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Abstract

Moran, Naor and Segev have asked what is the minimal r = r(n, k) for which there exists
an (n, k)-monotone encoding of length r, i.e., a monotone injective function from subsets of size
up to k of {1, 2, . . . , n} to r bits. Monotone encodings are relevant to the study of tamper-
proof data structures and arise also in the design of broadcast schemes in certain communication
networks. To answer this question, we develop a relaxation of k-superimposed families, which we
call α-fraction k-multi-user tracing ((k, α)-FUT families). We show that r(n, k) = Θ(k log(n/k))
by proving tight asymptotic lower and upper bounds on the size of (k, α)-FUT families and by
constructing an (n, k)-monotone encoding of length O(k log(n/k)). We also present an explicit
construction of an (n, 2)-monotone encoding of length 2 log n + O(1), which is optimal up to an
additive constant.

1 Introduction

In their pursuit of history-independent schemes that use a write-once memory, motivated by cryp-
tographic applications, Moran et al. [14] have considered monotone injective functions that map
subsets of size up to k of [n] into 2[r] (all subsets of [r]), henceforth called (n, k)-monotone encodings
of length r, or ME(n, k, r). They have shown the existence of an (n, k)-monotone encoding of length
O(k log n log(n/k)) and raised the question of determining the minimal r = r(n, k) for which an
ME(n, k, r) exists.

A quick counting argument shows that r(n, k) ≥ log
(∑k

i=0

(
n
i

))
= Ω

(
k log n

k

)
is required for any

injective encoding, without even considering monotonicity. In this paper, we show that a monotone
encoding of length O

(
k log n

k

)
exists, establishing that r(n, k) = Θ

(
k log n

k

)
, thus settling the open

problem raised in [14]. We limit ourselves to k ≤ n
2 since the trivial identity encoding is optimal for

k > n
2 .

Throughout the paper we use [n] to denote {1, 2, . . . , n}. We denote subsets of [n] of size k and
up to k by

([n]
k

)
and

([n]
≤k
)
, respectively. All logarithms are binary unless stated otherwise. Floor and

ceiling signs are omitted whenever these are not crucial.
∗Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv

University, Tel Aviv, Israel. Research supported in part by the Israel Science Foundation, and by a USA-Israeli BSF
grant. Email: nogaa@post.tau.ac.il.
†School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: ranihod@post.tau.ac.il.

1



1.1 A First Attempt: Superimposed Families

A general representation of a monotone function f is f(S) =
⋃
S′⊆S g(S′) for some function g(S).

For f to be injective as well, we need all the relevant unions to be distinct.
A family of subsets of [r] is called k-superimposed if all the unions of up to k sets from it are

distinct. Clearly, a k-superimposed family F = {Ai}ni=1 of cardinality n translates to an ME(n, k, r)
f defined by f(S) =

⋃
i∈S Ai.

Probabilistic and explicit constructions of k-superimposed families of cardinality n are known
for r = O

(
k2 log n

k

)
(see, for example, [7, 8, 1, 16]), yielding the same upper bound on the length

of (n, k)-monotone encodings. However, [7, 17, 9] showed that for n > k2, k-superimposed families
require r = Ω

(
k2

log k log n
)

; Thus, an approach based solely on k-superimposed families will not
achieve optimal monotone encodings.

Inspecting the monotone encoding induced by a k-superimposed family, we observe that only the
“linear” terms g({i}) = Ai are non-empty. In a way, using “higher-order” terms can be regarded
as a form of adaptive encoding (obtained in a non-adaptive fashion) since collisions in the unions of
lower-order terms can be resolved by a higher-order term.

1.2 Our Contribution

A general monotone encoding does not need the strict distinct-unions requirement of superimposed
families. We consider the following relaxation of superimposed families.

Definition 1. Let F = {Ai}ni=1 be a family of subsets of [r] and let S ⊆ [n]. We denote
⋃
i∈S Ai

by AS. An element j ∈ S is said to be F-identifiable (with respect to S) if Aj has a unique element not
present in any other subset Ai ∈ F that is covered by AS, that is, if Aj 6⊆

⋃
{Ai ∈ F : i 6= j, Ai ⊆ AS} .

An element j ∈ S is said to be F-obscured (with respect to S) if it is not F-identifiable.

Definition 2. Let k ≥ 2, n ≥ 2k and 0 < α < 1. A family F = {Ai}ni=1 of subsets of [r] is called
α-fraction k-multi-user tracing, or (k, α)-FUT, if for any S ∈

([n]
≤k
)
, more than α|S| of its elements

are F-identifiable.1

We prove almost tight upper and lower bounds on (k, 1− ε)-FUT families.

Theorem 1. There exists a constant c1 > 0 such that for all k ≥ 2, n ≥ 2k and 1
k ≤ ε ≤ 1

2 , there
exists a (k, 1− ε)-FUT of cardinality n where r = c1

k
ε log n

k .

Theorem 2. There exists a constant c2 > 0 such that for all k ≥ 2, 1
k ≤ ε ≤ 1

2 , any (k, 1− ε)-FUT
of cardinality n ≥ k

ε must have r ≥ c2 k/ε
log k/ε log n.

Note that for 0 < ε ≤ 1
k , any (k, 1− ε)-FUT family is actually k-superimposed since the number

of obscured elements is strictly less than one. Substituting ε = 1
k in Theorems 1 and 2 yields the

known asymptotic upper and lower bounds for k-superimposed families.
1Or all of them, if |S| ≤ 1

α
.
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Back to monotone encodings, we form an optimal ME
(
n, k,O

(
k log n

k

))
by chaining

(
k
2t ,

1
2

)
-FUT

families of cardinality n for t = 0, 1, . . . , log k. This yields the following theorem.

Theorem 3. There exists a constant c3 > 0 such that for all integers n ≥ 4 and 2 ≤ k ≤ n
2 , there

exists an (n, k)-monotone encoding of length r = c3k log n
k .

Definition 3. For integers 0 ≤ k ≤ n we denote
⌈
log
(∑k

i=0

(
n
i

))⌉
by ρ(n, k).

We also present a lower bound on the length of monotone encodings.

Theorem 4. There exists a constant c4 > 0 such that r(n, k) > (1+c4)ρ(n, k) for sufficiently large n
and some k = k(n).

When k is small, constant factors may have a significant impact. In section 4 we present an
explicit construction for k = 2 which is optimal up to an additive constant, yielding the following
theorem.

Theorem 5. There exists a constant c5 > 0 such that for all integers n ≥ 4, there exists an explicit
(n, 2)-monotone encoding of length ρ(n, 2) + c5.

1.3 Related Work

1.3.1 Single-user and Multi-user Tracing Families

Although we described (k, α)-FUT families as a relaxation of superimposed families, they can
also be seen as an extension of single-user tracing (SUT) families, an even simpler relaxation of
superimposed families introduced by Csűrös and Ruszinkó [6]. Given the union of up to k subsets of
a SUT family, we are able to identify at least one of them. While the lower bound remains Ω

(
k log n

k

)
,

SUT families of cardinality n were shown by Alon and Asodi [2] to exist for r = O
(
k log n

k

)
.

Laczay and Ruszinkó [12] extended SUT families in another direction, considering j-out-of-k multi-
user tracing (MUTj) families, ensuring that given the union of up to k subsets we are able to identify
at least j of them.2 By definition, a MUT1 family is equivalent to a SUT family; Alon and Asodi [3]
proved that MUTj families exist for r = O

(
(k + j2) log n

k

)
, effectively creating MUT√k families for

the same cost as SUT families. Nevertheless, MUTj families are also j-superimposed, hence we
cannot use them for j = ω(

√
k log k) while maintaining linear dependence in k.

1.3.2 Non-adaptive Conflict Resolution

Komlós and Greenberg [11] solved a problem similar to monotone encoding using techniques very
similar to ours. They considered non-adaptive conflict resolution (NACR) in a multiple access OR
channel. Here is a quick description of NACR.

A communication channel is shared by n stations, some of which may want to broadcast a
message. Multiple concurrent broadcasts cancel out and the stations involved are notified
of this.

2Or all of them, if the given union is a union of less than j subsets.
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Each station has a scheme, or a list of available time slots. Each active station will try
to broadcast its message on every available time slot; it will deactivate if it succeeds (i.e.,
if it was the only station broadcasting on this time slot).

An epoch, or a sequence of time-slots, is called successful if no active stations remain (due
to successful broadcasting) until the epoch ends.

A scheme set is valid if for all choices of initial k active stations, the epoch succeeds.
What is the minimal length (in time slots) needed for a valid scheme set to exist?

Although the problem of monotone encodings can be reformulated in a similar language, two
major differences exist between ME and NACR.

1. In NACR, stations are aware of their success/failure, i.e., they know whether there were 0, 1 or
≥ 2 concurrent broadcasts. In ME, an outside observer is required to identify active stations
seeing only the channel activity indicator (0 or ≥ 1 broadcasts).

2. In NACR, an active station will stop once it has successfully broadcast its message. In ME,
the situation is analogous to stations that remain active and cannot change their schemes.
However, stations in ME are aware of each other, and are allowed to broadcast more if other
stations are active.

For instance, the following valid NACR scheme set for n = 3, k = 2 uses three time slots:
S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}. Nevertheless, the activity indicator of the channel gives no hint
of which stations are active when any two of them are active!

Assume that the message each station broadcasts specifies its identifying number and consider the
actual channel data rather than the channel activity indicator. This allows a successful broadcast to
identify3 the transmitting station. Thus, we may convert4 an NACR solution to an ME at the cost
of a factor of log n. The ME(n, k,O(k log n log(n/k))) presented in [14] proceeds essentially along
these lines.

1.3.3 Cryptographic Applications

In [14], monotone encodings are used to maintain a tamper-proof deterministic data structure that
represents a subset of size up to k of [n].

Instead of relying on cryptographic assumptions, the data structure is made tamper-proof by
storing it on a write-only memory, i.e., all bits are initially 0 and can only be turned to 1. This
imposes the monotonicity requirement.

Since elements are inserted one by one, another security-motivated requirement is that the rep-
resentation of the data structure is independent of the order in which elements are inserted (for
example, to ensure privacy in voting schemes). This rules out “adaptive” solutions like writing down
the elements sequentially using log n bits per element. This requirement is expressed in ME by taking([n]
≤k
)

(that is, unordered subsets) as the domain of the encoding.

3Some action is needed to ensure that multiple concurrent broadcasts are not misinterpreted as valid messages. For
instance, encode 0 as ‘01’ and 1 as ‘10’, doubling the length of the data.

4Further modifications are necessary to work out the second difference as well, but the length of the data remains
unaffected.
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2 The Construction

2.1 FUT Families

The upper bound stated in Theorem 1 is implied by the following probabilistic construction.
Let k ≥ 2, 1

k ≤ ε ≤
1
2 . Let d = 2

ε log 2en
k and r = 16kd = O

(
k
ε log n

k

)
. Let h1, . . . , hn be n random

functions from [d] to [16k], i.e., the values hj(i) for i ∈ [d] and j ∈ [n] are chosen independently and
equiprobably from [16k] and let F = {A1, . . . , An} ⊂ 2[r] be their representations as sets, that is,
Aj = {16ki− hj(i) + 1 : i ∈ [d]} ⊂ [r].

Definition 4. A family F of sets is said to have property A if for t ∈ [2k] and for all distinct
A1, . . . , At ∈ F , Aj is covered by the union of {Ai : i ∈ [t], i 6= j} for less than εt values of j ∈ [t]. In
other words, more than (1− ε)t of the sets have a unique element in

⋃t
i=1Ai.

Proposition 2.1. With positive probability, property A holds for F as selected above.

Proof. We use the union bound over all choices of such A1, . . . , At ∈ F to bound the probability that
property A does not hold. Fix t ∈ [2k] and let µ = blog(2k/t)c ≥ 0. Then, 2−µk < t ≤ 21−µk. Fix
distinct A1, . . . , At ∈ F and assume that at least m = εt of them are covered by the union of the
others. Without loss of generality, assume that these are A1, . . . , Am (and maybe others).

Consider the random functions {hj}tj=1 represented by {Aj}tj=1. Fix a coordinate i ∈ [d]. Assume
that hj(i) are already determined for j > m and now select hj(i) sequentially for j = 1, . . . ,m. At
least m

2 of them collide with some previously determined hj′(i), j′ < j as each of these must be
covered by the union of all others. Since

⋃t
j=1Aj covers at most t ≤ 21−µk elements of [16k], the

probability of this event is at most(
m

m/2

)(
t

16k

)m/2
< 2m

(
1
4

)m/2( t

4k

)m/2
≤
(

1
2

)(1+µ)m/2

and the probability of it happening simultaneously at all d coordinates is at most(
1
2

)(1+µ)md/2

=
(

1
2

)(1+µ)εtd/2

=
(

k

2en

)(1+µ)t

.

The number of choices for A1, . . . , At ∈ F and for the m = εt covered sets among them is(
n
t

)(
t
m

)
≤
(
en
t

)t 2t . Therefore, the probability that property A does not hold for this value of t is at
most(

2en
t

)t( k

2en

)(1+µ)t

=
(

k

2en

)µt(k
t

)t
≤
(

1
4e

)µt(k
t

)t
≤

{
(4e)−µt2µt = (2e)−µt < 1

5t , µ ≥ 1(
1− t−k

t

)t
< ek−t , µ = 0

.

Summing over t ∈ [2k], the probability that property A does not hold is at most

k∑
t=1

5−t +
2k∑

t=k+1

ek−t <

∞∑
t=1

5−t +
∞∑
t′=1

e−t
′

=
1/5

1− 1/5
+

1/e
1− 1/e

=
1
4

+
1

e− 1
< 0.9 .
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Proposition 2.2. Any family for which property A holds is (k, 1 − ε)-FUT; Thus, with positive
probability, F as selected above is (k, 1− ε)-FUT.

Proof. Let S ⊂ [n], |S| ≤ k and consider I = {i ∈ [n] : Ai ⊆ AS}. Obviously, S ⊆ I. By the definition
of I, all i ∈ I \ S are F-obscured since Ai is covered by AS . Assume that |I| ≥ 2k. By property A,
applied to some subset S ⊂ I ′ ⊆ I of cardinality 2k, more than (1 − ε)2k ≥ k ≥ |S| elements of I ′

are F-identifiable, which is absurd as they all reside in S.5 Thus, |I| < 2k. By property A, more
than (1− ε)|I| ≥ (1− ε)|S| elements of I are F-identifiable. Again, they all reside in S.

2.2 Monotone Encodings

Equipped with the tool we have just developed, we move on to describing a function as stated by
Theorem 3.

We construct f :
([n]
≤k
)
→ 2[r] inductively. Initialize the construction6 with the trivial case k = 1.

Let f ′ :
( [n]
≤k/2

)
→ 2[r′] be a monotone encoding for subsets of size up to k

2 and let F = {Ai}ni=1 ⊂ 2[r′′]

be a (k, 1
2)-FUT family. Shift F by r′ to make its support disjoint from [r′]. All involved sets are

now subsets of the ground set [r] where r = r′ + r′′. We define f(S) = AS ∪ f ′(S′) where S′ consists
of all F-obscured elements of S (note that S′ is well-defined given F).

Since a (k, 1
2)-FUT family exists for r = 2c1k log n

k , the size of the ground set for the entire
construction is

log k∑
t=0

2c12−tk log
( n

2−tk

)
≤ 2c1k

∞∑
t=0

2−t
(
t+ log

n

k

)
= 2c1k

(
2 + 2 log

n

k

)
= O

(
k log

n

k

)
.

Proposition 2.3. The function f is injective, i.e., f(S) 6= f(T ) for S 6= T .

Proof. It is sufficient to see that given f(S) we can unambiguously determine S. First we use AS
to determine all F-identifiable elements of S. This is possible since if j ∈ S is F-identifiable, some
element of AS is present only in Aj of all Ai ⊆ AS . Let S′ ⊆ S be the set of F-obscured elements of
S. By the definition of F , |S′| ≤ 1

2 |S| ≤
k
2 . By the induction hypothesis, we can determine S′ from

f ′(S′). Putting both parts together, S is fully determined.

Claim 2.4. If S ⊆ T then S′ ⊆ T ′.

Proof. Let j ∈ S′ be an F-obscured element with respect to S, that is, Aj is covered by the union
of {Ai ⊆ AS , i 6= j}. Clearly, AS ⊆ AT . Thus, Aj is also covered by the union of {Ai ⊆ AT , i 6= j}.
Hence, j is F-obscured with respect to T as well, so j ∈ T ′.

Proposition 2.5. The function f is monotone, i.e., f(S) ⊆ f(T ) for S ⊆ T .

Proof. Fix some S ⊆ T . By Claim 2.4, S′ ⊆ T ′. By the induction hypothesis, f ′ is monotone, hence
f ′(S′) ⊆ f ′(T ′). Now, f(S) = AS ∪ f ′(S′) ⊆ AT ∪ f ′(T ′) = f(T ).

5To be exact, these elements are F-identifiable with respect to I ′ and not I, but it is all the same since AI′ = AS =
AI .

6Another way to initialize the construction is with an ME(n,
√
k,O(k log n√

k
)) induced by a

√
k-superimposed family

as described in section 1.1.
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3 Lower Bounds

3.1 FUT Families

First we show a lower bound of Ω(k log(n/k)) on the length of constant fraction user-tracing families.

Proposition 3.1. For all k ≥ 2, any (k, 1
2)-FUT family of cardinality n ≥ k must have r ≥ 1

4k log n
k .

Proof. Let k ≥ 2 and let F = {Ai}ni=1 ⊆ 2[r] be a (k, 1
2)-FUT family, where n ≥ k. Without loss of

generality, r ≥ k
2 since otherwise we could cover the entire support of F by the union of only k

2 sets
despite F being a (k, 1

2)-FUT family of cardinality n ≥ k.
Assume for the sake of contradiction that n > k24r/k. Consider all unions of k

2 sets from F . By
the pigeonhole principle, at least

1
2r

(
n

k/2

)
≥ 1

2r

(
n

k/2

)k/2
>

1
2r
(

21+4r/k
)k/2

= 2k/2+r ≥ 2k >
(
k

k/2

)
of these unions are identical. In other words, there exist distinct S1, . . . , Sm ∈

( [n]
k/2

)
,m >

(
k
k/2

)
such

that AS1 = · · · = ASm . Therefore, the set S =
⋃m
i=1 Si is of cardinality at least k. All elements

of S \ S1 are F-obscured since AS = AS1 . We have reached a contradiction as F is a (k, 1
2)-FUT

family but |S \ S1| ≥ k
2 .7

Next, we establish the lower bound stated in Theorem 2 by using a modified version of a technique
from [17]. As the bound of Proposition 3.1 holds for any (k, 1− ε)-FUT family, ε ≤ 1

2 , we henceforth
assume ε < 1

4 . Let k ≥ 2, 1
k ≤ ε < 1

4 and let F = {Ai}ni=1 ⊆ 2[r] be a (k, 1 − ε)-FUT family, where
n ≥ k

ε . We modify F in two phases, as follows.

1. As long as F contains a set F of cardinality at least β = 4r
k , remove F from F and remove its

elements from all other sets of F . Call the resulting family F ′.

2. As long as F ′ contains a set F such that any 4ε-fraction of it is covered by some other set
from F ′, and in particular, it is covered by the union of t ≤ 1

4ε other sets A1, . . . , At ∈ F ′,
remove F and {Ai}ti=1 from F ′. Call the resulting family F ′′.

Claim 3.2. Phase 1 stops after at most k
4 iterations.

Proof. Every iteration discards at least β elements from the ground set. We begin with r elements,
so we stop after at most r

β = k
4 iterations.

Claim 3.3. Phase 2 stops after less than εk iterations.

Proof. Assume for the sake of contradiction that Phase 2 continued for at least εk iterations. So, εk
sets of F ′ are covered by at most εk

4ε = k
4 other sets of F ′. Considering once again sets dropped by

Phase 1, εk sets from F are covered by at most k
4 + k

4 = k
2 other sets from F . In other words, at

most k
2 sets are identifiable from the union of these

(
1
2 + ε

)
k ≤ k sets, contradicting the definition

of F . Hence, our assumption must be wrong.
7More rigorously, apply this reasoning to some S′ of cardinality exactly k such that S1 ⊂ S′ ⊆ S.
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We now have a family F ′′ of cardinality greater than n−k with the following property: every F ∈
F ′′ has a subset of 4ε|F | elements unique to F . Let γ = 16ε

k . Every such unique subset is of cardinality
4ε|F | ≤ 4εβ = 16ε

k r = γr; Thus,

n− k + 1 ≤ |F ′′| ≤
∣∣∣∣( [r]
≤ γr

)∣∣∣∣ =
γr∑
t=0

(
r

t

)
≤ 1 + γr

(
r

γr

)
≤ 1 + γr

(
re

γr

)γr
.

Taking logarithms we get

Ω(log n) ≤ (log n)− 1 ≤ log(n− k) ≤ γr log
e

γ
+ o(r) = O

(
r
ε

k
log

k

ε

)
.

Therefore, r = Ω
(

k/ε
log k/ε log n

)
.

3.2 Monotone Encodings

As we already stated, r(n, k) ≥ ρ(n, k) by a counting argument. The trivial identity encoding
implies that r(n, k) ≤ n. Obviously, r(n, 1) = ρ(n, 1) = dlog(1 + n)e. Theorem 3 states that
r(n, k) = Θ(ρ(n, k)). In Section 4 we will prove that r(n, 2) ≤ ρ(n, 2) + O(1). The following simple
proposition shows that sometimes r(n, 2) ≥ ρ(n, 2) + 1.

Proposition 3.4. r(5, 2) = 5 > 4 = ρ(5, 2).

Proof. Assume for the sake of contradiction that r(5, 2) ≤ ρ(5, 2) = dlog(1 + 5 + 10)e = 4 and let
f :
(
[5]
2

)
→ 2[4] be an ME(5, 2, 4). Without loss of generality, f(∅) = ∅. There must be some i ∈ [5]

such that |f({i})| ≥ 2, since {f({i})}5i=1 cannot all reside in
(
[4]
1

)
. Without loss of generality, assume

that {1, 2} ⊆ f({1}).
We have reached a contradiction, as f({1, 2}), f({1, 3}), f({1, 4}), f({1, 5}) are 4 distinct subsets

of 2[4] that properly contain {1, 2}. Thus, r(5, 2) ≥ 5. But obviously r(5, 2) ≤ 5, hence r(5, 2) = 5.

The proof of Proposition 3.4 extends to show that for some choices of n and k, r(n, k) exceeds
ρ(n, k) by more than an additive constant.

Lemma 3.5. Let f :
([n]
≤k
)
→ 2[n−1] be an ME(n, k, n − 1) and let 0 ≤ m ≤ k. Then, there exists

S ∈
( [n]
≤m
)

such that |f(S)| ≥ 2m.

Proof. By induction on m. The claim trivially holds for m = 0; Assuming it holds for m − 1, we
prove it for m. Let S be a subset of [n] of cardinality at most m − 1 such that |f(S)| ≥ 2m − 2.
Consider {S ∪ {j} : j 6∈ S}. These are at least n − m + 1 sets of cardinality at most m. The
images under f of all of these sets must be distinct and strictly contain f(S). Since there are only
≤ n − 2m + 1 < n − m + 1 such sets of cardinality 2m − 1, one of these has cardinality at least
2m.

Using this lemma, we can prove the following.

Corollary 3.6. For all odd integers n ≥ 5, r(n, n−1
2 ) ≥ 1 + ρ(n, n−1

2 ).
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We omit the simple proof since we proceed to establish a stronger result. We need the following
corollary of Stirling’s approximation formula, where H(α) = α log 1

α + (1 − α) log 1
1−α is the binary

entropy function.

Claim 3.7. log
(
t
αt

)
= tH(α)− 1

2 log (2πα(1− α)t) + o(1).

Proposition 3.8. There exists a constant δ > 0 such that r
(
n, 1−δ

2 n
)

= n for sufficiently large n.

Proof. Let k = 1−δ
2 n and let m =

(
1
2 − δ

)
n = k − δ

2n. Assume for the sake of contradiction that
r(n, k) ≤ n− 1 and let f :

([n]
≤k
)
→ 2[n−1] be an ME(n, k, n− 1).

By Lemma 3.5, there exists some S of cardinality at most m such that |f(S)| ≥ 2m = (1− 2δ)n.
Consider {S ∪ T : T ∈

([n]\S
δ
2
n

)
}. These are at least

(n−m
δ
2
n

)
sets in

([n]
≤k
)

whose images under f are all

distinct and (properly) contain f(S). Therefore, for sufficiently small δ and sufficiently large n,

log
(
n−m
δ
2n

)
= log

((1
2 + δ

)
n

δ
2n

)
>

(
1
2

+ δ

)
nH

(
δ

1 + 2δ

)
− 1

2
log n > 2δn = n−2m > |[n−1]\f(S)|,

which is a contradiction. Thus, r(n, k) ≥ n and hence r(n, k) = n.

Another useful entropy-related estimation we need is

Claim 3.9. H
(

1−δ
2

)
= 1− δ2

2 ln 2 +O(δ4).

Proof. We use the fact that ln(1± δ) = ±δ − δ2

2 + o(δ2).

1−H
(

1− δ
2

)
= 1 +

1 + δ

2
log
(

1 + δ

2

)
+

1− δ
2

log
(

1− δ
2

)
=

1 + δ

2
log(1 + δ) +

1− δ
2

log(1− δ)

=
1

2 ln 2

(
(1 + δ)

(
δ − δ2

2

)
− (1− δ)

(
δ +

δ2

2

))
+ o(δ2)

=
δ

4 ln 2
((1 + δ)(2− δ)− (1− δ)(2 + δ)) + o(δ2) =

δ2

2 ln 2
+ o(δ2) .

Note that H
(

1−δ
2

)
is symmetric around δ = 0 and has continuous derivatives of all orders, hence

the o(δ2) term is actually O(δ4).

We are now ready to prove the lower bound on r(n, k) of Theorem 4.

Proof of Theorem 4. Choose k = k(n) = 1−δ
2 n where δ is the constant from Proposition 3.8. By

Claim 3.9,

ρ(n, k) = log

(
k∑
i=0

(
n

i

))
< nH

(
k

n

)
= nH

(
1− δ

2

)
= n

(
1− δ2

2 ln 2
+O(δ4)

)
.

Hence, r(n, k) = n > (1 + c4)ρ(n, k) for large enough n and sufficiently small c4 > 0.

In Proposition 3.8 we needed δ to satisfy
(

1
2 + δ

)
H( δ

1+2δ ) > 2δ, e.g., δ = 0.2276. Thus, the
largest value of c4 in Theorem 4 that follows from the proof is roughly 0.038.
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4 Tighter Bounds for k = 2

The ME construction presented in Section 2 is optimal up to a constant factor. Yet, it is interesting
to see how small this constant can get and whether we can beat MEs induced by superimposed
families, even for small values of k where asymptotic superiority still does not apply.

Trivially, r(n, 1) = dlog(n+ 1)e, as we just need n different non-empty subsets of [r]. Hence, the
first interesting case is k = 2.

The obvious lower bound8 is ρ(n, 2) =
⌈
log
(
1 + n+

(
n
2

))⌉
= d2 log ne − 1 + o(1). We prove

Theorem 5 by explicitly constructing an (n, 2)-monotone encoding of length ρ(n, 2) +O(1).

In contrast to the r(n, 2) ≤ 2 log n + O(1) bound of Theorem 5, Coppersmith and Shearer [5]
have shown that for r < (2.0008 − o(1)) log n, no family {Ai}ni=1 of n subsets of [r] exists for which
{Ai ∪Aj}1≤i<j≤n are all different.

4.1 Construction Time Again

A monotone function f over the domain
([n]
≤2

)
can be defined by9

Ai = f({i}) for i ∈ [n] and Aij = Aji = f({i, j}) \ (Ai ∪Aj) for {i, j} ∈
(

[n]
2

)
.

Assuming that {Ai : i ∈ [n]} and {Aij : {i, j} ∈
(
[n]
2

)
} have disjoint supports, it is sufficient to require

three conditions for the function to be injective:

(i) Ai 6= Aj for i 6= j.

(ii) Aij 6= ∅ for i 6= j if ∃i′ such that Ai ∪Aj = Ai′ .

(iii) Aij 6= Ai′j′ for {i, j} 6= {i′, j′} satisfying Ai ∪Aj = Ai′ ∪Aj′ .

As we now strive for a result optimal up to an additive constant, we cannot continue neglecting
the effects of rounding.

Definition 5. For x ∈ R, define bxe = {bxc , dxe}.

Let p = 1 − 1√
2
≈ 0.29 and select minimal a and b ∈ bpae subject to

(
a
b

)
≥ n. Select dis-

tinct A1, . . . , An ∈
([a]
b

)
. Obviously, these satisfy condition (i). In addition, |Ai ∪ Aj | > b for i 6= j,

so condition (ii) is satisfied as well, albeit in the null sense. Condition (iii) will be satisfied by an
appropriate selection of Aij ∈ 2[s] where

s = dlogBmaxe , Bmax = max
A⊆[a]

B(A) and B(A) =
∣∣∣∣{{i, j} ∈ ([n]

2

)
: Ai ∪Aj = A

}∣∣∣∣ .
In simple words, we differentiate between the B(A) pairs colliding at A by labeling each one with a
unique number between 1 and B(A) ≤ Bmax ≤ 2s.

8As Proposition 3.4 demonstrated, ρ(n, 2) is not tight for some values of n.
9Without loss of generality we may assume f(∅) = ∅.
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Thus, we only need to determine Bmax to get an (n, 2)-monotone encoding of length r = a + s.
By symmetry,10 B(A) depends only on |A|. For 0 ≤ m ≤ a, denote the value of B([m]) by B(m).
Clearly,

B(m) =

{
1
2

(
m
b

)(
b

m−b
)

= m!
2(m−b)!2(2b−m)!

, b < m ≤ 2b,

0, otherwise.

Proposition 4.1. B(m) has a single maximum, achieved at m∗ ∈
⌊
b
2p

⌉
= b(2− p)be.

Proof. Let C(m) = B(m)
B(m−1) = m(2b−m+1)

(m−b)2 = m+b2

(m−b)2 − 1. C(m) is decreasing for b + 1 ≤ m ≤ 2b + 1,
from C(b+ 1) = b+ b2 ≥ 2 to C(2b+ 1) = 0. Therefore, B(m) has a single maximum, achieved close
to x ∈ R satisfying C(x) = 1. Let m = b(2− p)bc and m = d(2− p)be.

1 + C(1 +m) =
1 +m+ b2

(1 +m− b)2
<

2 + (2− p)b+ b2

((2− p)b+ 1− b)2
<

2 + 2
√

2b+ b2

((1− p)b+ 1)2
=

(b+
√

2)2

( b√
2

+ 1)2
= 2,

1 + C(m) =
m+ b2

(m− b)2
>

b2

(m− b)2
>

b2

((2− p)b− b)2
=

b2

(1− p)2b2
=

1
(1− p)2

= 2 .

We’ve shown that C(m) > 1 > C(1 +m), hence B(m) achieves its maximum at either m or m.

A rough estimate. We now bound the difference between r and the lower bound ρ(n, 2). First,
we use Claim 3.7 to get a quick estimate, neglecting o(1) terms and the effects of rounding. Assume
that n =

(
a
b

)
and recall that m∗ ≈ (2− p)b = b

2p ≈
pa
2p = a

2 . Hence,

r − ρ(n, 2) ≈ (a+ logBmax)− (2 log n− 1) = a+ log
(
m∗

b

)
+ log

(
b

m∗ − b

)
− 1− 2 log

(
a

b

)
+ 1

≈ a+ log
( a

2

pa

)
+ log

(
b

(1− p)b

)
− 2 log

(
a

pa

)
≈ a+

(
a

2
H(2p)− 1

2
log
(

2π2p(1− 2p)
a

2

))
+
(
paH(1− p)− 1

2
log
(
2π(1− p)p2a

))
− (2aH(p)− log (2πp(1− p)a))

= a

(
1 +

1
2
H(2p) + pH(p)− 2H(p)

)
+

1
2

log
(2πp(1− p)a)2

(2πp(1− 2p)a)(2π(1− p)p2a)

=
1
2

log
1− p

p(1− 2p)
= log(1 +

√
2) ≈ 1.272 .

During the computation we used the following identity.

Claim 4.2. 1 + 1
2H(2p) = (2− p)H(p) for our choice of p.

10For this analysis we assume that n =
`
a
b

´
. If n <

`
a
b

´
, B(A) will decrease for some values of A, but the maximum

Bmax should remain unaffected.

11



Proof.

(2− p)H(p) =
H(p)

2p
= −p log p+ (1− p) log(1− p)

2p
= −

log p− 1−p
2p

2
=

1− log p
2

+
1− 2p

4

= 1− 1
2

log(2p)− 1− 2p
2

log(1− p) = 1− 1
2

log(2p)− 1− 2p
2

log
1− 2p

2p

= 1− log(2p)− (1− 2p) log(2p) + (1− 2p) log(1− 2p)
2

= 1− 2p log(2p) + (1− 2p) log(1− 2p)
2

= 1 +
1
2
H(2p) .

Next we delve into details to check where the estimation above is inaccurate. We lose a little due
to the following reasons: (1) While p ≈ b

a is irrational, a and b must be integers; (2) If n is just a
little bigger than

(
a
b

)
, we are forced to increase either a or b.

It can be verified for small values of a and b that the o(1) terms cause no further loss (see Table 1).

A rigorous proof. Although empirical results show that the first loss is always close to log(1 +√
2) ≈ 1.272, so after rounding up only 2 bits are lost, we will rigorously prove only a weaker bound.

We need the two following technical lemmata.

Lemma 4.3. Let τ ≥ 1 be fixed. Then, B(m∗ ± u) > (1− o(1))e−2
√

2τBmax for 0 < u ≤
√
τb.

Proof. Fix 0 < u ≤
√
τb and let 0 ≤ v < u.

1 + C(m∗ − v) =
m∗ − v + b2

(m∗ − v − b)2
<

(2− p)b+ 1− v + b2

((1− p)b− v − 1)2
=

b2

((1− p)b− v)2
+O(1/b)

<
(b−

√
2v)2 + 2

√
2bv

((1− p)b− v)2
+O(1/b) = 2 +

4
√

2v
b

+O(1/b) .

Recall that C(m) = B(m)
B(m−1) , hence

ln
B(m∗)

B(m∗ − u)
= ln

u−1∏
v=0

C(m∗ − v) <
u−1∑
v=0

ln

(
1 +

4
√

2v +O(1)
b

)
<

u−1∑
v=0

4
√

2v +O(1)
b

=
4
√

2
b

(
u

2

)
+O(u/b) < 2

√
2
u2

b
+ o(1) ≥ 2

√
2τ + o(1) .

The proof that 1 + C(m∗ + v) > 2 − 4
√

2v
b
− Ω(1/b) and thus ln

B(m∗ + u)
B(m∗)

> −2
√

2τ − o(1) is

analogous.

Lemma 4.4. Let τ ≥ 1. Then, 2−a
m∗+

√
τb∑

m=m∗−
√
τb

(
a

m

)
> 1− (2 + o(1))e−2τp.
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Proof. It is sufficient to show that
∑m∗−

√
τb

m=0

(
a
m

)
≤ (1 + o(1))2ae−2τp. By claim 3.9,

log
m∗−

√
τb∑

m=0

(
a

m

)
< aH

(
m∗ −

√
τb

a

)
= aH

(
1
2
−
√
τb

a
+O(1/a)

)

= a

(
1− 1

2 ln 2
4τb
a2

+O

(√
b

a2
+
b2

a4

))
= a− 2τ

b

a
log e+O

(√
b

a
+
b2

a3

)
< a− 2τp log e+O(1/

√
a) .

Proposition 4.5. Assume that n =
(
a
b

)
. Then, the first loss is bounded by 10 bits.

Proof. We will show that the image of f as constructed above covers a fraction of at least 1
1000 of its

range 2[r]. Select τ = 1.5, satisfying e−2
√

2τ > 1
70 and 1−2e−2τp > 1

6 ; Recall that Bmax ≤ 2s < 2Bmax.
Now,

1
2r
|Im(f)| ≥ 1

2r

2b∑
m=b+1

(
a

m

)
B(m) ≥ 1

2r

m∗+
√
τb∑

m=m∗−
√
τb

(
a

m

)
B(m)

≥ Bmax
2s

(1− o(1))e−2
√

2τ2−a
m∗+

√
τb∑

m=m∗−
√
τb

(
a

m

)
≥ 1

2
(1− o(1))e−2

√
2τ
(
1− (2 + o(1))e−2τp

)
> (1− o(1))

1
2 · 70 · 6

= (1− o(1))
1

840
>

1
1000

.

Therefore, r ≤ dlog (1000|Im(f)|)e ≤ dlog 1000e+
⌈
log
(
1 + n+

(
n
2

))⌉
= 10 + ρ(n, 2).

Proposition 4.6. The second loss is bounded by one bit.

Proof. Fix n. Let a and b ∈ bpae be maximal11 such that
(
a
b

)
< n. If b ∈ bp(a+ 1)e, then we are

able to use
([a+1]

b

)
since by our choice of a,

(
a+1
b

)
≥ n. Here we lose exactly one bit as we increased

a by 1 while s did not change.
Otherwise, bp(a+ 1)c − 1 ≤ bpa+ 1c − 1 = bpac ≤ b < bp(a+ 1)c, so b+ 1 = bp(a+ 1)c.

Claim 4.7. b+ 1 = dp(a− 2)e.

Proof. We use the fact that two distinct integers must differ by at least 1.

bp(a+ 1)c − dp(a− 2)e < p(a+ 1)− p(a− 2) = 3p < 1
bp(a+ 1)c − dp(a− 2)e ≥ bpac+ 1− dp(a− 2)e > pa− p(a− 2)− 1 = 2p− 1 > −1

Hence bp(a+ 1)c − dp(a− 2)e = 0 and b+ 1 = bp(a+ 1)c = dp(a− 2)e.

Corollary 4.8. By our choice of b, n ≤
(
a−2
b+1

)
.

In the following claim, s′, B′(m) and B′max are used to indicate new values of s, B(m) and Bmax
(resp.) when

([a−2]
b+1

)
is used instead of

([a]
b

)
.

11To be exact, first select maximal b such that there exists a for which b ∈ bpae and
`
a
b

´
< n and then select maximal a

such that b ∈ bpae and
`
a
b

´
< n.
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Claim 4.9. s′ ≤ s+ 3.

Proof. B′max is achieved at either m∗ + 1, m∗ + 2, or m∗ + 3 since (2− p)(b+ 1) = 2 + (2− p)b.

B′(m∗ + 1)
B(m∗)

=
1
2

(
m∗+1
b+1

)(
b+1
m∗−b

)
1
2

(
m∗

b

)(
b

m∗−b
) =

m∗ + 1
2b−m∗ + 1

<
(2− p)b+ 2
2b− (2− p)b

=
2− p
p

+ o(1) = 3 + 2
√

2 + o(1) ,

B′(m∗ + 2)
B(m∗)

=
1
2

(
m∗+2
b+1

)(
b+1

m∗+1−b
)

1
2

(
m∗

b

)(
b

m∗−b
) =

(m∗ + 1)(m∗ + 2)
(m∗ + 1− b)2

<
(m∗ + 2)2

(m∗ + 1− b)2

<
((2− p)b+ 3)2

((2− p)b− b)2
=
(

(2− p)b+ 3
(1− p)b

)2

= 2(2− p)2 + o(1) = 3 + 2
√

2 + o(1) ,

B′(m∗ + 3)
B(m∗)

=
1
2

(
m∗+3
b+1

)(
b+1

m∗+2−b
)

1
2

(
m∗

b

)(
b

m∗−b
) =

(m∗ + 1)(m∗ + 2)(m∗ + 3)(2b−m∗)
(m∗ + 1− b)2(m∗ + 2− b)2

<
(m∗ + 2)3(2b−m∗)

(m∗ + 1− b)4
<

((2− p)b+ 3)3(2b− (2− p)b+ 1)
((2− p)b− b)4

=
((2− p)b+ 3)3(pb+ 1)

(1− p)4b4
= 4p(2− p)3 + o(1) = 3 + 2

√
2 + o(1) .

Therefore,
B′max
Bmax

≤ 3+2
√

2+o(1) < 5.83+o(1) < 8 and s′−s = dlogB′maxe−dlogBmaxe ≤ dlog 8e = 3.

Note: this method of proof does not hold for very small values of b, but it can be verified that
s′ ≤ s+ 3 remains true for these (see Table 1).

Together, these claims state that
([a−2]
b+1

)
satisfies b+ 1 ∈ bp(a− 2)e, has at least n sets and that

the obtained length is at most (a− 2) + s′ ≤ a− 2 + (s+ 3) ≤ r + 1.

Thus, we have proved that our construction is optimal up to an additive constant c = 11. Again,
empirical evidence shows that the correct value of this constant is 3, but to avoid further complication
in the proof we settled for the above estimate.
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n =
(
a
b

)
a b Bmax r ρ(n, 2) loss (1): best n losses (1)+(2): worst n

6 6 1 1 6 5 1
15 6 2 3 8 7 1 3
21 7 2 3 9 8 1 2
28 8 2 3 10 9 1 2
35 7 3 15 11 10 1 2
56 8 3 15 12 11 1 2
84 9 3 15 13 12 1 2
120 10 3 15 14 13 1 2
165 11 3 15 15 14 1 2
220 12 3 15 16 15 1 2
286 13 3 15 17 16 1 2
330 11 4 70 18 16 2 2
495 12 4 70 19 17 2 3
715 13 4 70 20 18 2 3
1001 14 4 70 21 19 2 3
1365 15 4 70 22 20 2 3
1820 16 4 70 23 21 2 3
2002 14 5 315 23 21 2 2
3003 15 5 315 24 23 1 3
4368 16 5 315 25 24 1 2
6188 17 5 315 26 25 1 2
8568 18 5 315 27 26 1 2
11628 19 5 315 28 27 1 2
15504 20 5 315 29 27 2 2
18564 18 6 1575 29 28 1 2
27132 19 6 1575 30 29 1 2
38760 20 6 1575 31 30 1 2
54264 21 6 1575 32 31 1 2
74613 22 6 1575 33 32 1 2
100947 23 6 1575 34 33 1 2
116280 21 7 8316 35 33 2 2
170544 22 7 8316 36 34 2 3
245157 23 7 8316 37 35 2 3
346104 24 7 8316 38 36 2 3
480700 25 7 8316 39 37 2 3
657800 26 7 8316 40 38 2 3
735471 24 8 42042 40 38 2 2
888030 27 7 8316 41 39 2 3
1081575 25 8 42042 41 40 1 2
1562275 26 8 42042 42 41 1 2

Table 1: Parameters of the k = 2 construction for small values of a and b.
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5 Concluding Remarks and Open Problems

5.1 Encoding and Decoding Algorithms

Proposition 2.3 fuels a recursive algorithm to decode S from f(S):

1. Separate f(S) to AS and f ′(S′).

2. Determine S′ by running the algorithm recursively on f ′(S′).

3. Find all sets Ai ⊆ AS .

4. Add j to S′′ if some x ∈ AS is present solely in Aj .

5. Return S′ ∪ S′′.

A quick calculation shows that the running time of the whole decoding algorithm is O
(
nk log n

k

)
.

This is rather expensive as it is exponential in r = O
(
k log n

k

)
for k = poly(log n). The encoding

algorithm suffers from the same behaviour, since basically it determines S′ in the same way and
encodes it recursively.

Our explicit construction for k = 2, however, has polynomial-time encoding and decoding algo-
rithms. We will use the following algorithms as subroutines.

Claim 5.1. Fix integers a ≥ b ≥ 0. Let ϕab be the lexicographic isomorphism from
([a]
b

)
to [
(
a
b

)
] and

let ψab : [
(
a
b

)
] →

([a]
b

)
be its inverse. There exist poly(a, b)-time algorithms computing ϕab (S) given S

and ψab (m) given m.

Proof. Recursive algorithms based on the identity
(
a
b

)
=
(
a−1
b−1

)
+
(
a−1
b

)
will do the job. Initialize

ϕaa([a]) = ϕa0(∅) = 1, ψaa(1) = [a] and ψa0(1) = ∅. Now define recursively

ϕab (S) =

{(
a−1
b

)
+ ϕa−1

b−1 (S \ {a}), a ∈ S,
ϕa−1
b (S), otherwise

and

ψab (m) =

{
{a} ∪ ψa−1

b−1

(
m−

(
a−1
b

))
, m >

(
a−1
b

)
,

ψa−1
b (m), otherwise.

Notice that all numbers
(
a′

b′

)
for a′ ≤ a, b′ ≤ b can be computed using dynamic programming based

on the above-mentioned identity. This requires ab additions of (b log(a/b))-bit integers, that is,
poly(a, b)-time as well.

Proposition 5.2. The (n, 2)-monotone encoding presented in section 4 and its inverse can be com-
puted in poly(log n)-time (per input).

Proof. Let a, b be the parameters of the construction. Encoding and decoding the empty set is trivial.
By Claim 5.1, encoding and decoding a singleton takes poly(a, b) time as well.12 We are left with
the interesting case - a set of cardinality 2.

12When decoding, we can detect a singleton by checking that the cardinality of the input is exactly b.
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Encoding: Let S = {i, j} be the input for encoding. Calculate Ai and Aj using Claim 5.1. Recall
that S should be encoded by X ∪ Aij where X = Ai ∪ Aj , m = |X| and Aij encodes an index
between 1 and B(m) =

(
m

2(m−b)
)(2(m−b)−1

m−b
)
. Using Claim 5.1, convert Y = Ai∩Aj to a number

u ∈ [
(

m
2(m−b)

)
] and convert Ai \ Y to a number v ∈ [

(2(m−b)−1
m−b

)
].

It might appear as though one needs a range of
(2(m−b)
m−b

)
to properly split X \ Y to Ai \ Y and

Aj \ Y , but since the order of i and j does not matter, we may pick i such that Ai \ Y does
not contain the maximal element of X \ Y , saving a bit.

Combine u and v to a single number w = u+ (v − 1)
(

m
2(m−b)

)
∈ [B(m)] and encode it as a set

Aij ∈ 2[s].

Decoding: Let X ∪ Aij be the input for decoding. We kept the support of {Ai}ni=1 separate from
{Aij}’s, so we have X = Ai ∪ Aj and Aij ∈ 2[s]. Aij simply encodes w, from which we
can recover u and v as the remainder and the quotient of w divided by

(
m

2(m−b)
)

(we know
m = |X|). Using Claim 5.1, convert u back to Y and v back to Ai \ Y . Now it is easy to
determine Ai = Y ∪(Ai\Y ) and Aj = Y ∪(X \Ai) and to use Claim 5.1 once more to determine
i and j.

Running time is poly(log n)-time for encoding or decoding as we only used Claim 5.1 and basic
integer arithmetic for numbers of order log n.

5.2 Open Problems

Exact constructions. In spite of Proposition 3.4, we believe that usually r(n, 2) = ρ(n, 2). For a
fixed n, the following method can be used to check if r(n, 2) = ρ(n, 2). First, we assign all singletons
{f({i})}ni=1 to small subsets of 2[ρ(n,2)] (and obviously f(∅) to ∅). Next, we build the bipartite
constraints graph:

• On one side U =
(
[n]
2

)
we have all pairs,

• On the other side V ⊂ 2[ρ(n,2)] we have all unassigned targets;

• An edge connects {i, j} ∈ U and A ∈ V iff f({i}) ∪ f({j}) ⊆ A.

A matching in this graph that saturates U translates into an (n, 2)-monotone encoding.13

Using Hopcroft-Karp’s maximum-cardinality bipartite matching algorithm (see A.1), we verified
that a saturating matching exists for 23 ≤ n ≤ 250. Especially interesting is n = 90 since 1 + 90 +(
90
2

)
= 212, rendering the ME surjective as well. This suggests the following conjecture.

Conjecture 1. For all n ≥ 23, r(n, 2) = ρ(n, 2).

Maybe the following stronger version is true as well.

Conjecture 2. For every fixed k ≥ 2, r(n, k) 6= ρ(n, k) for only a finite number of values of n.
13It is possible that r(n, 2) = ρ(n, 2) and still the graph does not contain a matching saturating U , as the values of
{f({i})}ni=1 we have chosen are not necessarily those leading to an optimal encoding.
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Note that in the notation above, almost always |U | < |V |, i.e., there is some ‘extra’ space. Indeed,
this is a simple consequence of the ABC conjecture, as we explain next.

Masser and Oesterlé conjectured in 1985 that for any ε > 0 there exists a constant Kε > 0 such
that for every triple of coprime positive integers a, b, c satisfying a+b = c we have c ≤ Kε(rad(abc))1+ε

where rad(m) is defined as the product of all distinct prime divisors of m. This is known as the ABC
Conjecture (see [13, 15]) and has numerous number-theoretic consequences including the following
one.

Claim 5.3. For any fixed M we have 2ρ(n,2) = 1 + n +
(
n
2

)
+ M for only a finite number of values

of n, under the assumption that the ABC Conjecture holds.

Proof. Fix M and let n be an integer such that 2ρ(n,2) = 1 + n +
(
n
2

)
+ M = (2n+1)2+7

8 + M . Let
a = (2n + 1)2, b = 8M + 7 and c = 23+ρ(n,2). Note that gcd(a, b, c) = 1 and that rad(abc) ≤ 2

√
ab.

By the ABC Conjecture with ε = 1
2 , we have a ≤ c ≤ K1/2(rad(abc))3/2 = O(a3/4M3/2). This is

possible only for a finite number of values of n.

Corollary 5.4. For any fixed M we have 2ρ(n,2) ≥ 1 + n+
(
n
2

)
+M , i.e., |V | ≥ |U |+M for all but

a finite number of values of n, under the assumption that the ABC Conjecture holds.

In other words, the matching is almost never required to be nearly perfect. It seems likely that
the assertion of the last two claims can be proved without relying on any unproven conjectures,
using the theory of imaginary quadratic fields, but as this is not very essential for our purpose in
this paper, we include only the conditional simple proof above.

Explicit constructions, general case. Although the ME construction of Theorem 3 is explicit,
it relies on using FUT families of various sizes as building blocks, for which we only presented a
probabilistic construction. A bipartite graph G = (U, V,E) in which the degree of every vertex
u ∈ U is s is called a (k, δ)-expander if any U ′ ⊂ U of size at most k has at least δs|U ′| neighbors
in V . (k, 1 − ε)-expanders for some small ε > 0, called lossless expanders, may assist us in building
FUT families as any (k, 1 − ε)-expander yields a (k, 1 − 2ε)-FUT family; However, the best known
explicit constructions of these (see [4, 10]) do not suffice for the recursive chaining procedure of
Theorem 3.
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A Computer Programs

A.1 Python code verifying the existence of an exact construction for k = 2

#! /usr/bin/python2.5

import math

# Hopcroft-Karp bipartite max-cardinality matching and max independent set
# David Eppstein, UC Irvine, 27 Apr 2002
# http://www.ics.uci.edu/~eppstein/PADS/BipartiteMatching.py
from BipartiteMatching import *

def powerSet(s):
if not s: return [set()]
res = powerSet(s[:-1])
last = set(s[-1:])
return res + map(last.union, res)

def generateGraph(n):
rho2 = math.log(1 + n + n*(n-1)/2, 2)
r = int(rho2 +.999999)
R = powerSet(range(r))
R.sort(key=len)
S,R = R[1:1+n],R[1+n:] # drop empty set, separate singletons
C = [set( tuple(A) for A in R if A.issuperset(S[i]) ) for i in xrange(n)]
G = {}
for i in xrange(n):

for j in xrange(i):
G[j,i] = list(C[i].intersection(C[j]))

return G

if __name__ == ’__main__’:
for n in xrange(4, 250):

M = matching(generateGraph(n))[0] # take only the matching
if len(M) < n*(n-1)/2:
print "Saturating matching not found for n=%d" % n

#OUTPUT:
# Saturating matching not found for n=5
# Saturating matching not found for n=7
# Saturating matching not found for n=10
# Saturating matching not found for n=15
# Saturating matching not found for n=22
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