Complete minors and average degree – a short proof

Noga Alon * Michael Krivelevich † Benny Sudakov ‡

Abstract

We provide a short and self-contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d has a complete minor of order $\Omega(d/\sqrt{\log d})$.

Let G = (V, E) be a graph with $|E|/|V| \ge d$. How large a complete minor are we guaranteed to find in G? This classical question, closely related to the famed Hadwiger's conjecture, has been thoroughly studied over the last half a century. It is quite easy to see the answer is at least logarithmic in d. Mader [3] proved it is of order at least $d/\log d$. The right order of magnitude was established independently by Kostochka [1, 2] and by Thomason [4] to be $d/\sqrt{\log d}$, its tightness follows by considering random graphs. Finally, Thomason found in [5] the asymptotic value of this extremal function.

Here we provide a short and self-contained proof of the celebrated Kostochka–Thomason bound.

Theorem 1. Let G = (V, E) be a graph with $|E|/|V| \ge d$, where d is a sufficiently large integer. Then G contains a minor of the complete graph on at least $\frac{d}{10\sqrt{\ln d}}$ vertices.

The constant 1/10 in the above statement is inferior to the best constant 3.13... found by Thomason [5] (yet is better than the constants in [1, 2]); we did not make any serious attempt to optimize it in our arguments. The main point here is to give a short proof of the tight $\Omega(d/\sqrt{\log d})$ bound for this classical extremal problem.

Throughout the proof we assume, whenever this is needed, that the parameters n and d are sufficiently large. To simplify the presentation we omit all floor and ceiling signs in several places. For a graph G = (V, E), its minimum degree is denoted by $\delta(G)$, and for $v \in V$ we use $N_G(v)$ for the external neighborhood of v in G.

We need the following lemma proven by simple probabilistic arguments.

Lemma 2. Let H = (V, E) be a graph on at most n vertices with $\delta(H) \ge n/6$. Let $t \le n/\sqrt{\ln n}$, and let $A_1, \ldots, A_t \subset V$ with $|A_j| \le ne^{-\sqrt{\ln n}/3}$ for all $1 \le j \le t$. Then there is $B \subset V$ of size $|B| \le 3.1\sqrt{\ln n}$

^{*}Department of Mathematics, Princeton University, Princeton, NJ 08544, USA and Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel. Email: nalon@math.princeton.edu. Research supported in part by NSF grant DMS-1855464 and USA-Israel BSF grant 2018267.

[†]School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: krivelev@tauex.tau.ac.il. Research supported in part by USA-Israel BSF grant 2018267.

[‡]Department of Mathematics, ETH, Zürich, Switzerland. Email: benjamin.sudakov@math.ethz.ch. Research supported in part by SNSF grant 200021_196965.

such that B dominates all but at most $ne^{-\sqrt{\ln n}/3}$ vertices of V, $B \setminus A_j \neq \emptyset$ for all j = 1, ..., t, and the induced subgraph G[B] has at most six connected components.

Proof. Set $s = 3.1\sqrt{\ln n}$ and choose s vertices of V independently at random with repetitions. Let B be the set of chosen vertices. Observe that for every vertex $v \in V$,

$$Pr[N(v) \cap B = \emptyset] \le \left(1 - \frac{d(v)}{n}\right)^s \le e^{-\frac{sd(v)}{n}} \le e^{-s/6}.$$

Hence the expected number of vertices not dominated by B is at most $ne^{-s/6} < ne^{-3.1\sqrt{\ln n}/6} < ne^{-\sqrt{\ln n}/2}$, and by Markov's inequality, it is at most $ne^{-\sqrt{\ln n}/3}$ with probability exceeding 1/2 (with room to spare). Also, since $|V| > \delta(H) \ge n/6$, for every subset A_j ,

$$Pr[B \subseteq A_j] = \left(\frac{|A_j|}{|V|}\right)^s < \left(\frac{6|A_j|}{n}\right)^s \le 6^s e^{-s\sqrt{\ln n}/3} = 6^{\Theta(\sqrt{\log n})} e^{-3.1 \ln n/3} < \frac{1}{n}.$$

Therefore the probability that $B \setminus A_i \neq \emptyset$ for all j is at least $1 - t/n \ge 1 - 1/\sqrt{\ln n}$.

We now argue about the number of connected components in G[B]. Writing $B=(v_1\dots,v_s)$, for $1\leq i\leq s$ let x_i be the random variable counting the number of indices $1\leq j\neq i\leq s$ for which v_j is a neighbor of v_i . Conditioning on v_i , we see that x_i is distributed as a binomial random variable with parameters s-1 and $d(v_i)/|V|>1/6$. Hence invoking the standard Chernoff-type bound on the lower tail of the binomial distribution, we derive that $Pr[x_i < s/7] \leq e^{-\Theta(s)}$. Applying the union bound over all $1\leq i\leq s$, we conclude that with probability 1-o(1), we have $x_i\geq s/7$ for all i. Finally, observe that since $s\ll \sqrt{|V|}$, with probability 1-o(1) there are no repetitions in B, and hence $d(v_i,B)=x_i\geq s/7$ for all $1\leq i\leq s$. But then all connected components of G[B] are of size exceeding s/7, and therefore G[B] has at most six connected components.

Combining the above three estimates, the desired result follows.

Proof of Theorem 1. Let G' = (V', E') be a minor of G such that $|E'| \ge d|V'|$ and |V'| + |E'| is minimal. If an edge e of G' is contained in t triangles then contracting e gives a minor of G with one vertex and t+1 edges less. By the minimality of G' we have t+1>d, implying $t \ge d$. Hence for every edge $e = (u, v) \in E(G')$, the vertex u is connected by an edge of G' to at least d neighbors of v. The minimality of G' also implies |E'| = d|V'|, hence G' has a vertex v of degree at most 2d. Let H be the subgraph of G' induced by $N_{G'}(v)$. Then H has at most 2d vertices and minimum degree at least d. Obviously a minor of H is a minor of G as well.

We now argue that H contains a d/3-connected subgraph H_1 with $\delta(H_1) \geq 2d/3$. If H itself is d/3-connected this holds for $H_1 = H$. Otherwise there is a partition $V(H) = A \cup B \cup S$, where $A, B \neq \emptyset$, |S| < d/3, and H has no edges between A and B. Assume without loss of generality $|A| \leq |B|$. Then $|A| \leq d$, and since $\delta(H) \geq d$, every vertex $v \in A$ has at least 2d/3 neighbors in A, implying that every pair of vertices of A has at least d/3 common neighbors in A. Hence the induced subgraph $H_1 := H[A]$ is d/3-connected, has at most 2d vertices and satisfies $\delta(H_1) \geq 2d/3$.

Set i=1 and repeat the following iteration $d/10\sqrt{\ln d}$ times. Let $H_i=(V_i,E_i)\subseteq H_1$ be the current graph, and suppose A_1,\ldots,A_{i-1} are subsets of V_i of cardinalities $|A_j|\leq 2de^{-\sqrt{\ln(2d)}/3}$ (representing

the non-neighbors of the previously found branch sets B_i in V_i). We assume (and justify it later) that H_i is connected and has $\delta(H_i) > d/3$. Then the diameter of H_i is at most 14, as on any shortest path $P = (v_0, v_1, \ldots)$ in H_i the vertices at positions divisible by three have pairwise disjoint neighborhoods. Since $|V(H_i)|/\delta(H_i) < 6$, the number of such neighborhoods is at most 5, and therefore any shortest path has at most 15 vertices. Applying Lemma 2 with $H := H_i$, n := 2d, t := i - 1, and A_1, \ldots, A_{i-1} (for the initial step i = 1 there are no A_i 's to plug into Lemma 2 — which of course does not hinder its application) we get a subset B_i of cardinality $|B_i| \leq 3.1 \sqrt{\ln(2d)}$ as promised by the lemma. We now turn B_i into a connected set by adding few vertices of H_i if necessary. Recall that $H_i[B_i]$ has at most six connected components. Connecting one of them by shortest paths in H_i to all others and recalling that H_i has diameter at most 14, we conclude that by appending to B_i all the vertices of these paths we make it connected by adding to it at most $13 \cdot 5 = 65$ vertices. Altogether we obtain a connected subset B_i of cardinality $|B_i| \leq (3.1 + o(1))\sqrt{\ln(2d)}$, dominating all but at most $2de^{-\sqrt{\ln(2d)}/3}$ vertices of V_i and having a vertex outside every A_i (these properties are preserved under vertex addition when making B_i into a connected subset) — meaning connected to every previous B_i . We now update $V_{i+1} := V_i - B_i$, $A_i := V_{i+1} - N_{H_i}(B_i)$, and $A_j := A_j \cap V_{i+1}$, $j = 1, \ldots, i-1$, and finally increment i:=i+1, set $H_i:=H[V_i]$, and proceed to the next iteration. The total number of vertices deleted in all iterations satisfies:

$$\left| \bigcup_{i} B_{i} \right| \leq \frac{d}{10\sqrt{\ln d}} \cdot (3.1 + o(1))\sqrt{\ln(2d)} < \frac{d}{3},$$

and since we started with the d/3-connected graph H_1 with $\delta(H_1) \geq 2d/3$, we indeed have that at each iteration the graph H_i is connected and has $\delta(H_i) > d/3$.

After having completed all $d/10\sqrt{\ln d}$ iterations, we get a family of $d/10\sqrt{\ln d}$ branch sets B_i , all connected, and with an edge of H_1 between every pair of branch sets. Hence they form a complete minor of order $d/10\sqrt{\ln d}$ as promised.

References

- [1] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982), 37–58 (in Russian).
- [2] A. V. Kostochka, A lower bound for the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307–316.
- [3] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154–168.
- [4] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261–265.
- [5] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001), 318–338.