in passing, that

the absolute value of the first product
∏

0<j<d zj is exactly d, and it can in fact be ignored, but this

is not crucial for our purpose here). Moreover, every prime dividing A must divide one of the norms

Nj or Nj1,j2 , and each of those is smaller than 3d. Let E(d) denote the set of all prime divisors of A

which are 1 modulo d, then |E(d)| ≤ d2

log d (with room to spare) and each member of E(d) is smaller

than 3d.

Let p be a prime that does not divide A and satisfies p ≡ 1(mod d). Then xd − 1 ∈ Fp[x] factors

into linear factors (c.f., e.g., [26], Theorem 2.47) and therefore the ideal (p) in OK factors in prime

ideals of degree 1. Fix such an ideal P above (p), then the quotient OK/P is isomorphic to the finite

field Fp. Let π : OK 7→ OK/P be the residue map. Since by construction p does not divide any of the

norms Nj and Nj1,j2 it follows that P is coprime with (zj) and (zj1,j2) and hence

π(ξ)j − 1 6= 0 for 0 < j < d

and

π(ξ)j1 + π(ξ)j2 − 1 6= 0 for 0 < j1 ≤ j2 < d.
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Thus π(ξ) generates in (OK/P )∗ (which is isomorphic to F ∗p ) a group of size d without any relation

x+ y = 1 (or x+ y = z).

It is worth noting that an equivalent more explicit description of the above procedure, avoiding

the discussion of prime ideals, is to simply define π(ξ) = g, where g is an element of order d in Z∗p ,

extend this mapping to a ring homomorphism from Zp[ξ] = OK/(p) to Zp, and observe that none of

the quantities ξj1 + ξj2 − 1 belongs to its kernel, as by multiplying it by all its conjugates we get an

integer which is not divisible by p and hence is not mapped to 0 in Zp.

It remains to check how small we can take p, that is, to prove the claims in parts (i),(ii) and (iii)

of the theorem. Recall the condition that p does not divide A and p ≡ 1(mod d). This is basically

Linnik’s problem, with the (minor) difference that we also need to produce sufficiently many primes

in the desired progression to ensure p 6∈ E(d), that is, we need some d2

log d primes.

Any treatment of Linnik’s problem on the least prime in a progression results from an asymptotic

estimate for the function ψ(x; d, a) which provides a weighted count of the primes (and prime powers)

in the progression a(mod d) that do not exceed x. Recall that

ψ(x; q, a) =
∑

n≤x,n≡a( mod q)

Λ(n),

where Λ(n) is log p if n = pk is a prime power, and Λ(n) = 0 otherwise. As the contribution from

the proper powers of primes is negligible, and in view of the asympototics ψ(x; d, 1) = (1 + o(1)) x
φ(d)

for x sufficiently large, the best estimate for the smallest possible p we can hope for in our problem is

p = O(d3). This can be achieved on average in d by invoking the Bombieri-Vinogradov Theorem (see,

e.g., [20], page 420).

Theorem 3.3 (Bombieri-Vinogradov)∑
q≤Q

maxa,(a,q)=1|ψ(x; q, a)− x

φ(q)
| < cA

x

(log x)A
(4)

for any A > 0, with Q = x1/2(log x)−B where B = B(A).

Fix a range D ≤ d ≤ 2D, and apply (4) with x = cD3. It follows that for most d in this range (and

also for most primes d in this range)

|ψ(x; d, 1)− x

φ(d)
| < c

x

D(logD)2
(5)

and in particular

ψ(x; d, 1) = (1 + o(1))
x

φ(d)
> c′d2. (6)

By the preceding discussion, this supplies the assertion of (i).
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The proof of part (ii), which deals with individual values of d, is similar. Returning to Linnik’s

problem, Heath-Brown (see [16], sections 13-15) proved that∑
p≡1( mod d),d5.5−0.6<p<d5.5

log p

p
≥ Ω(

log d

φ(d)
). (7)

Hence

ψ(d5.5; d, 1) ≥ Ω(d4.5−0.6) > cd2.

The estimate 5.5 has been improved to 5.2 in [34] and to 5 in [35]. This implies the assertion of (ii).

It remains to prove (iii) which asserts that if d has only small prime factors, one may recover the

estimate p = O(d3). We proceed with a sketch of this proof.

As noted in section 1 of [16], one has

ψ(x; d, a) = (1 + o(1))
x

φ(d)
(8)

for x > d12/5+ε, (a, d) = 1, provided

(*) All Dirichlet functions L(s, χ) to the modulus d are zero-free in the region

1 ≥ Re s > 1− C(ε)

log[d(2 + |Im s|)]
. (9)

The exponent 12/5 here is imposed by the density estimate∑
χ( mod d)

N(σ, T, χ) < Cε(dT )( 12
5

+ε)(1−σ) (10)

where

N(σ, T, χ) = |{ρ = α+ iβ : L(ρ, χ) = 0, σ < α < 1, |β| < T}|

resulting from the work of Jutila [22] and Huxley [18].

In case d is composed of a fixed set of prime factors (9) was proven by Gallagher [12] and Iwaniec

[19], in the much larger range

Re s > 1− c

[log(d(2 + |Im s|))]θ

for some constant θ < 1.

More generally, it results from the work of Graham and Ringrose [14] and Iwaniec [19] that (8)

holds provided d has prime factors bounded by dδ(ε) (see Chang [8] for a unified treatment), except

for a possible Siegel zero. Recall that this is a real zero β0 of an L-function L(s, ψ) (mod d), for a real

character ψ, which is close to 1, say

β0 ≥ 1− 1

3 log d
.
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If such Siegel zero β0 exists, it is unique and one obtains, assuming x > d12/5+ε

ψ(x; d, 1) =
x

φ(d)
(1− xβ0−1

β0
+O(x−εC(ε)/ log d)) ≥ x

φ(d)
(
1

η
+O(x−εC(ε)/ log d)) (11)

where we denoted
1

η
= (1− β0) log d. (12)

Hence, if η is at most O(1), (11) is conclusive by taking C(ε) large enough. On the other hand, if η is

large, we invoke Heath-Brown’s result [15], Theorem 2, according to which

|{p ≤ x; p ≡ 1(mod d)}| > x

φ(d) log x
(
4

3
log

5

4
− δ) (13)

provided d2+δ ≤ x < d400 and η > η(δ). In particular, it follows from the discussion above that

ψ(x; d, 1) ≥ x

φ(d) log x
for x > d12/5+ε (14)

if d has no prime factor exceeding dδ(ε). This implies (iii) and completes the proof of Theorem 3.1. 2

4 Concluding remarks and open problems

We have shown that there are infinitely many examples of sum-free multiplicative subgroups of size

Θ(p1/3) in prime fields Fp, whereas it is known that any subgroup of F ∗q of size at least q3/4 cannot

be sum-free, that is, it must contain relations of the form x+ y = z.

It will be interesting to close the gap between the upper and lower bounds. A natural heuristic

argument suggests that the right threshold may be d = Θ(q1/2), since if a subgroup H of size d behaves

randomly, the expected number of solutions of the equation x+ y = 1 with x, y ∈ H should be

Θ(q · (d
q

)2) = Θ(
d2

q
)

which is 1 for d = Θ(q1/2). However, the known constructions mentioned in the introduction, which

provide bigger examples of sum-free multiplicative subgroups for non-prime fields, indicate that there

may be similar examples in the prime case as well. The threshold size for ensuring the existence

of a Hamilton cycle in a subgroup, as in Theorem 1.2, may well be close to that ensuring a single

relation x + y = 1, as random graphs with degrees logarithmic in the number of vertices are already

hamiltonian with high probability.

It is worth noting that if we assume square root cancellation in the Fourier coefficients of mul-

tiplicative subgroups, as conjectured in [28], we would get that subgroups of size cq2/3 of F ∗q must

contain a solution to x + y = 1, as these coefficients are exactly the nontrivial eigenvalues of the

corresponding Cayley sum-graphs. In view of the existing examples in the non-prime case it may be

12



that the tight threshold for ensuring a solution to the equation x+ y = z in a multiplicative subgroup

of a finite field Fq (for prime or non-prime q) is q2/3+o(1) and not q1/2+o(1). Another comment relevant

here is that in the proof of Theorem 3.1 we used the fact that the number A = A(ξ) defined in (3)

is smaller than 2d3d
2

to conclude that the number of primes p ≡ 1(mod d) that divide it does not

exceed d2/ log d. One may suspect that in fact only a fraction of roughly 1/φ(d) of the primes dividing

A are 1(mod d). We have not been able to prove that this is the case, but if true this would improve

the Ω(p1/3) lower bound in Theorem 1.1 to p1/2−o(1).

The proofs in Section 2 can be easily modified to provide additional additive structures in large

multiplicative subgroups A of finite fields. Indeed, one can either apply the results known about

(n, d, λ)-graphs to the Cayley sum-graph of Fq with respect to the elements of A, or apply those to its

induced subgraph on A. Thus, for example, by the known result that any (n, d, λ)-graph with d−λ ≥ 2

and an even number of vertices contains perfect matching (see [24] Theorem 4.3), we conclude that the

elements of any multiplicative subgroup A of even order d ≥ cq3/4 of Fq can be partitioned into disjoint

pairs so that the sums of elements in each pair lie in A. Similarly, it is known (see [24], Proposition

4.12), that for any fixed k, any (n, d, λ)-graph that satisfies λ2k−1 ≤ ε(k)d2k/n contains a cycle of

length 2k + 1. This implies that any multiplicative subgroup A of size at least C(k)q6k+1/8k contains

2k + 1 elements a0, a1, . . . , a2k so that all sums ai + ai+1, where indices are reduced modulo 2k + 1,

lie in A. Another statement follows from the known result (see [24], Theorem 4.10) that for any fixed

graph H = (U,E) with maximum degree ∆, any set of m > c(H)λ(nd )∆ vertices in an (n, d, λ)-graph

contains a copy of H. This implies that any multiplicative subgroup A of size at least c(H)q1− 1
2∆+2

in Fq contains a collection {au : u ∈ U} of |U |-elements so that all sums au + av for uv ∈ E lie in A.

Finally, in a very recent paper of Allen et. al. [1] the authors show that any (n, d, λ)-graph G with

λ = o(d5/2/n3/2) contains a square of a Hamilton cycle, and if λ = o(d3k/2n1−3k/2) then G contains a

k − th power of a Hamilton cycle. This implies an extension and a strenthening of the statement in

Proposition 1.6.

The simple proof of Proposition 1.4, combined with more sophisticated character-sum estimates, yields

some nontrivial results for much smaller multiplicative subgroups as well. Indeed, the second author

proved in [6] that if H is a multiplicative subgroup of size pδ of the prime field Fp, then for every

0 < a < p

|
∑
h∈H

e2πiah/p| ≤ p−e−C/δ |H|,

for some constant C > 1. This implies that for any such H, if B and C are two subsets of Fp and

|B||C| ≥ p−2e−C/δp2

then there are b ∈ B and c ∈ C with b+ c ∈ H.

An old result of Chvatál and Erdős [9] asserts that any graph whose connectivity is at least as large as

its independence number is hamiltonian. This can also be combined with the character-sum estimates
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and the basic approach in Section 2 to prove the following statement (in which we make no attempt

to optimize the absolute constants):

Let A be a mutiplicative subgroup of size |A| = d in a the finite field Fq, and let B be an arbitrary

subset of m elements of Fq so that |(b−A)∩B| > md
2q for all b ∈ B, and m > 6q5/2

d2 . Then the elements

of B can be numbered b0, b1, . . . bm−1, so that for all i, bi + bi+1 ∈ A.

The proof proceeds as follows. The Cayley sum-graph G of Fq with respect to A is a (q, d, q1/2)-

graph, and hence by a theorem of Hoffman [17] its independence number is smaller than q3/2/d. Let

T be the induced subgraph of G on B. By the assumption |(b − A) ∩ B| > md
2q for all b ∈ B, the

minimum degree in T is bigger than md
2q . We claim that this implies that the connectivity of T is at

least md
6q . Indeed, otherwise we can delete from T a set of at most md

6q vertices and disconnect it. Let

U be the set of vertices of the smallest connected component after this deletion. Then |U | ≥ md
3q , as

the minimum degree of any vertex in the component is at least md
2q −

md
6q = md

3q . There are no edges

between U and the rest of the disconnected graph, which has at least m/3 vertices. Thus, by Lemma

2.5
md

3q

m

3
≤ q

d2
q2,

that is, m < 3q2

d3/2 , contradicting the assumption that m > 6q5/2

d2 . Thus, the connectivity of T is

at least md
6q , as claimed. Its independence number does not exceed that of G, which is at most

q3/2/d, as mentioned above. The desired result thus follows from the Chvatál-Erdős result, as md
6q >

q3/2/d, by assumption. In the special case that A is the set of all quadratic residues of a field Fq the

above statement implies that the elements of every subset B of Fq of size |B| = m > 25
√
q so that

|(b − A) ∩ B| > m
4 for all b ∈ B can be arranged in a cycle so that all sums of adjacent elements are

quadratic residues.

The proof in Section 3 together with the known results about solutions of equations in roots of unity,

extending the basic result of Mahler [27], can provide large multiplicative subgroups in finite fields

with no solutions of more general equations like x + y + z = w and similar ones. Here is a sketch of

the argument. For simplicity we only consider the equations x + y = z and x + y + z = w together,

but it will be clear that the same method can work for other cases.

For nonzero rationals a1, . . . , an, a solution (ξ1, . . . , ξn) of the equation a1ξ1 + . . . + anξn = 1 in

roots of unity ξ1, . . . ξn is non-degenerate if no proper subsum
∑
aiξi vanishes. Conway and Jones [10]

showed that for any such non-degenerate solution (ξ1, . . . , ξn), ξs1 = ξs2 = · · · = ξsn = 1, where s is a

product of distinct primes p1, . . . , p` so that
∑`

i=1(pi−2) ≤ n−1. For the special case of the equation

x + y + z = 1, if each variable is a power ξ = e2πi/d and d is odd, it is clear that any solution is

non-degenerate, since −1 is not a power of ξ, and hence no subsum can vanish. Thus, by the result of

[10] there is a finite number C0 (that we can compute explicitly), so that for every d which is coprime

with C0 and is not divisible by 6, the equation ξi1 + ξi2 + ξi3 = 1 (as well as the equation ξi1 + ξi2 = 1)
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has no solution. We can now repeat the strategy of the proof in Section 3. Define

B =
∏

1≤i<d
(ξi − 1)

∏
1≤i1,i2<d

(ξi1 + ξi2 − 1)
∏

1≤i1,i2,i3<d
(ξi1 + ξi2 + ξi3 − 1)

and observe that this is an integer of absolute value smaller than 3d
3
. Therefore there are at most

d3/ log d distinct primes that divide it. If p ≡ 1(mod d) does not divide B then by the reasoning

in Section 3 there is a multiplicative subgroup of size d in Z∗p which contains neither solutions to

x+ y = z nor solutions to x+ y+w = 1. By the known results about Linnik’s problem we can ensure

the existence of such a prime p of size at most O(d4) for most d, or for smooth numbers d, and a prime

of size O(d5) for each d coprime with C0.
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[25] M. Krivelevich, B. Sudakov and T. Szabó, Triangle factors in pseudo-random graphs, Combina-

torica 24 (2004), 403-426.

[26] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983.

[27] K. Mahler, Zur Approximation algebraischer Zahlen. I. (German), Math. Ann. 107 (1933), no. 1,

691–730.

16



[28] H. L. Montgomery, R. C. Vaughan and T. D. Wooley, Some remarks on exponential sums asso-

ciated with k-th powers, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 21–33.
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(1948), Herman, Paris.

[33] S. Yekhanin, A note on plane pointless curves, Finite Fields Appl 13 2007), 418–422.

[34] T. Xylouris, On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet

L-functions, Acta Arith. 150 (2011), no. 1, 65–91.
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5 Appendix: sum-free subgroups in characteristic 2

In this appendix we present the proof of Proposition 1.3 following the approach of Yekhanin in [33].

Throughout the appendix, q is always some power of 2. We start with the following known lemma,

for completeness we include a simple proof.

Lemma 5.1 Let q be a power of 2 and suppose that x, y, z ∈ F ∗q4 satisfy

xq+1 + yq+1 + zq+1 = 0. (15)

Then (xy )q+1 ∈ Fq (and similarly (xz )q+1, (yz )q+1 ∈ Fq.)

Proof. By (15),

xq+1 + yq+1 = zq+1

and hence also

xq
3+q2

+ yq
3+q2

= zq
3+q2
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Multiplying and using the fact that for any t ∈ F ∗q4 , T (t) = tq
3+q2+q+1 ∈ Fq we get that

T (x) + T (y) + T (x)(
y

x
)q+1 + T (y)(

x

y
)q+1 = T (z).

This means that for w = (xy )q+1 (6= 0) there are a, b, c ∈ Fq so that aw + b/w = c, that is, w satisfies

a quadratic equation aw2 − cw + b = 0 over Fq. It follows that w ∈ F ∗q2 . Thus

w = (
x

y
)q+1 ∈ Fq2 ,

and also

(
x

y
)q

2+1 ∈ Fq2

(as raising it to the power q2 − 1 we get 1). It follows that

(
x

y
)2 = (

x

y
)gcd (q+1,q2+1) ∈ Fq2

and since the mapping f(t) = t2 is a bijection of Fq2 , as the characteristic is 2, it follows that x
y ∈ Fq2

and hence that (xy )q+1 ∈ Fq, as needed. 2

Corollary 5.2 If X,Y, Z ∈ F ∗q4 lie in the same coset of a multiplicative subgroup which is a subset of

{wq+1 : w ∈ F ∗q4}, and X + Y + Z = 0 then the ratios X/Y,X/Z and Y/Z are all in Fq.

Proof. By assumption X = ρxq+1, Y = ρyq+1 and Z = ρzq+1 for some ρ, x, y, z ∈ F ∗q4 , and

ρxq+1 + ρyq+1 + ρzq+1 = 0.

The result thus follows from Lemma 5.1. 2

Corollary 5.3 If X,Y, Z ∈ F ∗q4 lie in the same coset of the multiplicative subgroup {x ∈ F ∗q4 : xq
2+1 =

1} then X + Y + Z 6= 0.

Proof. Assume, for contradiction, that X + Y + Z = 0. Note that each element of the subgroup

{x ∈ F ∗q4 : xq
2+1 = 1} is gq

2−1 = [gq−1]q+1 for some g ∈ F ∗q4 . Thus, by Corollary 5.2, there is

a ρ ∈ F ∗q4 and α, β, γ ∈ F ∗q so that X = ρα, Y = ρβ, Z = ργ. Since X,Y, Z are in the same

coset of the subgroup {x ∈ F ∗q4 : xq
2+1 = 1} this implies that Xq2+1 = Y q2+1 = Zq

2+1. However,

Xq2+1 = ρq
2+1αq

2+1 = ρq
2+1α2, and together with the analogous expressions for Y q2+1 and Zq

2+1 we

conclude that α2 = β2 = γ2. Hence α = β = γ and thus 3α = 0 and α = 0, contradiction. 2
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Lemma 5.4 Define

Sq = {x ∈ F ∗q4 : x(q2+1)(q−1) = 1}

Then every coset tSq of Sq, for t ∈ F ∗q4, can be partitioned into q2 + 1 pairwise disjoint sets

tSq = ∪q
2+1
i=1 Ci

so that each set Ci is ciF
∗
q for some ci ∈ F ∗q4 and if a + b + c = 0 for some a, b, c ∈ tSq, then there

exists an i so that a, b, c ∈ Ci.

Proof. We have to show that the ratios a/b, a/c and b/c are all in F ∗q , and this follows from Corollary

5.2. 2

We can now prove Proposition 1.3. Recall that q = 24·4k and

d = (22·4k + 1)(22·4k−1
+ 1) · · · (22 + 1).

Let H be the multiplicative subgroup of order d in Fq. We have to show that there are no X,Y, Z ∈ H
so that X +Y +Z = 0. This is equivalent to the assertion that for any nonzero coset of H in Fq there

are no X,Y, Z in the coset with X + Y +Z = 0. We prove this fact by induction on k. For k = 0 this

follows from Corollary 5.3 (with q = 2). Assuming the assertion for k − 1, we prove it for k. Suppose

this is false and X + Y + Z = 0. By Lemma 5.4 X,Y, Z lie in the same coset of F ∗
24k

and hence also

in the same coset of H ∩ F ∗
24k
. However, any element x in F ∗

24k
satisfies

x22·4k+1 = x2

and thus

H ∩ F ∗
24k

= {x : x2(22·4k−1
+1)···(22+1) = 1} = {x : x(22·4k−1

+1)···(22+1) = 1},

(where here we used that in characteristic 2, z2 = 1 implies that z = 1). The desired contradiction

now follows from the induction hypothesis. This completes the proof. 2
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