
Chapter 1

Comparison-Sorting and Selecting in
Totally Monotone Matrices

Noga Alon ∗ Yossi Azar †

Abstract

An m×n matrix A is called totally monotone if for all i1 < i2
and j1 < j2, A[i1, j1] > A[i1, j2] implies A[i2, j1] > A[i2, j2].

We consider the complexity of comparison-based selection

and sorting algorithms in such matrices. Although our

selection algorithm counts only comparisons its advantage

on all previous work is that it can also handle selection

of elements of different (and arbitrary) ranks in different

rows (or even selection of elements of several ranks in each

row), in time which is slightly better than that of the best

known algorithm for selecting elements of the same rank in

each row. We also determine the decision tree complexity of

sorting each row of a totally monotone matrix up to a factor

of at most logn by proving a quadratic lower bound and

by slightly improving the upper bound. No nontrivial lower

bound was previously known for this problem. In particular

for the case m = n we prove a tight Ω(n2) lower bound.

This bound holds for any decision-tree algorithm, and not

only for a comparison-based algorithm. The lower bound

is proved by an exact characterization of the bitonic totally

monotone matrices, whereas our new algorithms depend on

techniques from parallel comparison algorithms.

1 Introduction.

1.1 Background and previous work. Let A =
A[i, j] be an m×n matrix. A is called totally monotone
if for all i1 < i2 and j1 < j2, A[i1, j1] > A[i1, j2]
implies A[i2, j1] > A[i2, j2]. Totally monotone matrices
were introduced by Aggarwal, Klawe, Moran, Shor and
Wilber [4]. These matrices arise naturally in the study
of various problems in computational geometry, in the
analysis of certain dynamic programming algorithms,
and in other combinatorial problems related to VLSI

∗Department of Mathematics, Raymond and Beverly Sackler,

Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel,
and Bellcore, Morristown, NJ, 07960, USA. Supported in part by
a U.S.A.- Israeli BSF Grant and by a Bergmann Memorial Grant
†DEC Systems Research Center, 130 Lytton Ave. Palo-Alto,

CA 94301. A portion of this work was done while the author

was in the department of Computer Science, Stanford University,
CA 94305-2140, and supported by a Weizmann fellowship and

contract ONR N00014-88-K-0166.

circuit design. A wide variety of applications that use
totally monotone matrices can be found in [4], [5], [9],
[10] and their references.

In most of the applications the problems are re-
duced to a selection or sorting problem in each row in an
appropriate totally monotone matrix. The basic prob-
lem considered was row maxima (or row minima), i.e.,
the problem of finding the maximum (or minimum) el-
ement in each row. An optimal algorithm for this prob-
lem was given in [4]. This algorithm, usually referred to
as the SMAWK algorithm (see, e.g., [12]), runs in Θ(n)
steps for n ≥ m and in Θ(n log(2m/n)) steps for n < m.
This improves significantly the obvious Θ(nm)-time al-
gorithm that solves the row maxima problem for general
matrices, and has been used in many applications.

The next natural problem considered was selecting
the k’th element in each row. Kravets and Park [9] gave
an algorithm which runs in O(k(m+n)) steps. Mansour,
Park, Schieber and Sen [10] designed an algorithm which
runs in timeO(m1/2n log n logm+m log n) for any k and
thus yields a better complexity for the case of general
k, and in particular for that of selecting the median in
each row. For the typical case m = n the first algorithm
is better when k ≤ n1/2(log n)2 and the second is better
for all the remaining range. Note that both algorithms
require that k will be the same for all the rows, thus
making a rather restrictive assumption.

Kravets and Park [9] also considered the problem of
row-sorting, i.e., the problem of sorting each row in a
totally monotone matrix. They designed an algorithm
which runs in time O(mn+n2), improving the complex-
ity of the trivial algorithm that sorts each row indepen-
dently for the range n = O(m logm). They raised the
open problem of improving their algorithm or establish-
ing a lower bound for this problem. Note, for example,
that for the case m = n the SMAWK algorithm reduces
the time for finding the row maxima from quadratic
to linear by utilizing the special structure of a totally
monotone matrix, whereas for sorting the time remains
quadratic (the algorithm of [9] saves only a logarithmic
factor). Observe that the fact that the size of the output
of a row-sorting algorithm is Ω(nm) does not necessar-

2 N. Alon and Y. Azar

ily provide a lower bound on the time required to sort
the rows, since the output can possibly have a small
representation based on the fact that totally monotone
matrices are structured. Thus, it seems interesting to
either improve significantly the time for row-sorting or
to prove that this is impossible.

Parallel algorithms for finding the row maxima were
also considered. The authors of [5] gave an algorithm
that runs on a CREW PRAM in O(log n log log n) steps
using n/ log log n processors (for the case m = n). A
better algorithm, which runs on an EREW PRAM in
O(log n) steps with n processors is given in [6].

1.2 Our results. In the present paper we consider
two main problems for totally monotone matrices. The
first is selecting elements of desired ranks in the rows
(where the ranks may differ, and we may look for various
different ranks in some rows) and the second is row-
sorting.

We consider both problems mainly in the compari-
son model. Recall that in this model the complexity of
an algorithm is determined by the number of compar-
isons performed, and the other steps in the computa-
tion are given for free. Such a model is realistic when
the comparisons cost more than the rest of the com-
putation. It is also interesting in the study of lower
bounds. Although our algorithms are sequential, some
of the techniques are based on ideas that arise in parallel
comparison algorithms, and mainly these that appear in
the study of approximation problems.

For the selection problem (in the special case of one
required element in a row) we assume that a sequence of
ranks ri, i = 1, . . .m is given and we should find for any
i the element of rank ri in row i. We design a compar-
ison algorithm that performs O(nm1/2 log n(logm)1/2)
comparisons for any given sequence ri. Note that the
complexity of our algorithm is slightly better than the
complexity of the algorithm of [10] which is the best
known algorithm for selecting elements with the same
rank in each row. In fact, the improvement is more
significant for m which is much bigger than n. More-
over, our algorithm has the advantage of being able to
deal with distinct ranks (although it also has the dis-
advantage of being a comparison algorithm, i.e., only
comparisons are counted in its complexity).

Our comparison algorithm can be easily parallelized
to run in O(logm + log log n) rounds with no penalty
in the number of processors, i.e., with a number of
processors whose product with the above time is equal,
up to a constant factor, to the above mentioned total
sequential running time.

The sorting problem we consider is row-sorting,
i.e., the problem of sorting each row of a given totally

monotone m by n matrix. We prove tight lower and
upper bounds which determine the complexity of this
sorting problem up to a factor of at most log n in all
cases. This settles an open problem raised in [9]. In
particular, for the interesting special case m = n we
prove a tight lower bound of Ω(n2).

Here is a summary of the complexity of the row-
sorting problem. For m ≤ n/logn the best known
algorithm was to sort each row independently in total
running time O(mn log n). For m > n/ log n the best
known upper bound was O(mn + n2) as shown by [9].
No nontrivial lower bounds were known.

We first observe that one can easily design a com-
parison row-sorting algorithm that runs in O(n2 logm)
time, which is much smaller than the above mentioned
bound when m is much bigger than n. By applying sim-
ilar methods to these used in our selection algorithm we
are also able to (slightly) improve the complexity for the
row-sorting problem when m ≤ n and n/m = 2o(log n).
In particular, if m = n/(log n)O(1) our improved algo-
rithm replaces a logarithmic factor by a double loga-
rithmic one. However, our main result for row-sorting
is an almost tight lower bound in a general decision tree
model. Specifically, we show that any algorithm that
sorts each row of a totally monotone matrix requires
Ω(min(mn, n2 log(2 + m/n2))) steps. In particular, for
m = n the Ω(n2) bound is tight. For m > n2+ε the
Ω(n2 log n) bound is also tight. For all the remaining
range the lower bound is of the same order of magni-
tude as the upper bound up to a factor of at most log n.
Recall that in the decision tree the algorithm is allowed
at each step to branch into two possibilities according
to any computation on the input (and not merely com-
parisons), and hence this lower bound is valid in a very
general setting. We believe that similar techniques may
be useful in establishing lower bounds for other sorting
and searching problems dealing with totally monotone
matrices.

We complete this section by the proof of the easy
observation mentioned above.
Observation 1.1. Sorting each row in a totally mono-
tone m by n matrix can be done in O(n2 logm) compar-
isons.

Proof. Consider any two columns j1, j2, (j1 < j2). Let
l be the minimum i for which A[i, j1] > A[i, j2] (if such
a row does not exits then define l = m + 1). By the
definition of the minimum and the definition of a totally
monotone matrix, for all i < l, A[i, j1] < A[i, j2] and if
i ≥ l, A[i, j1] > A[i, j2]. Hence, by a straightforward
binary search one can find, for any specific pair of
columns, this breakpoint l in O(logm) steps. Thus, the
breakpoints for all pairs can be found in O(n2 logm)
steps. It is easy to see that the knowledge of this

Sorting and Selecting in Totally Monotone Matrices 3

information yields the exact order for each row.

2 Selection.

The main result in this section is the following theorem;

Theorem 2.1. Let A be an m by n totally monotone
matrix, and let

S = {(i1, r1), (i2, r2), . . . , (is, rs)}

be a set of pairs, where 1 ≤ ij ≤ m and 1 ≤ rj ≤ n for
all j. There exists a comparison algorithm that finds,
using T (n) = O(ns1/2 log n(logm)1/2) comparisons, the
element whose rank in row number ij is rj, for all
1 ≤ j ≤ s.

In particular, when s = m and all the numbers
ij are distinct this is a comparison algorithm that
finds, using O(nm1/2 log n(logm)1/2) comparisons, an
element of a desired rank in each row.

The proof is based on a combination of some of the
techniques which have been used in parallel comparison
algorithms with the reasoning in the proof of the easy
Observation 1.1. The main part of the algorithm is
based on comparisons performed according to the edges
of appropriately chosen random graphs. These can
be replaced by explicit expanders, with some increase
in the total number of comparisons performed. We
describe here only the version based on random graphs.

We need the following two lemmas, first proved
in [3], which have been applied to various parallel
comparison algorithms in [11] and in [2] as well.

Lemma 2.1. For every n ≥ a ≥ 1 there exists a graph
G(n, a) with n vertices and at most 2n2 logn

a edges in
which any two disjoint sets of a + 1 vertices each are
joined by an edge.

Lemma 2.2. Let G = G(n, a) be a graph as in Lemma
2.1, and suppose n elements are compared according to
the edges of G, i.e., we associate each element with
a vertex of G and compare a pair of elements iff the
corresponding vertices are adjacent in G. Then, for
every possible result of the comparisons, for every rank
all but at most 7a log n from the elements with a smaller
rank will be known to be too small to have that rank.
A symmetric statement holds for the elements with a
bigger rank.

Proof of Theorem 2.1 (sketch) Given a totally
monotone m by n matrix A and a set S of pairs
as in the theorem, let G = G(n, a) be a graph as
in Lemma 2.1, where a is a parameter to be chosen
later. Let {1, 2, . . . n} be the set of vertices of G. For
each edge {j1, j2} of G (where j1 < j2) find, by a

binary search using dlogme comparisons, the minimum
i such that A[i, j1] > A[i, j2]. Altogether this costs
O(n

2 logn logm
a) comparisons, after which we know the

results of comparing the elements in each row of the
matrix A according to the edges of G.
Claim: In each row separately, for each rank r, 1 ≤
r ≤ n, one can find the element of rank r in the row by
performing at most O(a log n) additional comparisons.

Let S be the set of elements whose rank is not
known to be smaller than r nor larger than r. Denote
by l the number of elements whose rank is known to
be smaller than r. Clearly, the element of rank r is
exactly the element of rank r− l in S. Since Lemma 2.2
implies that |S| ≤ 15a log n, we conclude that O(a log n)
additional comparisons suffice to select that element.
This completes the proof of the claim.

Returning to the proof of the theorem, we conclude
that for each value of a it is possible to find all
the required s elements by performing at most T (n)
comparison where

T (n) = O(
n2 log n logm

a
) +O(sa log n) .

In the trivial case s ≥ n2 logm we can sort, by
Observation 1.1, all the rows of A in time

T (n) = O(n2 logm) ≤ O(ns1/2 log n(logm)1/2)

as needed. Otherwise, take

a = bn
√

logm√
s
c

and conclude that

T (n) = O(ns1/2 log n(logm)1/2) .

This completes the proof. 2

Remarks
1). Using a similar reasoning we can show that one can
sort all the rows in a totally monotone m by n matrix
using

O

(
n2

a
log n logm+mn log(a log n)

)
comparisons, for each choice of a, n ≥ a ≥ 1. This
slightly improves the trivial O(nm log n) upper bound
(obtained by sorting each row separately) for values of
m ≤ n which are quite close to n. For example, for
m = n/(log n)O(1) this gives an algorithm that sorts the
rows using O(mn log log n) comparisons. we omit the
details but mention that as shown in the next section
this is tight up to the log log n factor (even for general
decision-tree algorithms).

4 N. Alon and Y. Azar

2). The argument used in the first part of the proof,
together with some of the known results on almost sort-
ing algorithms ([3], [1], [8]) implies that by using only
O(n log n log log n logm) comparisons one can know al-
most all the order relations between pairs of elements
sharing the same row of an m by n totally monotone
matrix.
We can also get an approximation algorithm for the
row selection problem, i.e., find, for each pair of row
and rank in the input, an element in that row whose
rank is “close” to the desired rank. This yields a trade-
off between the number of comparisons performed to
the quality of the approximation, (which stands for the
meaning of “close”).
3). The algorithm can be easily parallelized. The
first step can be easily done in O(logm) rounds with
no penalty in the number of processors. The rest
of the algorithm can be done in O(log log n) rounds,
again, with no loss in the total number of operations
performed, by using the parallel selection algorithm of
[7] which is based on the one of [3].

3 Comparison lower bound for row-sorting.

In this section we prove the lower bound for the problem
of sorting all the rows in totally monotone matrices.

Theorem 3.1. Any decision tree algorithm that sorts
each row in a totally monotone m by n matrix requires
Ω(min(mn, n2 log(2 + m/n2))) steps. In particular, for
m ≤ n the lower bound is Ω(mn), for m ≥ n it is Ω(n2),
and for m ≥ n2+ε it is Ω(n2 logm).

Proof. We construct a large family F of m × n totally
monotone matrices such that any two matrices in the
family differ in the order of at least one corresponding
row. Thus, any algorithm that sorts each row in the
matrix should have a different output on each matrix in
the family. Hence, a lower bound for any decision tree
algorithm is the logarithm of the size of the family.

We start with a characterization of the bitonic
totally monotone matrices, i.e., the totally monotone
matrices in which each row is bitonic (=unimodal).
This is done by associating with each such matrix a
certain tableau T [i, j] in a one-to-one manner. We
note that similar tableaux are known as Young-tableaux
and appear in the study of the Representations of the
symmetric group, but here we are merely interested in
some simple combinatorial properties of T = T [i, j],
described below.

1. Let li, 1 ≤ i ≤ m be integers such that n−1 ≥ l1 ≥
l2... ≥ lm ≥ 0.

2. T [i, j] is defined only for i = 1, ..,m, j = 1, .., li.

3. For all 1 ≤ i ≤ m and 1 ≤ j ≤ li, T [i, j] is an
integer and 1 ≤ T [i, j] ≤ n− 1.

4. Each row of T is a monotone increasing sequence.
I.e., for all 1 ≤ i ≤ m and 1 ≤ j1 < j2 ≤ li we have
T [i, j1] < T [i, j2].

5. Each column of T is a monotone non-decreasing
sequence. I.e., for all 1 ≤ i1 < i2 ≤ m and
j ≤ lj2 (≤ li1), T [i1, j] ≤ T [i2, j].

We next show how to map these tableaux into
a family F of totally monotone matrices such that
different tableaux would map to different order-type
matrices. (Here, of course, the order-type of a matrix
refers to the sequence of linear orders of its rows).
To this end, construct the matrix A corresponding to
the tableau T as follows. Each row of A starts with
the elements in the corresponding row in the tableau
T . Note that a row in T contains a subset S of the
set {1, . . . , n − 1}. Put N = {1, ..., n}. To complete
the row we put to the right of S the number n (i.e.
A[i, li + 1] = n) and then the set N − S where the
numbers in the set appear in a decreasing order. We
need the following Lemma;

Lemma 3.1. For any tableau T as above the construc-
tion yields a totally monotone m by n matrix. Moreover,
different tableaux yield different order-type matrices.

Proof. First note that the length of each row in the
matrix is precisely n since any row consists of some
permutation of the set N . Thus the construction yields,
indeed, an m×n matrix. Let us show that the resulting
matrix is totally monotone. It is clear that each row is
bitonic. More precisely, the first li+ 1 elements in row i
form a monotone increasing sequence and the elements
from li + 1 to the end of the row form a monotone
decreasing sequence. It is also not too difficult to
verify that our construction and property 5 imply that
each column in the complement of the tableau is a
monotone non-increasing sequence. Formally, for all
1 ≤ i1 < i2 ≤ m and j > li1 (≥ li2), A[i1, j] ≥ A[i2, j].
This property is called property 5’.

Suppose i1 < i2 and j1 < j2. We have to show
that if A[i1, j1] > A[i1, j2] then A[i2, j1] > A[i2, j2].
We consider several possible cases. If j2 ≤ li1 + 1
then clearly A[i1, j1] and A[i1, j2] are in the monotone
increasing part of the row i1 and thus A[i1, j1] <
A[i1, j2] and there is nothing to prove. If j1 ≥ li2 + 1
then clearly A[i2, j1] and A[i2, j2] are in the monotone
decreasing part of the row i2 and thus A[i2, j1] >
A[i2, j2] which also leaves nothing to prove. Thus, we
can assume that

j1 ≤ li2 ≤ li1 < li1 + 2 ≤ j2 .

Sorting and Selecting in Totally Monotone Matrices 5

Therefore, we conclude that

A[i2, j1] ≥ A[i1, j1] > A[i1, j2] ≥ A[i2, j2]

where the first inequality uses property 5 of the tableau
(j1 ≤ li2), the middle inequality is the assumption and
the last inequality takes advantage of property 5’ (since
j2 > li1). Hence, the matrix is totally monotone.

It is left to show that for any two different tableaux
the construction yields matrices of different order types.
Note that the value of each element in the tableau is in
fact precisely its rank in its row. Let the sequence li,
i = 1, . . . ,m denote the shape of the tableau. Thus, if
two different tableaux have the same shape then they
must have a different value in some entry. Hence, they
have different order types. On the other hand, if they
differ in the shapes, then, there exists an i for which li
in one matrix is, say, smaller than l′i of the other. Then,
the element in row i and column li + 1 has a different
rank in its row in the two matrices since in the first one
it has rank n, whereas in the second its rank is smaller
than n. This completes the proof of the Lemma.

In fact, it is also true that any totally monotone
matrix A in which each row is a bitonic sequence has
the same order type as one of the matrices constructed
in the above way from an appropriate tableau T . To
see this, construct T as follows. Replace each element
in A by its rank to obtain a matrix A′. Each row in
T will be the part of the corresponding row of A′ that
starts from the leftmost entry in the matrix up to the
element n (the maximum) excluding this element. It is
easy to verify that this T has all the required properties
1 - 5 above. Since this is not essential for our results,
we omit the details.

We continue the proof of Theorem 3.1 by establish-
ing a lower bound on the size of the family F . First
we observe that each row in the tableau T has at most
2n−1 possibilities (each row is a subset of {1, . . . , n−1}).
Since there are m such rows, the size of the family is at
most 2mn, so we cannot expect a better lower bound
using bitonic matrices.

Consider first the case m ≤ n/2. For this case we
show that the number of such tableaux A is 2Ω(nm), and
thus Ω(mn) steps are required in any decision-tree row-
sorting algorithm. To this end we even restrict ourselves
to a subfamily of the tableaux where li = n/2 − i
for 1 ≤ i ≤ n/2. Moreover, we consider only the
following subfamily; T [i, j] will be either 2 ∗ (i+ j − 1)
or 2 ∗ (i + j − 1) − 1. One can easily check that any
such assignment produces a legal tableau T , since all
the elements are in the admissible range, each row
is monotone increasing and each column is monotone
increasing as well. Moreover, the number of such

assignments is simply 2 to the power of the number of
places in the tableau which is 2Ω(mn) and we are done.

For 2n2 ≥ m > n/2 an Ω(n2) lower bound follows
from the bound for m = n/2.

We are left with the case m > 2n2. In order
to prove the Ω(n2 log(m/n2)) lower bound for this
case we construct k = Θ(n2) rows R1, ..., Rk with the
properties described below, and consider the subfamily
of all tableaux of the following type: R1 appears x1

times; below that R2 appears x2 times and so forth
while x1 + . . . + xk = m and xi ≥ 0. The rows Ri will
be defined in such a way that any such tableau T will
be legal.

The number of tableaux that can be constructed in
such a way is exactly the number of ways to partition
m balls in k cells which is

(
m+k−1
k−1

)
. The lower bound

follows from the fact that(
m+ k − 1
k − 1

)
> ((m+ k − 1)/(k − 1))k−1

= 2Ω(n2 log(m/n2)) .

It is left to show how to define the rows R1, ..., Rk.
Let

k = 1 + (n− 1) + (n− 2) + ...+ 1 =
(
n

2

)
+ 1

The first row is the sequence {1, 2, ..., n − 1}. Assume
inductively that we have already constructed all the
rows up to the row which consists of the sequence
{i, i+1, . . . , n−1}. Denote this row by Si (and note that
it is not the i’th row for i > 1). The next n− i rows are
constructed as follows. For 1 ≤ j ≤ n − i the j’th row
below Si is defined to be the row Si without the number
n − j. The last row in this group is exactly Si+1 =
{i + 1, . . . , n − 1}, hence we can continue inductively
from Si+1. Note that the last row (which is Sn) is an
empty row, which is a legal row (by our definitions). It
is not difficult to check that the tableau which consists
of these k rows is legal, i.e, satisfies all the required
properties. Moreover, omitting and duplicating rows
do not affect the legality of the tableau. Thus, these
rows can be used for the construction described above,
completing the proof of the theorem.

4 Acknowledgement.

We would like to thank Don Coppersmith for simplify-
ing the proof of Theorem 2.1 and M. Klawe for helpful
remarks.

References

6 N. Alon and Y. Azar

[1] N. Alon and Y. Azar, Sorting, approximate sorting and
searching in rounds, SIAM J. Discrete Math. 1 (1988)
pp. 269–280.

[2] , Parallel comparison algorithms for approxima-
tion problems, Proc. 29th Annual IEEE Symp. on
Foundations of Computer Science, White Plains, New
York, 1988, pp. 194–203. Also: Combinatorica, in
press.

[3] M. Ajtai, J. Komlós, W.L. Steiger and E. Szemerédi,
Deterministic selection in O(log log n) parallel time,
Proc. 18th Annual ACM Symp. on Theory of Comput-
ing, Berkeley, CA, 1986, pp. 188–195.

[4] A. Aggarwal, M. Klawe, S. Moran, P.Shor and R.
Wilber, Geometric applications of a matrix searching
algorithm, Algorithmica 2 (1987) pp. 195–208.

[5] A. Aggarwal and J. Park, Notes on searching in multi-
dimensional monotone arrays, Proc. 29th Annual IEEE
Symposium on Foundations of Computer Science 1988
pp. 497–512.

[6] M. Attallah and R. Kosaraju, An efficient Parallel
Algorithm for the row minima of totally monotone
matrices, Proc. 2nd Annual ACM-SIAM Symposium
on Discrete Algorithms, 1991 pp. 394–403.

[7] Y. Azar and N. Pippenger, Parallel selection, Discrete
Applied Math 27 (1990) pp. 49–58.

[8] B. Bollobás and G. Brightwell, Graphs whose every
transitive orientation contains almost every relation,
Israel J. Math., 59 (1987), 112–128.

[9] D. Kravets and J. Park, Selection and sorting in
totally monotone arrays, Proc. 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 494–502.

[10] Y. Mansour, J. Park, B. Schieber and S. Sen, Improved
selection in totally monotone arrays, May 1991.

[11] N. Pippenger, Sorting and selecting in rounds, SIAM
J. Computing 6 (1987) pp. 1032–1038.

[12] R. Wilber, The concave least-weight subsequence prob-
lem revisited, Journal of Algorithms 9 (1988) pp. 418–
425.

