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Abstract

A graph property is called monotone if it is closed under removal of edges and vertices. Many
monotone graph properties are some of the most well-studied properties in graph theory, and the
abstract family of all monotone graph properties was also extensively studied. Our main result in
this paper is that any monotone graph property can be tested with one-sided error, and with query
complexity depending only on €. This result unifies several previous results in the area of property
testing, and also implies the testability of well-studied graph properties that were previously not
known to be testable. At the heart of the proof is an application of a variant of Szemerédi’s
Regularity Lemma. The main ideas behind this application may be useful in characterizing all
testable graph properties, and in generally studying graph property testing.

As a byproduct of our techniques we also obtain additional results in graph theory and property
testing, which are of independent interest. One of these results is that the query complexity of
testing testable graph properties with one-sided error may be arbitrarily large. Another result,
which significantly extends previous results in extremal graph-theory, is that for any monotone
graph property P, any graph that is e-far from satisfying P, contains a subgraph of size depending
on € only, which does not satisfy P. Finally, we prove the following compactness statement: If a
graph G is e-far from satisfying a (possibly infinite) set of monotone graph properties P, then it
is at least dp(€)-far from satisfying one of the properties.

1 Introduction

1.1 Definitions and Background

All graphs considered here are finite, undirected, and have neither loops nor parallel edges. Let P
be a property of graphs, namely, a family of graphs closed under isomorphism. All graph properties
discussed in this paper are assumed to be decidable, that is, we disregard properties for which it
is not possible to tell whether a given graph satisfies them. A graph G with n vertices is said to
be e-far from satisfying P if one must add or delete at least en? edges in order to turn G into a
graph satisfying P. A tester for P is a randomized algorithm which, given the quantity n and the
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ability to query whether a desired pair of vertices of an input graph G with n vertices are adjacent
or not, distinguishes with high probability (say, 2/3), between the case of G satisfying P and the
case of G being e-far from satisfying P. One of the striking results in the area of property-testing
is that many natural graph properties have a tester, whose total number of queries is bounded only
by a function of €, which is independent of the size of the input graph. A property having such a
tester is called testable. Note, that if the number of queries performed by the tester is bounded by a
function of € only, then so is its running time. A tester is said to have one-sided error if whenever G
satisfies P, the algorithm declares that this is the case with probability 1. Throughout the paper, we
assume that a tester first samples a set of vertices S, queries all the pairs (i, j) € S, and then accepts
or rejects by considering the graph spanned by the set. As observed in [3] and formally proved in
[23], this can be assumed with no loss of generality, as this assumption at most squares the query
complexity (and we will not care about such factors in this paper).

The general notion of property testing was first formulated by Rubinfeld and Sudan [34], who
were motivated mainly by its connection to the study of program checking. The study of the notion of
testability for combinatorial structures, and mainly for labelled graphs, was introduced in the seminal
paper of Goldreich, Goldwasser and Ron [22], who showed that several natural graph properties are
testable. In the wake of [22], many other graph properties were shown to be testable, while others
were shown to be non-testable. See [17], [21] and [33] for additional results and references on graph
property-testing as well as on testing properties of other combinatorial structures.

1.2 Related Work

The most interesting results in property-testing are those that show that large families of problems
are testable. The main result of [22] states that a certain abstract graph partition problem, which
includes as a special case k-colorability, having a large cut and having a large clique, is testable. The
authors of [23] gave a characterization of the partition problems discussed in [22] that are testable
with one-sided error. In [3], a logical characterization of a family of testable graph properties was
obtained. According to this characterization, every first order graph-property of type 3V is testable,
while there are first-order graph properties of type V3 that are not testable. These results were
extended in [16].

There are also several general testability and non-testability results in other areas besides testing
graph properties. In [4] it is proved that every regular language is testable. This result was extended
to any read-once branching program in [29]. On the other hand, it was proved in [19], that there
are read-twice branching programs that are not-testable. The main result of [6] states that any
constraint satisfaction problem is testable.

With this abundance of general testability results, a natural question is what makes a combina-
torial property testable. As graphs are the most well studied combinatorial structures in the theory
of computation, it is natural to consider the problem of characterizing the testable graph properties,
as the most important open problem in the area of property testing. Regretfully, though, finding
such a characterization seems to be a very challenging endeavor, which is still open. Therefore, a
natural line of research is to find large families of testable graph properties.



1.3 The Main New Result

Our main goal in this paper is to show that all the graph properties that belong to a large, natural
and well studied family of graph properties are testable. In fact, we even show that these properties
are testable with one-sided error. A graph-property P is said to be monotone if it is closed under
removal of edges and vertices. In other words, if a graph G does not satisfy P, then any graph that
contains G as a (not necessarily induced) subgraph does not satisfy P as well. Various monotone
graph properties were extensively studied in graph theory. As examples of monotone properties one
can consider the property of having a homomorphism to a fixed graph H (which includes as a special
case the property of being k-colorable, see Definition 2.2), and the property of not containing a (not
necessarily induced) copy of some fixed graph H. Another set of well studied monotone properties
are those defined by having a fractional chromatic number, vector chromatic number and Lovdsz theta
function bounded by some constant ¢, which need not be an integer (see [26] and [28]). Another
monotone property is being (k, H)-Ramsey: For a (possibly infinite) family of graphs H, a graph is
said to be (k, H)-Ramsey if one can color its edges using k colors, such that no color class contains
a copy of a graph H € H. This property is the main focus of Ramsey-Theory, see [24] and its
references. As another example, one can consider the property of being (k, H, f)-Multicolorable; For
a (possibly infinite) family of graphs H and a function f from H to the positive integers, a graph
is said to be (k, H, f)-Multicolorable if one can color its edges using k colors, such that every copy
of a graph H € H receives at least f(H) colors. See [15], [13] and their references for a discussion
of some special cases. The abstract family of monotone graph properties has also been extensively
studied in graph theory. See [20], [12], [11] and their references. Our main result is the following:

Theorem 1 (The Main Result) Every monotone graph property is testable with one-sided error.

We stress that we actually prove a slightly weaker statement than the one given above, as the
monotone property has to satisfy some technical conditions (which cannot be avoided). However, as
the cases where the actual result is weaker than what is stated in Theorem 1 deal with extremely
unnatural properties, and even in these cases the actual result is roughly the same, we postpone the
precise statement to Section 5 (see Theorem 6). Another important note is that in [23], Goldreich
and Trevisan define a monotone graph property to be one that is closed under removal of edges, and
not necessarily under removal of vertices. They show that there are such properties that are not
testable even with two sided error. In fact, their result is stronger as the property they define belongs
to NP and requires query complexity Q(n?). This means that Theorem 1 cannot be extended, in a
strong sense, to properties that are only closed under removal of edges.

As we have mentioned above, having a homomorphism to a fixed graph H, k-colorability and
the property of not containing a copy of a fixed graph H, are monotone properties, and are thus
testable with one-sided error by Theorem 1. These properties were known to be testable before, and
as Theorem 1 applies to general monotone properties, the bounds it supplies for these properties
are inferior compared to the ones proved by the ad-hoc arguments (see [5], [22], [23] and [7]). In
Theorem 4 we prove that this is unavoidable. The main importance of Theorem 1 thus lies in its
generality. However, as described in the beginning of this subsection, there are additional natural
and well-studied monotone graph properties that prior to this work were not known to be testable,
and we may thus use Theorem 1 to conclude that these properties are testable with one-sided error.
We also believe that Theorem 1 and its proof may be an important step towards a combinatorial
characterization of the graph properties that are testable with one-sided error. Another important



aspect of Theorem 1 is that it can be used to prove general results on graph property testing. Two
examples are Theorems 4 and 5, which we describe in the next subsection. Another result appears
in a related subsequent paper [8] and is discussed in Section 5. We believe that Theorem 1 will be
useful for proving other consequences as well. See Section 7 for more details and possible natural
lines of research suggested by the results of this paper.

1.4 Techniques and Additional Results

The first technical ingredient in the proof of Theorem 1 is the proof of an (almost) equivalent
formulation of it. For a (possibly infinite) family of graphs F we say that a graph is F-free if
it contains no member from F as a (not necessarily induced) subgraph. Clearly, being F-free is a
monotone property. It is well known (see e.g. [2]) that for any finite family of graphs F, the property
of being F-free is testable. This follows from a standard application of Szemerédi’s Regularity
Lemma. As we discuss in Section 2, this lemma is inadequate for obtaining a similar result for
infinite families of graphs. The main technical step in the proof of Theorem 1 is the following
theorem, which is the main technical contribution of this paper.

Theorem 2 For every (possibly infinite) family of graphs F, there are functions Nx(e) and Qx(€)
with the following properties: If G is a graph on n > Ngz(€) vertices which is e-far from being F -free,
then a random subset of Qx(€) vertices of G spans a member of F with probability at least 2/3.

Note that Theorem 2 immediately implies that for every family of graphs F, the property of
being F-free is testable. In order to prove Theorem 2 we apply a strong version of the regularity
lemma, proved by Alon, Fischer, Krivelevich and Szegedy [3]. We believe that our application of this
lemma may be useful for attacking other problems. As a byproduct of our argument we obtain the
following graph theoretic result.

Theorem 3 For every monotone graph property P, there is a function Wp(e) with the following
property: If G is e-far from satisfying P, then G contains a subgraph of size at most Wp(€), which
does not satisfy P.

The above theorem significantly extends a result of R6dl and Duke [31], conjectured by Erdés,
which asserts that the above statement holds for the k-colorability property. Theorem 3 applies to
any monotone property, and in particular to all the properties discussed in the beginning of the
previous subsection.

As will become evident from the proof of Theorem 1 (which is based on Theorem 2), the upper
bounds for testing a monotone property depend on the property being tested. In other words, what
we prove is that for every property P, there is a function @Qp(€) such that P can be tested with query
complexity Qp(e). A natural question one may ask, is if the dependency on the specific property
being tested can be removed. We rule out this possibility by proving the following.

Theorem 4 For any function Q : (0,1) — N, there is a monotone graph property P, which has no
one-sided error property-tester with query-complezity o(Q(€)).

Prior to this work, the best lower bound proved for testing a testable graph property with one-
sided error was obtained in [1], where it is shown that for every non-bipartite graph H, the query



complexity of testing whether a graph does not contain a copy of H is at least (1/ e)Q(log 1/€) The
fact that for every H this property is testable with one-sided error, follows from [2] and [3], and also
as a special case from Theorem 1. As by Theorem 1 every monotone graph property is testable with
one-sided error, Theorem 4 establishes that the one-sided error query complexity of testing testable
graph properties, even those that are testable with one-sided error, may be arbitrarily large.

Our next result can be considered a compactness-type result in property testing. Suppose
Pi1,...,Pr are k graph properties that are closed under removal of edges. It is clear that if a
graph G is e-far from satisfying these k properties then it is at least e/k-far from satisfying at least
one of them. However, it is not clear that there is a fixed § > 0 such that even if & — oo, G must
be d-far from satisfying one of these properties. By using Theorem 2 we can prove that if these
properties are monotone then such an § exists. We also show that in general there is no such §.

Theorem 5 For any (possibly infinite) set of monotone graph properties P = {Py,Pa,...}, there is
a function dp : (0,1) — (0,1) with the following property: If a graph G is e-far from satisfying all the
properties of P, then for some i, the graph G is dp(€)-far from satisfying P;. Furthermore, there are
properties P = {P1, P2, ...}, which are closed under removal of edges, for which no such op exists.

1.5 Recent results

By applying the techniques of this paper along with several additional ideas we have managed to
extend Theorem 1 by showing that any hereditary graph property is testable with one-sided error
(a graph property is hereditary if it is closed under removal of vertices, and not necessarily under
removal of edges). Besides implying that many additional graph properties are testable, we can
also use this result to obtain a precise characterization of the graph properties, which can be tested
with one-sided error by testers with a certain natural restriction (essentially all the testers that have
been designed thus far in the literature satisfy this restriction). These results, which appear in a
subsequent paper [9], demonstrate the relevance of the techniques developed in this paper to the
problem of characterizing the testable graph properties. Also, in joint work with Benny Sudakov
[10], we have obtained approximation algorithms for the edit distance of a given graph from satisfying
an arbitrary monotone graph property. We also obtained nearly matching hardness of approximation
results. Some of the results of [10] also apply the main technique developed in this paper.

1.6 Organization

The rest of the paper is organized as follows. In Section 2 we introduce the basic notions of regularity
and state the regularity lemmas that we use and some of their standard consequences. We also (do
our best to) explain why the standard regularity lemma and its applications seem inadequate for
proving Theorem 2. In Section 3 we give a high level description of the proof of Theorem 2 as
well as the main ideas behind it. The full proof of Theorem 2 appears in Section 4. In Section 5
we give the precise statement of Theorem 1 and use Theorem 2 in order to prove it. In Section 7,
we describe several possible extensions and open problems that this paper suggests. The proofs of
Theorems 3 and 5 appear in Section 4 and the proof of Theorem 4 appears in Section 6. Throughout
the paper, whenever we relate, for example, to a function f3;, we mean the function f defined in
Lemma/Claim/Theorem 3.1.



2 Regularity Lemmas: Definitions, Statements and Applications

In this section we discuss the basic notions of regularity, some of the basic applications of regular
partitions and state the regularity lemmas that we use in the proof of Theorem 2. For a comprehensive
survey on the regularity lemma the reader is refereed to [27]. We start with some basic definitions.
For every two nonempty disjoint vertex sets A and B of a graph G, we define e(A, B) to be the number
of edges of G between A and B. The edge density of the pair is defined by d(A, B) = e(A, B)/|A||B].

Definition 2.1 (y-regular pair) A pair (A, B) is v-regular, if for any two subsets A’ C A and
B' C B, satisfying |A'| > v|A| and |B'| > ~|B|, the inequality |d(A’, B") — d(A, B)| <~ holds.

Note that a sufficiently large random bipartite graph, where each edge is chosen independently
with probability d, is very likely to be a y-regular pair with density roughly d, for any v > 0. Thus,
in some sense, the smaller 7 is, the closer a y-regular pair is to looking like a random bipartite graph.
For this reason, the reader who is unfamiliar with the regularity lemma and its applications, should
try and compare the statements given in this section to analogous statements about random graphs.
Throughout the paper we will make an extensive use of the notion of graph homomorphism, which
we turn to formally define.

Definition 2.2 (Homomorphism) A homomorphism from a graph F to a graph K, is a mapping
¢ : V(F)— V(K) that maps edges to edges, namely (v,u) € E(F) implies (¢(v), p(u)) € E(K).

Observe, that a graph F' has a homomorphism into the complete graph of size k if and only if F'
is k-colorable. In what follows, F' — K denotes the fact that there is a homomorphism from F' to
K. Let F be a graph on f vertices and K a graph on k vertices, and suppose F' — K. Let G be a
graph obtained by taking a copy of K, replacing every vertex with a sufficiently large independent
set, and every edge with a random bipartite graph of edge density d. It is easy to show that with
high probability, G contains many copies of F. The following lemma shows that in order to infer
that G contains many copies of F', it is enough to replace every edge with a "regular enough” pair.
Intuitively, the larger f and k are, and the sparser the regular pairs are, the more regular we need
each pair to be, because we need the graph to be ”closer” to a random graph. This is formulated
in Lemma 2.3 below. Several versions of this lemma were previously proved in papers using the
regularity lemma. See, e.g., [27]. The reader should think of the mapping ¢ in the statement of the
lemma as defining the homomorphism from F' to the (implicit) graph K.

Lemma 2.3 For every real 0 < n < 1, and integers k,f > 1 there exist v = v23(n, k, f), 6 =
da.3(n, k, f) and M = My 3(n, k, ) with the following property. Let F' be any graph on f vertices, and
let Uy, ..., Uy be k pairwise disjoint sets of vertices in a graph G, where |Ui| = ... = |Ux| =m > M.
Suppose there is a mapping ¢ : V(F) — {1,...,k} such that the following holds: If (i,7) is an edge
of ' then (Uy(), Uy(j)) is y-regular with density at least 1. Then, the sets Uy, ..., Uy span at least
om? copies of F.

Comment 2.4 Note, that the functions y23(n, k, ) and d2.3(n, k, f) may and will be assumed to be
monotone non-increasing in k and f. Similarly, we will assume that the function Mas(n,k, f) is
monotone non-decreasing in k and f. Also, for ease of future definitions (in particular the one given
in (4)) we set y2.3(n, k,0) = d23(n, k,0) = Mo s(n,k,0) =1 for any k > 1 and 0 < n < 1.



A partition A = {V; | 1 <i <k} of the vertex set of a graph is called an equipartition if |V;| and
|V;| differ by no more than 1 for all 1 <i < j <k (so in particular each V; has one of two possible
sizes). When we refer to the size of such an equipartition, we mean the number of partition classes
of the equipartition (k above). The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 2.5 ([35]) For every m and vy > 0 there exists a number T = T55(m, ) with the following
property: Any graph G on n > T wvertices, has an equipartition A = {V; | 1 < i < k} of V(G) with
m < k <T, for which all pairs (V;,V;), but at most 'y(g) of them, are ~v-reqular.

The original formulation of the lemma allows also for an exceptional set with up to yn vertices
outside of this equipartition, but one can first apply the original formulation with a somewhat smaller
parameter instead of v and then evenly distribute the exceptional vertices among the sets of the
partition to obtain this formulation. T55(m, ) may and is assumed to be monotone nondecreasing
in m and monotone non-increasing in +.

A standard application of Lemmas 2.3 and 2.5 shows that for any finite set of graphs F, the
property of not containing a member of F, that is being F-free, is testable. We first use Lemma 2.3
by setting f and k to be the size of the largest graph in F and letting 7 = €. Lemma 2.3 gives a .3,
which tells us how regular an equipartition should be (that is, how small should v be) in order to
find many copies of a member of F in it, assuming the input graph is e-far from being F-free. We
then apply Lemma 2.5, with v = ~9.3. The main difficulty with applying this strategy when F is
infinite is that we do not know a priori the size of the member of F that we will eventually find in the
equipartition that Lemma 2.5 returns. After finding F' € F in an equipartition, we may find out that
F is too large for Lemma 2.3 to be applied, because Lemma 2.5 was not used with a small enough ~.
One may then try to find a new equipartition based on the size of F'. However, that requires using
a smaller v, and thus the new equipartition may be larger (that is, contain more partition classes),
and thus contain only larger members of F. Hence, even the new « is not good enough in order to
apply Lemma 2.3. This leads to a circular definition of constants, which seems unbreakable. Our
main tool in the proof of Theorem 2 is Lemma 2.7 below, proved in [3] for a different reason, which
enables us to break this circular chain of definitions. This lemma can be considered a variant of the
standard regularity lemma, where one can use a function that defines v as a function of the size of
the equipartition!, rather then having to use a fixed v as in Lemma 2.5. To state the Lemma we
need the following definition.

Definition 2.6 (The function Wg,,) Let £(r) : N — (0,1) be an arbitrary monotone non-
increasing function. Let also m be an arbitrary positive integer. We define the function Wg , : N +—
(0,1) inductively as follows: Wg (1) = To5(m,E(0)). For any integer i > 1 put R = Wg (i — 1)
and define

Wem(i) = Tos(R,E(R)/R?). (1)

Lemma 2.7 ([3]) For every integer m and monotone non-increasing function E(r) : N — (0,1)
define

S = So7(m, E) = We 1 (100/E(0)h).
For any graph G on n > S vertices, there exist an equipartition A ={V; | 1 <i <k} of V(G) and
an induced subgraph U of G, with an equipartition B = {U; | 1 < i < k} of the vertices of U, that
satisfy:

!This is a simplification of the actual statement, see item (3) in the statement of Lemma 2.7



1. m<k<S§S.
Ui CV; foralli > 1, and |U;| > n/S.

In the equipartition B, all pairs are E(k)-regular.

e

All but at most £(0)(%) of the pairs 1 <i < j <k are such that |d(V;, V;) — d(U;, U;)| < £(0).

Comment 2.8 For technical reasons (see the proof in [3]), Lemma 2.7 requires that for any r > 0
the function E(r) will satisfy
E(r) < min{£(0)/4,1/4r%}. (2)

One of the difficulties in the proof of Theorem 2, is in showing that all the constants that are used
in the course of the proof can be upper bounded by functions depending on € only. The following
observation will thus be useful.

Proposition 2.9 If m is bounded by a function of € only and E(r) satisfies (2), then the integer
S = So7(m, &) can be upper bounded by a function of € only?.

The dependency of the function 75 5(m,~y) on 7 is a tower of exponents of height polynomial in
1/~ (see the proof in [27]). Thus, even for moderate functions £ the integer S has a huge dependency
on ¢, which is a tower of towers of exponents of height polynomial in 1/e.

3 Overview of the Proof of Theorem 2

Though we believe that the proof of Theorem 2 is not harder than several other proofs applying the
regularity lemma, we could not avoid the usage of a hefty number of constants that may hide the
main ideas of the proof. We thus give in this section a general overview of the proof, and the way
we overcome the difficulties described in Section 2. The complete proof is given in Section 4.

For an equipartition of a graph G, let the regularity graph of G, denoted R = R(G), be the
following graph: We first use Lemma 2.5 in order to obtain the equipartition satisfying the assertions
of the lemma. Let k be the size of the equipartition. Then, R is a graph on k vertices, where vertices
i and j are connected if and only if (V;, V}) is a dense regular pair (with the appropriate parameters).
In some sense, the regularity graph is an approximation of the original graph, up to yn? modifications.
One of the main (implicit) implications of the regularity lemma is the following: Suppose we consider
two graphs to be similar if their regularity graphs are identical. It thus follows from Lemma 2.5 that
for every v > 0, the number of graphs that are pairwise non-similar is bounded by a function of v only
(2(5), where T' = T 5(1/7,7)). Namely, up to yn? modifications, all the graphs can be approximated
using a set of equipartitions of size bounded by a function of v only. The reader is referred to [14]
where this interpretation of the regularity lemma is also (implicitly) used. This leads us to the key
definitions of the proof of Theorem 2. The reader should think of the graphs R considered below as
the set of regularity graphs discussed above, and the parameter r as representing the size of R.

2In our application of Lemma 2.7 the function £ will (implicitly) depend on €. For example, it will be convenient
to set £(0) = e. However, note that even in this case S2.7(m, &) can be upper bounded by a function of € only.



Definition 3.1 (The family F,) For any (possibly infinite) family of graphs F, and any integer r
let F, be the following set of graphs: A graph R belongs to F, if it has at most r vertices and there
1s at least one F' € F such that F' — R.

Practicing definitions, observe that if F is the family of odd cycles, then F, is precisely the family
of non-bipartite graphs of size at most r. In the proof of Theorem 2, the set F,., defined above, will
represent a subset of the regularity graphs of size at most r. Namely, those R for which there is at
least one F' € F such that F'+— R. As r will be a function of € only, and thus finite, we can take the
maximum over all the graphs R € F,., of the size of the smallest F' € F such that F'+— R. We thus
define

Definition 3.2 (The function V) For any family of graphs F and integer r for which F, # 0,
define
v = i F)l.
F(r) = max U . [V (F)| (3)

Define U g(r) =0 if F = 0. Therefore, V(1) is monotone non-decreasing in r.

Practicing definitions again, note that if F is the family of odd cycles, then W z(r) = r when r is
odd, and W z(r) = r—1 when r is even. The "right” way to think of the function ¥ is the following:
Let R be a graph of size at most r and suppose we are guaranteed that there is a graph F’ € F
such that F/ — R (thus R € F,). Then by this information only and without having to know the
structure of R itself, the definition of ¥ implies that there is a graph F' € F of size at most ¥x(r),
such that F' — R.

The function W has a critical role in the proof of Theorem 2. The first usage of this function
is that as by Lemma 2.5 we can upper bound the size of the regularity graph R, we can also upper
bound the size of the smallest graph F' € F for which F'+— R. A second important property of Ur
is discussed in Section 5. A natural question one may ask is whether there is a function ¥ that can
upper bound W for all families F. As it turns out, this is impossible, namely the dependency on
the specific family F is unavoidable. See the discussion following the proof of Theorem 4 in Section
6. As we have mentioned in the previous section, the main difficulty that prevents one from proving
Theorem 2 using Lemma 2.3 is that one does not know a priori the size of the graph that one may
expect to find in the equipartition. This leads us to define the following function where 0 < e < 1 is
an arbitrary real.

’}/2_3(6/8, r, \I/]:(T')), TZ 1

In simple words, given r, which will represent the size of the equipartition and thus also the size
of the regularity graph which it defines, £'(r) returns "how regular” this equipartition should be in
order to allow one to find many copies of the largest graph one may possibly have to work with. Note,
that we obtain the upper bound on the size of this largest possible graph, by invoking ¥z (r). As
for different families of graphs F, the function ¥x(r) may behave differently, £'(r) may also behave
differently for different families F, as it is defined in terms of ¥(r). However, and this is one of the
key points of the proof, as we are fixing the family of graphs F, the function £'(r) depends only on
r.

5’(7‘)-{ €/8, r=20 (@)



Given the above definitions we apply Lemma 2.7 with a slight modification of £'(r) in order to
obtain an equipartition of G. We then throw away edges that reside inside the sets V; and between
(Vi,V;), whose edge density differs significantly from that of (U;,U;) . We then argue that we thus
throw away less than en? edges. As G is by assumption e-far from not containing a member of F,
the new graph still contains a copy of F' € F. By the definition of the new graph, it thus means
that there is a (natural) homomorphism from F' to the regularity graph of G. We then arrive at the
main step of the proof, where we use the key property of Lemma 2.7, item (3), and the definition of
E'(r) to get that the sets U; are regular enough to let us use Lemma 2.3 on them and to infer that
they span many copies of F'. It thus follows, that a large enough sample of vertices spans a copy of
F with high probability. The complete details appear in Section 4.

4 Proofs of Theorems 2, 3 and 5

We start with the proof of Theorem 2. We assume the reader is familiar with the overview of its
proof given in Section 3.

Proof of Theorem 2: Fix any family of graphs F. Our goal is to show the existence of functions
Nz(e) and Qx(e) with the following properties: If a graph G on n > Ng(e) vertices is e-far from
being F-free, then a random subset of @ £(¢€) vertices of V(G) spans a member of F with probability
at least 2/3. For the rest of the proof, let £'(r) : N +— (0,1) be as defined in (4). In order to apply
Lemma 2.7, we need to define a function &, based on &', which will satisfy the technical condition
(2) in Comment 2.8. We thus set £(0) = £'(0) (= ¢/8) and define for any r > 0,

E(r) = min{&'(r), £(0)/4, 1/47"2}. (5)

For the rest of the proof set
S(e) = S27(8/€,E).

We may indeed define S(e) using £ as it satisfies (2). Furthermore, as we define S(€) using m = 8/¢
we get by Proposition 2.9 that S(e) is indeed a function of € only. We now set

N = Ng(e) = S(e) - Ma3(e/8,S5(€), ¥x(S(e))) (6)

to be an integer bounded by a function of € as well. We postpone the definition of Q£ (¢) till the end
of the proof.

Given a graph G on n vertices, with n > N > S(e), we can use Lemma 2.7 with m = 8/¢ and
E(r) as defined in (5), in order to obtain an equipartition of V(G) into 8/¢ < k < S(e) clusters
Vi,..., Vi (this is possible by item (1) in Lemma 2.7). By item (2) of Lemma 2.7, for every 1 < i <k
we have sets U; C V; each of size at least n/S(e). Remove from G the following edges according to
the following order:

1. Any edge (u,v) for which both u and v belong to the same cluster V. As each of the clusters
contains at most n/k + 1 vertices, the total number of edges removed is at most k(n/k)%. As
k > 8/e we have k(n/k)? < £n®.

2. If for some i < j we have |d(V;,V;) — d(U;,Uj)| > § = £(0), remove all the edges connecting
vertices that belong to V; to vertices that belong to V;. By item (4) of Lemma 2.7, there are at
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most §k‘2 such pairs i,j. As V; and V; contain at most (n/k + 1) vertices, we remove at most
€k - (n/k+ 1)® < tn? edges in this step.

3. If for some i < j we have d(U;,U;) < g, remove all the edges connecting vertices that belong
to V; to vertices that belong to V;. As we have already removed in the previous step all the
edges between pairs (V;,V;) for which |d(V;,V;) — d(U;,U;)| > §, we may conclude that if
d(U;,Uj) < g then we also have d(V;,V;) < g +&(0) = . As V; and V; contain at most
(n/k + 1) vertices, we thus remove at most k% - <(n/k 4+ 1)* < £n? edges.

Call the graph obtained after removing the above edges G’, and observe that G’ is obtained from G by
removing less than en? edges. By item (3) of Lemma 2.7, in G all the pairs (U;, U;) are € (k)-regular.
Thus, by the third step of obtaining G’ we get the following property:

Proposition 4.1 If v; € V; is connected to v; € V; in G', then (U;,U;) is a E(k)-reqular pair with
density at least ¢ in G.

Consider a graph R on k vertices 71, ..., 7, where vertices r; and r; are connected if and only if
(Ui, Uj) is an E€(k)-regular pair in G with density at least g. This is the regularity graph, which we
have mentioned in Section 3, of the graph induced by the sets Uy,...,Ux. As G is by assumption
e-far from being F-free, and G is obtained from G by removing less than en? edges, G’ must contain
a copy of a graph F/ € F. Let R; contain all the vertices of F’ that belong to cluster V; and note
that by Proposition 4.1, there is a natural homomorphism ¢ : V(F’) — V(R) which maps all the
vertices of R; C V(F') to ;. As |V(R)| = k and F’ is a graph in F such that F’ — R, we conclude
that R € Fy (recall Definition 3.1). Therefore, there is a graph F' € F of size at most ¥r(k) such
that V/(F) — V(R) (recall Definition 3.2). Let ¢ : V(F) — V(R) be the homomorphism mapping
the vertices of F' to the vertices of R. By definition, we have that whenever (i,j) is an edge of F’
their image (¢(7), (7)) is an edge of R. Furthermore, by definition of R we know that if (¢(), ©(j))
is an edge of R then (U,;),Uy(;)) is an E(k)-regular pair with density at least §

We have thus arrived at the following situation: We have k clusters of vertices Uy, ..., Uy of the
same size. We also have a graph F' of size at most ¥ (k), and a mapping ¢ : V(H) — {1,...,k}
that satisfies the condition; if (7, j) € E(F) then (Ugy), Uy(;)) is an €(k)-regular pair with density
€/8. This, together with the definition of £(k), implies that we can use Lemma 2.3 on the graph
U spanned by Uy, ...,Ug. Let f < Wx(k) denote the size of F. Item (4) in Lemma 2.7 states that
each U; contains at least n/S(e) vertices. Also, by (6), and by the monotonicity properties of Mo 3
discussed in Comment 2.4, we have for any 1 <i < k

|Ui| > n/S(€) > Mas(e/8,S(€), Ur(S(€))) > Mas(e/8,k, Vr(k)).

Therefore, we may apply Lemma 2.3 on the sets Uq, ..., U to conclude that U spans at least
f
S [T1Uil = 6(n/S(e))! = onf /S(e)"7®) > onl /S(e) V(5 (7)
i=1

copies of F', where 6 = d23(€¢/8,k, U (k)). By Comment 2.4, the function d23(n, k, f) is monotone
non-increasing in k and f. Also U (k) is monotone nondecreasing in k. Hence, as k < S(e) we
have that § > d2.3(¢/8,S(e), ¥£(S(€)))), and in particular 1/4 is upper bounded by a function of e
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only. As U is a subgraph of G, we may conclude that G contains at least as many copies of F as (7).
Thus, if we independently sample 25(e)Y#(5(9) /5 sets of W£(S(€)) (> f) vertices (which is a total
of 2W £ (S(e)) - S(€)Y7(5()) /§ vertices) we have probability at least 2/3 of finding a copy of F € F.

We can now give the formal definition of Q£(€). Given a family of graphs F let ¥x(r) be the
function from Definition 3.2. We note that the only place where Qr(¢) depends on F is in the
function W (r). Using Wz (r) define the function £(r) as in (5). Given € > 0 define the function
We s/e as in Definition 2.6 and put S(e) = We g/(100/(¢/8)*). Finally, we can set

_ 2Ux(S(e)) - S(e)*F5)
" 52.3(¢/8,S(e), Ur(S(e)))

to be a function of € only. This completes the proof of the theorem. |

Qr(e) (8)

From the definition of £'(r) in (4) it is clear that if the function W£(r) is recursive, then so is £'(r)
and therefore also £(r) (for this we also need the fact that v2.3(n, k, f) is recursive, which follows
from the standard proofs of Lemma 2.3, see [27]). In this case the function W ,, (%) is also recursive
(see Definition 2.6), and therefore also the function S2.7(8/¢€,&). Finally, this means that the integer
S(€), used in the above proof, can also be computed. Now, given S(€) and the fact that Wrz(r) is
recursive, one can use (6) and (8) as well as the fact that d23(n, k, f) and Ma3(n, k, f) are recursive
(see the proof in [27]) in order to compute Nz (e) and Q£ (e).

We finish this section with the proofs of Theorems 3 and 5.

Proof of Theorem 3: We claim that we can set Wp(e) = max{Nr(e),Qr(e)} with F = Fp as
in the proof of Theorem 1, and Nz (e), Qx(¢) the functions from Theorem 2. Indeed, If G is e-far
from satisfying P, and G has less than Nz(e) vertices, we can take G itself to be a subgraph of G
not satisfying P. Suppose now that G has more than Nz(e) vertices. As G is also e-far from being
F-free, we get from Theorem 2 that G contains a subgraph (in fact, many) of size Q(¢), which is
not F-free and therefore, does not satisfy P. |

Proof of Theorem 5: For each of the monotone properties P;, let F; be the family of graphs, which
do not satisfy P;, and let F = F1UF2JUF3.... Clearly, a graph G satisfies all the properties of
P if and only if it is F-free. Consider a graph G, which is e-far from satisfying all the properties
of P. In this case G is also e-far from being F-free. The proof of Theorem 2 establishes that there
is a graph F € F of size at most f = fr(e) such that G contains d7(¢)nf copies of F. Note, that
removing an edge from G destroys at most ( fEQ) < nf=2 copies of F. Thus, one must remove at

least 7 (e)n? edges from G in order to make it F-free. Let i be such that F' € F;. We may now infer
that G is 0x(e)-far from satisfying P;. Finally, note that as F is determined by P, we can also say
that G is ép(e)-far from satisfying P;.

To show that in case the properties P; are just closed under removal of edges the above does
not hold, consider the following: For any integer n, let Hy, Ha,... be some ordering of the graphs
on n vertices, which contain precisely n®2 edges. A graph of size n is said to satisfy property P;
if it contains no copy of H;. Clearly, any property P; is closed under removal of edges, but