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Abstract We consider the task of multiparty compu-

tation performed over networks in the presence of ran-

dom noise. Given an n-party protocol that takes R

rounds assuming noiseless communication, the goal is

to find a coding scheme that takes R′ rounds and com-

putes the same function with high probability even when

the communication is noisy, while maintaining a con-

stant asymptotic rate, i.e., while keeping lim infn,R→∞R/R′

positive.

Rajagopalan and Schulman (STOC ’94) were the

first to consider this question, and provided a coding

scheme with rate O(1/ log(d+ 1)), where d is the maxi-

mal degree in the network. While that scheme provides

a constant rate coding for many practical situations, in

the worst case, e.g., when the network is a complete

graph, the rate is O(1/ log n), which tends to 0 as n
tends to infinity.

We revisit this question and provide an efficient cod-

ing scheme with a constant rate for the interesting case

of fully connected networks. We furthermore extend the

result and show that if a (d-regular) network has mix-

ing time m, then there exists an efficient coding scheme

with rate O(1/m3 logm). This implies a constant rate

coding scheme for any n-party protocol over a d-regular

network with a constant mixing time, and in particular

for random graphs with n vertices and degrees nΩ(1).
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1 Introduction

The field of coding for interactive communication, ini-

tiated by Schulman in the early 90’s [44,45,46], aims

at performing arbitrary distributed computations when

the communication channels between the different nodes

suffer from noise. For the case where two parties com-

municate over a discrete memoryless channel (say, the

binary symmetric channel that flips every bit with an

independent probability of ε, denoted BSCε), the scheme

of [46] provides an efficient coding with good parame-

ters: the coding of an R-round (noiseless) protocol takes

only O(R) rounds, and gives the correct outputs with

probability 1− 2−Ω(R) over the noisy network.

In 1994, Rajagopalan and Schulman [43] extended

the result to the multiparty case. Here we are given a

network with n nodes of some arbitrary topology, where

each communication link is an independent BSCε, where

at every step of the protocol each party sends one bit

through each one of the channels it is connected to (pos-

sibly sending different bits to different parties). In this

case, any protocol of R rounds over the noiseless net-

work can be coded into a resilient protocol that takes

O(R log(d+ 1) + log n) rounds and succeeds with prob-

ability 1 − 2−Ω(R). The parameter d is the maximum

degree of any node in the network, i.e., the maximal

number of links connected to a single party. Although

the scheme of [43] is not efficient, Gelles, Moitra and Sa-

hai [28,29] showed that it can be extended to a fully ef-

ficient (randomized) scheme. The coding scheme of [43]

has good parameters for any constant number of par-

ties, however it may not work as well when the number

of parties is large. Indeed, in highly connected networks,

and in particular when the topology is a complete graph

on n vertices, the redundancy added by the coding be-

comes Θ(log n). In other words, the rate, the length of

the noiseless protocol divided by the length of the en-

coded protocol, is vanishing, being O(1/ log n).

We revisit the question of coding for multiparty in-

teractive communication, and ask whether it is possible

to find efficient coding schemes with rate O(1) for the

case where the network is highly connected, for exam-

ple, when the topology is a complete graph.

We answer the above in the affirmative.

Theorem 1 (coding over complete graphs) For

any n-party protocol π that takes R-rounds over the

fully-connected (noiseless) network, and for any con-

stant ε < 1/2, there exists a resilient protocol Π that

simulates π over a fully connected network in which ev-

ery link is a BSCε. The simulation is computationally

efficient, takes Oε(R) rounds and succeeds with proba-

bility 1− 2−Ω(
√
nR).

This result sheds some light on the differences be-

tween the case where each pair of parties share a sepa-

rate (noisy) channel, and the case where all the parties

share a joint (noisy) broadcast channel. It was previ-

ously shown that if the users share a noisy broadcast

channel then certain tasks, such as computing the par-

ity of all the inputs, or learning the input bit of all the

parties can be done in O(n log log n) noisy-broadcast

rounds [25], while assuming a noiseless broadcast chan-

nel, these tasks trivially take n rounds. Furthermore,

these tasks cannot be done with fewer rounds when

the channel is noisy, i.e., the O(log log n) blowup is

tight [33]. On the other hand, as implied by Theorem 1,

such a blowup no longer holds in a setting where any

two connected parties use a separate noisy channel.

In order to prove Theorem 1, we show a coding

scheme that simulates a single round of the noiseless

protocol. Consider the neighborhood connectivity task

in which each party holds one bit designated to each

one of its neighbors. It is easy to verify that sending

each bit directly requires Ω(log n) rounds in order to

be decoded correctly with high probability. However, we

show a coding protocol that solves the neighborhood-

connectivity task over a noisy network with high prob-

ability in O(1) rounds. Instead of transmitting each bit

directly, we relay each bit through large portions of the

network using an appropriate (Shannon) error correct-

ing code [47]. To illustrate this simple idea, consider a

very simplified case in which some source s wishes to

send a single bit to a target node t, over the noisy net-

work. In order to complete this task in O(1) rounds, s

can relay its bit to all its n−1 neighbors, and then they

will send their (noisy) copy to t. Thus, in two rounds

the target node t receives n−1 independent estimations

of the bit, where each estimation is correct with proba-

bility (1− ε)2 + ε2; this allows t to correctly decode the

bit with high probability by taking the majority of the

estimations.

With the above relaying technique in mind, we can

design a coding scheme for the neighborhood connec-

tivity in O(1) rounds. Here is an outline. We describe

the neighborhood connectivity task as an n× n matrix

where each row and column describes a specific party

and the (i, j) entry is the amount of bits the i-th party

wants to communicate to the j-th party (in particular,

the matrix is all-ones in the case of a complete graph).

We first divide the n parties into subsets of size
√
n.

This division can be seen as splitting the above matrix

into n blocks of size
√
n by

√
n. Next, we associate each

such block with a specific party, or more accurately, we

associate this party with the n-bits of information de-

fined by that block in the matrix. The coding will work

in two symmetric parts. First, each party (each row in
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the matrix) will encode each of the
√
n bits that belong

to a specific block and send it to the party associated

with it. After this step, each party knows all the n bits

of the block associated to it. Next, each associated party

of a specific block will encode the
√
n bits designated

to a specific party (that is, the bits that lie in a column

of the matrix), and send them to that party. Since both

parts encode the bits prior to sending them, they will

be decoded correctly with high probability.

Note that using the above relaying technique, it

is possible to send each of the encodings (of length

O(
√
n)) in a constant number of rounds. In fact, we can

parallelize their transmissions and communicate all the

necessary information in a constant number of rounds.

Coding Over Highly-Connected Topologies. In addition

to the complete graph topology, we also consider highly-

connected networks whose topology is a d-regular graph

with a small mixing time m (see Definition 3). We show

a coding scheme with rate O(1/(m3 logm)) that suc-

ceeds with high probability.

Theorem 2 (coding over d-regular graphs) As-

sume a network topology G of a d-regular graph with

mixing time m, and assume d > log1+Ω(1) n. For any

n-party protocol π that takes R rounds over the noise-

less network and for any ε < 1/2, there exists a re-

silient protocol Π that simulates π over the network G

where every link is a BSCε. The simulation is compu-

tationally efficient, takes Oε(R ·m3 logm) rounds and

succeeds with probability 1−2−Ω(dΩ(1)·R) > 1−n−ω(1)R.

For the case of m = O(1), e.g., for random graphs with

d = nα for some constant α > 0, Theorem 2 implies

a coding scheme with a constant rate Θ(1), and a suc-

cess probability of 1− 2−n
Ω(1)R. Note that the rate ob-

tained by the coding scheme of [43] for such networks

is O(1/ log nα) = o(1).

Similar to the case of complete graphs, it suffices

to solve the neighborhood-connectivity task in O(1)

rounds in order to obtain a constant rate scheme over

a d-regular graph, assuming a constant mixing time

m = O(1). However, the challenge here is bigger than

in the complete graph case, as every node is connected

to a relatively small number of nodes, and it is not

clear how to relay bits using arbitrary portions of the

network. Nevertheless, we show a way for large subsets

of nodes to talk with each other simultaneously with-

out disturbing each other, in a reliable way. Specifically,

assume we have a list of (distinct) source-target pairs

where each source node aims to send a total amount

of O(d) bits, and so that each node appears at most

O(d/Λ) times in the list, for some parameter Λ. First

we encode each chunk of information using a standard

error correcting code that has failure probability 2−Ω(Λ)

over a BSCε, and define a new list where each source-

target pair appears with multiplicity which equals the

number of bits to be transferred from that source to

the target after the encoding. Note that in the trans-

formed list, each node may appear up to O(d) times.

Next we show that it is possible to choose a set of short

paths, such that for every element in the list there is

a unique path connecting the source with the target

(i.e., with parallel paths between multiple occurrences

of the same source and target), and yet these paths are

jointly edge-disjoint. This implies that we can deliver all

the codewords to their destinations in constant number

of rounds, and successfully decode each codeword with

high probability. Choosing a set of edge-disjoint paths

applies a variant of the methods used in the papers

about finding edge-disjoint paths in expander graphs

and in particular [14], see also [5] and the references

therein. However, in our case we need all the paths to

be of constant length O(m), and we do not restrict the

list of source-target pairs to be disjoint. Our approach

applies the Lovász Local Lemma, where the basic com-

binatorial statement applied is the fact, first proved in

[2], that given any family of pairwise disjoint sets of

vertices in a graph, each of size somewhat larger than

the maximum degree in the graph, there is always an

independent set containing a vertex from each of these

sets. Moreover, such an independent set can be found

efficiently.

The above reliable coding is not enough to complete

the proof: since we are restricted to source-target lists

where each node appears at most O(d/Λ) times, we

cannot apply this method directly to the neighborhood-

connectivity task. Indeed, each party begins with one

bit to send to each of its d neighbors, and the O(d/Λ)

restriction cannot hold.

Still, using the above coding we show how to per-

form a sequence of relays where each causes the commu-

nication to be more “local”. In other words, each relay

splits the network into disjoint subsets where the com-

munication is guaranteed to occur only between parties

of the same subset. Each such a relay reduces the sub-

set size by a factor of Λ
d and increases the communica-

tion by only a constant factor. Since a mixing time m

implies 2dm > n, after O(m) = O(1) relays (with the

right choice of Λ), each subset is of size at most O(d/Λ)

while each party needs to communicate at most O(d)

bits. Now the communication demand satisfies the con-

ditions of the coding scheme (i.e., every node appears

at most O(d/Λ) times in the induced source-target list)

and we can employ the coding one last time to complete

the task.
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Related Work. As mentioned above, the task of coding

for interactive communication in the two party case,

assuming random noise, was first considered by Schul-

man [44,45,46]. These constructions either have non-

constant rate, or they utilize a data structure named

tree-code for which no efficient construction is known.

Later, Gelles, Moitra and Sahai [28,29] provided a ran-

domized relaxation for the tree code which can be con-

structed efficiently, thus solving the task efficiently when

the noise model is random.

Another interesting model for the two-party inter-

active communication task is when the noise is not ran-

dom but rather adversarial, where the only limit is on

the total fraction of bit flips allowed. The maximal noise

that can be tolerated, and efficient schemes that toler-

ate a constant fraction of noise (up to the possible limit)

were considered in [12,13,7,9,8,31,10]. A long sequence

of works consider two-party interactive communication

for various models and assumptions, e.g. when the par-

ties are allowed to share a (private) random string [23,

24], the case of adaptive protocols [32,1], the case of

erasure channels and channels with feedback [24,27,21],

and the case of private computations [17,30]. The ca-

pacity (the maximal rate) of interactive protocols in the

two-party case was considered by [38,41,35,27]. See also

a survey [26].

Despite a large body of work on the two-party case,

not too much is known for the multiparty case, beyond

the aforementioned result of Rajagopalan and Schul-

man [43], and its efficient extension [28,29]. Subsequent

to the appearance of a preliminary version of this work,

it was shown that a rate of O(1) cannot be achieved for

certain topologies, e.g., a star [11].

For the adversarial noise model, Jain, Kalai and

Lewko [37] consider the case of multiparty interaction

and show a tight Θ(1/n) bound on the fraction of noise,

for star topology networks in the asynchronous model.

Hoza and Schulman [36] show a coding scheme that

applies to any network topology in the synchronous

model, and resists a maximal noise level of O(1/n) with

rate O(n/m log n), where m is the number of edges in

the network. In addition, they provide a coding scheme,

along with tight bounds on the permissible level of

noise, for the interesting case where the noise level per

edge is bounded.

2 Model Definition and Preliminaries

Notations. Let us fix some notations used throughout.

Let N = {0, 1, 2, . . .} denote the natural numbers (in-

cluding zero), and for any integer n ≥ 1, put [n] =

{1, 2, 3, . . . , n}. We say that a function f(n) is negligi-

ble in n, if f(n) ≤ n−ω(1). We will usually want our

constructions to fail with at most negligible probability

in the number of parties. All logarithms throughout the

paper are in base 2.

Noisy Networks and Protocols. Given an undirected graph

G = (V,E) we assume a network with n = |V | par-

ties, where u, v ∈ V share a communication channel if

(u, v) ∈ E. In the case of a noisy network, each such

link is assumed to be a BSCε.

Definition 1 A binary symmetric channel with error

probability ε, is a binary channel BSCε : {0, 1} → {0, 1}
such that for any b ∈ {0, 1}, it holds that Pr[BSCε(b) 6=
b] = ε independently for each instantiation of the chan-

nel.

A single round of communication in the network means

the simultaneous transmission of 2|E| bits: for any link

(u, v) ∈ E, u sends a bit to v and receives a bit from v.

A protocol of length m that computes f(x1, . . . , xn) =

(y1, . . . , yn) is a distributed algorithm where each pi be-

gins the protocol with an input xi, and after m rounds

of communication each pi outputs yi.

In order to ease notations we usually assume G con-

tains self loops and that a party can “send” a bit to

itself. Concretely for a complete graph, each node has

n neighbors rather than n− 1.

Finally, we will be using a standard error correction

code, implied by the work of Shannon. Formally,

Lemma 1 (Shannon Coding Theorem [47]) For

any discrete memoryless channel T with capacity C and

any k, there exists a code ECC : {0, 1}k → {0, 1}n and

ECC−1 : {0, 1}n → {0, 1}k with n = O( 1
C k) such that

for any m ∈ {0, 1}k it holds that,

Pr
[
ECC−1(T (ECC(m))) 6= m

]
< 2−Ω(n).

For a BSCε channel, the capacity C is given by 1 −
H(ε) = 1 + ε log ε + (1 − ε) log(1 − ε). We note that

one can efficiently construct codes with the above pa-

rameters (and efficiently encode and decode them), see,

e.g., [48,34].

3 The Neighborhood Connectivity Task and

Interactive Protocols

A trivial observation is that any R-round multiparty

interactive protocol can be split into R basic steps, in

each of which every party has a single bit to send to any

of its neighbors. We define this task as the neighborhood

connectivity task.

Formally, for any network with n nodes, the neigh-

borhood connectivity task is defined by
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Definition 2 Let ai = (ai,1, . . . , ai,di) where for any i ∈
[n], j ∈ [di] the bit ai,j ∈ {0, 1} is to be interpreted

as the input of party i which is designated to its j-th

neighbor. The Neighbor function is defined as:

Neighbor(a1,a2, . . . ,an) = (b1,b2, . . . ,bn),

where bi consists of the di bits designated to party i by

its di neighbors.

We say that some protocol computes the Neighbor task

over a BSCε, if it fails with a negligible probability in n.

Note that a successful computation of the Neighbor task

implies that all parties have received the correct output;

this is different from the standard successful transmis-

sion which usually accounts for only a single party, or

a single bit transmission.

Composing R rounds of neighborhood connectivity

immediately gives a coding scheme for any R-round

protocol, yet with a success probability that decreases

with R.

Claim For any network G and any R-round multiparty

protocol π, if the neighborhood connectivity task over

G can be performed in k rounds with probability 1 −
n−ω(1), then there exists a coding Π that simulates π

with O(kR) rounds and succeeds with probability 1 −
R · n−ω(1).

However in general the number of rounds R can be

very large. We claim that even in this case, obtaining

a coding protocol that succeeds with high probability

is possible. To this end we use a result by Rajagopalan

and Schulman [43] who showed a coding scheme that

succeeds to simulate any protocol over a memoryless

noisy channel as long as the probability of correctly
decoding a single transmission is at least 1−(d+1)−Ω(1),

where d is the maximal degree of a node in the network.

Theorem 3 ([43]) For any R round protocol π over

any network G, there exists a coding scheme Π, that

takes O(R) rounds and succeeds with probability 1 −
n(2(d + 1)p)Ω(R) given that any symbol transmitted in

the network is correctly received with probability 1 − p
where d is the maximal degree of nodes in G.

Sketch of proof. The theorem is an immediate conse-

quence of the analysis of [43]. Although not written

explicitly there, it follows easily from the analysis of

Lemmas 5.1.1 and 5.1.2 in [43];1 see also the detailed

analysis in [42, Section 3]. We omit the details here. ut
1 In fact, the analysis in [43] measures the wrong quan-

tity: the correctness of transmitted messages, rather than the
correctness of received messages. This technicality can eas-
ily be solved by re-transmitting received messages. See [36,
Appendix A.3] for further details.

To bring the decoding probability of a single trans-

mission to the required level of p < (2(d+ 1))−Ω(1),

Rajagopalan and Schulman simply use a Shannon code

of length O(log(d + 1)), thus obtaining a similar over-

head (see Lemma 5.1.2 in [43]). However, if we replace

the Shannon code used in [43] with O(1) rounds2 of

the neighborhood connectivity task, we effectively re-

duce the probability of a failed transmission to p <

n−ω(1) � (d+ 1)−Ω(1).

Finally, we need to discuss the efficiency of the sug-

gested construction. The coding scheme in [43] is ineffi-

cient in the general case due to assuming tree-codes [46],

for which no efficient construction nor a general efficient

decoding is known. Nevertheless, in the case where the

noise is random, e.g., when the communication is over

BSCε channels, efficient extensions can be obtained.

Specifically, decoding tree-codes over BSCε can be

performed in polynomial time in expectation [46]. This

by itself implies the existence of efficient coding scheme,

and with the above discussion implies the following.

Corollary 1 For any network G and any R-round mul-

tiparty protocol π, if the neighborhood connectivity task

over G can be efficiently performed in k rounds with

probability 1 − p where p = n−ω(1), then there exist an

efficient coding scheme Π that simulates π with O(kR)

rounds and succeeds with probability 1− pΩ(R).

Furthermore, the construction can be made explicit

while increasing the failure probability by 2−Ω(R/n). To

this end, the tree-code is replaced with the so-called po-

tent tree code, for which there exists an efficient (ran-

domized) construction that succeeds with overwhelm-

ing probability of 1− 2−Ω(R/n) [29]. Moreover, the de-

scription of such a tree of depth N consists of O(N)

bits, hence, a single party can specify a potent tree of

the necessary depth and communicate its description to

all the parties using standard error-correcting codes at

a setup phase of the scheme.

In the following will assume that the parties already

share a (potent) tree code. That is, we focus on the ex-

istence of an efficient scheme and suppress the require-

ment for an explicit efficient construction, while keeping

in mind that obtaining an explicit efficient construction

is doable with the cost of increasing the failure proba-

bility by 2−Ω(R/n).

2 Each transmission in [43] is of a symbol taken from a small
finite alphabet. Hence, each such symbol can be communi-
cated with O(1) rounds of (bit) neighborhood connectivity.
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4 Resilient Communication Over Complete

Graphs

In this section we show a coding scheme for the neigh-

borhood connectivity task that takes O(1) rounds as-

suming the network has an underlying topology of a

complete graph. Consider n parties where each two are

connected via a BSCε for some constant ε < 1/2. The

neighborhood connectivity task in the case of complete-

graph networks can be described by giving each pi the

n input bits ai ≡ (ai,1, ai,2, . . . , ai,n) where the j-th bit,

ai,j , should be sent to the j-th party. Then,

Neighbor(a1,a2, . . . ,an) = (aᵀ
1 ,a

ᵀ
2 , . . . ,a

ᵀ
n),

where aᵀ
j ≡ (a1,j , a2,j , . . . , an,j).

Our main theorem in this section is a coding scheme

that solves the Neighbor task in O(1) rounds over com-

plete graph noisy networks.

Theorem 4 For any constant ε < 1/2, the Neighbor
task for n-parties can be efficiently computed with prob-

ability 1−2−Ω(
√
n) in O(1) communication rounds over

a fully-connected network, where each channel is a BSCε.

The above theorem along with Corollary 1 give a con-

stant rate coding scheme for any multiparty protocol

over complete graphs, establishing Theorem 1.

Before we prove the theorem, let us begin by show-

ing that any specific party can reliably transfer a large

amount of information to a single party, usingO(1) rounds

of communication. Assume p1 wishes to send n bits

to p2. Obviously, p1 can send the information to p2 bit

by bit, yet this would take them n rounds. A different

approach would be to relay the bits using the entire
network. That is, on the first round, p1 sends one bit of

its input to all the other parties (e.g., the i-th bit is sent

to the i-th party). On the second round, all the parties

relay the bit they have received at the first round back

to p2. This way, p2 gets all the n bits, where each bit

is flipped with probability 2ε(1 − ε). In order to send

the information reliably, p1 can use a code ECC using

Lemma 1. Such an encoding increases the amount of

information to be communicated to c · n bits for some

constant c > 1, and thus requires repeating the above

process c = O(1) times. We name the above approach

two-steps transfer.

An interesting observation is that during each round,

we utilize only n links of the entire networks (that has

n2 links). This means that we can perform the above

two-steps transfer n times in parallel as long as no two

instantiations have the same sender or the same receiver

(this is a special case of the routing scheme by [20,39]).

Using this observation, we can complete the proof of

Theorem 4.

Proof (Theorem 4). Consider the n2 bits {ai,j} that

have to be sent as the n × n matrix A. Let k =
√
n,

and split the matrix A into n disjoint sub-matrices Bt,l,

each of size k × k. Specifically,

A =


B1,1 B1,2 · · · B1,k

B2,1 B2,2 · · · B2,k

. . .

Bk,1 Bk,2 · · · Bk,k

 ,

where for any t, l ∈ [k] we let

Bt,l =
a(t−1)k+1,(l−1)k+1 a(t−1)k+1,(l−1)k+2 · · · a(t−1)k+1,lk

a(t−1)k+2,(l−1)k+1 a(t−1)k+2,(l−1)k+2 · · · a(t−1)k+2,lk

...
. . .

...

atk,(l−1)k+1 atk,(l−1)k+2 · · · atk,lk

 .

Associate each block Bt,l with a responsible party

f(t, l) ∈ [n] in a bijective way, without loss of generality,

we can take f(t, l) = k(t−1)+ l. The protocol proceeds

in two steps, each of which takes O(1) rounds. In the

first step, each party f(t, l) learns all the bits that be-

long to Bt,l with high probability. In the second step,

each such party distributes the bits of the appropriate

matrix Bt,l to their destinations.

The protocol uses an error correcting code ECC :

{0, 1}k → {0, 1}k′ that, assuming a BSCε, fails with

probability at most 2−Ω(k); note that k′ = Oε(k) (see

Lemma 1).

To explain the first step suppose, first, that we do

not use the code and each party i wishes to send the

bit ai,j to party j. This can be done in two rounds as

follows. In the first round, party i sends the bit ai,j to

party (ki + j)(mod n). Note that here, crucially, each

party i sends exactly one bit to each other party, and

that for each block Bt,l, no two bits of Bt,l reach the

same party. Thus the bits of Bt,l reach all the n parties,

each getting exactly one bit. In the second step, each

party sends the unique bit from Bt,l that it received

to the responsible party f(t, l). Clearly after these two

steps, f(t, l) receives all bits of the block Bt,l. A similar

routing technique appears in [20,39].

In the actual realization of the first step, each party

i applies the code from Lemma 1 to the k bits in each

block in its row before transmitting them. Thus the

bits ai,(l−1)k+1, ai,(l−1)+2, . . . , ai,lk are first encoded to

get k′ bits, which are sent using the above procedure,

simulating each of the two rounds by dk′/ke rounds.

Once the party f(t, l) gets the bits of the encoded rows

of the block Bt,l, he can decode them, using the error

correcting code, and get all the bits of the block Bt,l
correctly, with high probability.
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The second step is performed in the same way, re-

versing the directions. Ignoring the encoding, this can

be done in two rounds as follows. In the first round,

each party f(t, l) responsible to the bits in the block

Bt,l sends the bit ai,j of this block to party number

(i+kj)(mod n). Note that no two bits of the block have

to be sent to the same destination, and hence this can

indeed be performed in one round. In the second round

the party that got the bit ai,j sends it to its destination:

party number j. Since for distinct i, i′, (i+ kj)(mod n)

is not equal to (i′ + kj)(mod n) this can also be done

in one round. To ensure that with high probability no

errors will occur, the party f(t, l) encodes each column

of its block Bt,l before sending the bits of the encoded

message. As before, after the encoding each of these

two rounds can be simulated by a constant number of

rounds. This completes the proof. ut

5 Resilient Communication over Highly

Connected Graphs

In this section we generalize the above result, to the

case where the underlying network is a d-regular graph,

rather than a complete graph. The overhead of the cod-

ing scheme in this case depends on the mixing time of

the network graph.

Definition 3 Let Â be the normalized adjacency ma-

trix3 of a graph G = (V,E) with n nodes. Let u =

(1/n, 1/n, . . . , 1/n). The graph G has mixing time m if,

for any probability vector p,∥∥∥Âmp− u
∥∥∥
∞
≤ 1

2n
.

Note that if a d-regular graph has mixing time m, then

2dm > n. Note also that for any fixed m > 1 a ran-

dom d-regular graph with d ≥ Ω(n2/(m−1)) has, with

high probability, mixing time at most m. Indeed, by the

known results about the eigenvalues of the adjacency

matrix of such a graph (see [15], [18], [49]), with high

probability, all nontrivial eigenvalues λi of the normal-

ized adjacency matrix A of such a graph are in absolute

value at most O(1/
√
d). Standard results about random

walks thus imply that starting from any given point, af-

ter m steps the probability the walk lies in any vertex

is (1 + o(1)) 1
n .

As before, we aim to solve the neighborhood con-

nectivity task. That is, each party now begins with d

bits designated to his neighbors, and the goal is to re-

liably transfer all these n · d bits to their destinations,

in a number of rounds that only depends on m.

3 The adjacency matrix of a graph G = (V,E) is defined
by A(i, j) = 1 if (i, j) ∈ E and zero otherwise. In d-regular
graphs, the normalized matrix is given by Â = 1

d
A.

Theorem 5 For any constant ε < 1/2, the Neighbor
task can be efficiently computed with probability 1 −
mn22−d

Ω(1)

in Oε(m
3 logm) communication rounds over

any d-regular graph network with a mixing time m, as-

suming each link is a BSCε.

For any graph with a constant mixing time m =

O(1) (and thus, with d ≥ nα, for some constant α > 0),

Theorem 5 determines that we can solve the neigh-

borhood connectivity task in O(1) rounds and success

probability 1 − 2−n
Ω(1)

. By Corollary 1 the above im-

plies a constant rate coding scheme that succeeds with

subexponentially high probability for any multiparty

interactive protocol over G with the same parameters.

In the general case, as long as d > log1+Ω(1) n, Theo-

rem 5 and Corollary 1 prove Theorem 2.

The proof of Theorem 5 is composed of two main

parts. First, in Section 5.1 we show that for any not-

too-large list of pairs of nodes {(si, ti)}, it is possible

to find disjoint paths between any si and ti, such that

the length of each such path is 2m. Then, in Section 5.2

we use these disjoint paths (along with some standard

coding) to reliably relay large chunks of information

between any two parties.

5.1 Finding Disjoint Paths

In this subsection we show how to find short edge dis-

joint paths for any list {(si, ti)} of source nodes and

target nodes, such that no node appears more than

O(d/m) times in the list. It is important that the paths

are edge disjoint so that the coding scheme could send

messages from each source si to its target ti without

colliding with a message sent from some other sj to tj .

More precisely, note that we do not need the paths

to be fully disjoint. Assume all the paths are of the same

length, say `. Sending a message from si to ti would

take ` rounds, where at the k-th round 1 ≤ k ≤ ` the

k-th link in the path is utilized, and the others are not.

Therefore, it suffices that every two paths are disjoint

in their k-th edge, for all k ∈ [1, `]. We denote such

paths, whose k-th edges are disjoint (for all k ∈ [1, `]),

as time-multiplexed edge disjoint.

Theorem 6 Let G = (V,E) be a d-regular graph with

mixing time m. Let L = {(si, ti)} be a list of pairs of

nodes, si, ti ∈ V , such that every u ∈ V appears at

most d
1600m times in the list. Then, one can efficiently

construct a set of time-multiplexed edge disjoint paths

of length 2m, connecting each (si, ti) ∈ L.

Proof Fix a pair (si, ti). We count the number of paths

of length 2m connecting these two nodes. For any two
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nodes u, v define Pu,v(m) to be the set of all paths

of length m connecting u and v. Note that the paths

are not necessarily simple, and are allowed to intersect

themselves or even repeat edges.

Lemma 2 For any u, v ∈ V ,

1

2n
dm ≤ |Pu,v(m)| ≤ 2

n
dm.

Proof Recall that G has a mixing time of m. Therefore,

beginning at any node u, the probability to reach v after

m (uniformly random) steps is 1
n ±

1
2n . Since there are

dm different paths of length m starting at u, the claim

follows. ut

Now, set P̃si,ti(2m) =
⋃
v∈V Psi,v(m) × Pv,ti(m) to be

the set of all the paths of size 2m composed as an m-

long path from si to some middle point v concatenated

to an m-long path from v to ti. Clearly,

1

4n
d2m ≤ |P̃si,ti(2m)| ≤ 4

n
d2m.

Next, we would like to choose, for each i, one path

out of P̃si,ti(2m) so that the collection of joint paths are

time-multiplexed edge disjoint. This can be done using

the combinatorial result from [2], see also [6], Propos-

tion 5.5.3, applied to the coincidence graph H described

below. It is also similar to the approach of [14]. For com-

pleteness, we describe the argument, which proceeds by

bounding the dependency between the events of two

paths sharing an edge, and then by using the Lovász

Local Lemma to prove there exists a set of paths that

are jointly time-multiplexed edge disjoint. The details

follow.

Define the following coincidence graphH = (V ′, E′).

For every i, every path in P̃si,ti(2m) becomes a node

in H, that is,

V ′ = {pi,j | pi,j is the j-th path in P̃si,ti(2m)}.

The edges E′ are defined as follows. For any i and i′ 6= i,

we connect the node pi,j with pi′,j′ if, for some 1 ≤ k ≤
2m, these two paths share the k-th edge. We say that

such paths are k-time-colliding.

Lemma 3 The degree of each node in H is at most
d2m

400n .

Proof In the following we will fix a path p∗ (i.e., a

node in H) and bound the number of paths that k-

time-collide with p∗, for some k ∈ [1, 2m]. Denote p∗ =

(e1, e2, . . . , e2m), and consider the k-th edge, ek. Let us

assume that k ≤ m (the other case is symmetric). First,

we note that there are exactly dm−1 paths of length m,

in which ek is the k-th edge. Denote them as,

P (ek, k) ,
{

(e′1, . . . , e
′
k−1, ek, e

′
k+1, . . . , e

′
m) | e′j ∈ E

}
.

If we fix a specific p ∈ P (ek, k), and assume its end

nodes are (u, v), we can ask how many nodes in H have

p as their first half. Since fixing p fixes a specific start-

ing node u and this node can appear at most d/1600m

times in L, it follows that p is the first half of at most

d

1600m
× 2

n
dm

paths in H. Summing over all possible p’s, the number

of paths (nodes in H) whose first half is some path in

P (ek, k) is bounded by d2m/800nm. This is also the

number of paths that k-time-collide with p∗. Summing

over all k ∈ [1, 2m] completes the proof. ut

Given the bound on the degree of each node in H,

we can use the Lovász Local Lemma ([22], cf. also [6],

Chapter 5) to show that we can pick, for every i, one

node pi,j ∈ V ′ so that we obtain an independent set.

Such an independent set implies non-colliding paths

in G.

Lemma 4 (Lovász Local Lemma [22]) Let {Ai} be

a finite set of events. If,

(1) ∀i, Pr[Ai] ≤ p,
(2) ∀i, Ai is mutually independent of all other events

but at most d, and

(3) e(d+ 1)p < 1,

then, Pr[A1 ∧A2 ∧ · · · ] > 0.

Assume that for each (si, ti) we choose one of the

paths in Psi,ti(2m) at random. For any two time collid-

ing paths pi,j , pi′,j′ denote by Aij,i′j′ the bad event that

we choose pi,j for (si, ti) and pi′,j′ for (si′ , ti′), thus

Pr[Aij,i′j′ ] ≤
1

|P̃si,ti(2m)|
· 1

|P̃si′ ,ti′ (2m)|
≤ 16n2

d4m
.

Each such a bad event is independent of all other events

Aab,cd besides those with either a = i or c = i′ (note

that Aab,cd is the same as Acd,ab). Since each path col-

lides with at most d2m/400n other paths (Lemma 3),

each such bad event is independent of all but at most

deg(Aij,i′j′) ≤
(
|P̃si,ti(2m)|+ |P̃si′ ,ti′ (2m)|

)
· d

2m

400n

≤ d4m

50n2

others. It is easy to verify that the conditions of Lemma 4

are satisfied,

e · Pr[Aij,i′j′ ] · (deg(Aij,i′j′) + 1) < 1,

which implies we can pick paths that connect all pairs

in L such that no two paths are time-colliding. We note



8 Noga Alon et al.

that finding such a set in our case can be done with high

probability in quasilinear time Õ(n), via the algorithm

of Moser and Tardos [40]. A deterministic construction

with polynomial time is possible as well, as mentioned

in [3], see also [16]. ut

5.2 The Coding Scheme

The ability to find many time-multiplexed edge disjoint

paths allows us to communicate large chunks of infor-

mation by relaying them through intermediate points in

a way that resembles the approach of Section 4. Specif-

ically, if each party sends and receives O(d) bits from

at most O(d/Λ) different parties the communication

can be done in a reliable way, except with probabil-

ity n22−Ω(Λ).

Definition 4 A communication demand for a network

with n parties, is a matrix A ∈ Nn×n such that ai,j
describes the amount of bits party i wishes to send to

party j.

Proposition 1 Consider a d-regular graph G with mix-

ing time m. Let A be a communication demand matrix,

and assume that for any j,
∑
i ai,j ≤ d and for any i,∑

j ai,j ≤ d. Furthermore assume that every row and

column in A has at most O(d/Λ) non-zero elements,

for some parameter Λ > 1. Then, for any ε < 1/2,

there exists a communication protocol that fulfills the

demand A in Oε(m
2 logm) rounds, and succeeds with

probability 1− n22−Ω(Λ), over a network G where each

link is a BSCε.

Proof The idea of the coding scheme is to send each

chunk of information (i.e., each ai,j bits defined by the

demandA), viaO(d) disjoint paths given by Theorem 6.

However, note that each path given by that theorem

consists of 2m cascaded BSCε. Such a cascade flips each

bit with probability (1− (1− 2ε)2m)/2, and thus has a

capacity C ≤ (1 − 2ε)4m, see e.g., [19, Chapter 7]. To

overcome this error we can use a standard error correc-

tion, yet this will incur a blowup of 2O(m) which we can

substantially reduce by adding another layer of (trivial)

encoding/decoding per BSCε link. Indeed, in the fol-

lowing assume that each bit we communicate through

a BSCε is first encoded to length Oε(logm), sent over

the network in Oε(logm) rounds and then decoded at

the other side of the link. Effectively, this reduces the

error at each link to 1/m, so each link can be seen as

BSC1/m. Cascading 2m such channels is equivalent to

BSCγ with γ = (1 − (1 − 2/m)2m)/2 ≈ (1 − e−4)/2,

that is, the error level is bounded by some constant

independent of m.

The protocol for reliably delivering the communi-

cation demand A goes as follows. For any given i, j,

the i-th party encodes its ai,j bits targeted to the j-th

party, using a Shannon error correction code that suc-

ceeds with probability 1−2−Ω(Λ) assuming a BSCγ . Us-

ing Lemma 1, there exists such a code that encodes ai,j
bits into ãi,j = O(ai,j +Λ) bits. Observe that after this

encoding, each party i holds
∑
j ãi,j =

∑
j O(ai,j+Λ) =

O(d) bits to communicate, since it is guaranteed that

the i-th party has at most O(d/Λ) parties j for which

ai,j 6= 0, and that
∑
j ai,j ≤ d. Let Ã be the communi-

cation demand defined by the above ãi,j .

Next, define O(m) matrices {Bk} such that any

row and column in Bk sums up to at most d/1600m

and such that
∑
k Bk = Ã. This can be done (effi-

ciently) by König’s Theorem, using any efficient algo-

rithm for edge coloring bipartite graphs. Communicat-

ing Ã is equivalent to communicating all the demands

{Bk}, which we will do in a sequential manner. Each

such Bk defines a list Lk in which the pair (i, j) ap-

pears exactly (bi,j)k times in Lk. Since the sum of each

row and column in Bk is bounded by d/1600m, the

list satisfies the conditions of Theorem 6. Thus, the

demand described by Bk can be transmitted by a se-

quence of 2m bit-transmissions over the noisy network.

Moreover, since there are at most O(m) many Bk’s,

transmitting all of them sequentially (i.e., unreliably

fulfilling the communication demand defined by Ã) can

be done in O(m2) bit-transmissions. Recall that each

bit-transmission consists of O(logm) rounds of com-

munication, and we get that the entire process takes

O(m2 logm) rounds.

Last, we show that the entire process implies a re-

liable communication of the demand A. Recall that
each chunk of information in Ã is encoded to resist

the noise γ, that is, the noise induced by transferring

each bit through the path of 2m consecutive indepen-

dent BSC1/m links. It follows that each encoded chunk

(i.e., each ãi,j) is decoded correctly with probability

1 − 2−Ω(Λ). A union bound on all the (< n2) different

encoded transmissions {ãi,j} gives the claimed success

probability. ut

As a corollary of the above theorem, note that the same

result holds for any communication demand A in which

each row and column sums up to K · d rather than d,

in O(K · m2 logm) rounds. In that case, after encod-

ing each chunk we get the demand Ã in which the sum

of each row or column is O(Km2), and thus it can be

transmitted in O(Km2 logm) rounds. The failure prob-

ability also increases by a factor of K.

We are now ready to complete the proof of Theo-

rem 5.
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Proof (Theorem 5.) Let A0 be the communication de-

mand induced by the neighborhood connectivity, thus

for any j,
∑
i ai,j = d and for any i,

∑
j ai,j = d, since

the network’s graph is d-regular. The number of non-

zero elements in every row or column is d, so we cannot

apply Proposition 1 directly. Instead, we perform a se-

quence of relays4, using Proposition 1, that converts the

initial communication demand A0 into one that satisfies

the conditions of Proposition 1, i.e., where each party

has at most d bits to send to at most O(d/Λ) different

destinations. Specifically, there is a sequence of ` matri-

ces A0, A1, . . . , A` such that for any l ∈ [`] we convert

Al−1 into Al in O(m2 logm) rounds, and where it holds

that (1) each Al is a block-diagonal matrix with block

size at most n(d/Λ)−l; (2) the sum of each column in Al
is d; and (3) the sum of each row in Al is at most 4d.

Lemma 5 Let the communication demand Al ∈ Nn×n
be block diagonal with block size b, and assume that∑
i(ai,j)l ≤ d and

∑
j(ai,j)l ≤ 4d. Then, it is possi-

ble to reliably relay information by O(m2 logm) rounds

of communication, so that Al+1 ∈ Nn×n describing the

communication demand after the relay is block diagonal

with block size at most bΛd , and it holds that
∑
i(ai,j)l+1 ≤

d and
∑
j(ai,j)l+1 ≤ 4d. The coding succeeds with prob-

ability at least 1− n22−Ω(Λ).

Proof Consider the r-th block of Al, that is, the subma-

trix that contains the communication between parties

Pr ≡ {(r− 1)b+ 1, (r− 1)b+ 2, . . . , rb}; note that these

parties wish to send information only between them-

selves due to the block diagonal form of Al. Therefore,

we can treat each such block independently.

Split Pr into d/Λ disjoint subsets Pr,1, . . . , Pr,d/Λ of
equal size, in an arbitrary way. For any j = 1, . . . , d/Λ,

each pi ∈ Pr will send all the information directed to

parties in Pr,j , i.e.
∑
u∈Pr,j ai,u bits, to a single party

of Pr,j . The recipient can be chosen in a “greedy” way:

order the parties of Pr,j in some order, say p′1, p
′
2, . . .;

iterate over all pi ∈ Pr in an increasing order of the de-

mand
∑
u∈Pr,j ai,u, and determine the recipient as the

first p′ ∈ Pr,j that (i) is currently scheduled to receive

bits from less than 2d/Λ different parties, and (ii) will

receive at most 4d bits (including the
∑
u∈Pr,j ai,u bits

held by pi). Under these restrictions, we can use Propo-

sition 1 to perform the relay in O(m2 logm) rounds in

a reliable way (with high probability).

To see that the greedy algorithm succeeds in ac-

commodating the demand of all pi ∈ Pr, split Pr into

4 In relay we mean that if party i wants to send a bit to
party j, it can send that bit to some party k who will later re-
lay that bit to j. Thus, after sending the bit to k, the commu-
nication demand changes so that ai,j = 0 and ak,j increases
by one.

parties for which
∑
u∈Pr,j ai,u ≤ Λ, denoted as the sub-

set P< ⊆ Pr, and the other parties, denoted P>. Par-

ties in P< are aggregated in groups of size 2d/Λ. Note

that the joint demand of each such group never exceeds

2d bits. We need |P<|/(2d/Λ) ≤ bΛ/2d parties p′ ∈ Pr,j
to accommodate all these groups. Parties from P> are

aggregated until adding an additional party causes the

demand to exceed 4d bits of information. Since we order

the parties according to an increasing order of demand,

each assigned p′ (maybe, except one) accommodates at

least 2d bits of demand (and at most 4d bits). Also note

that the total amount of bits to be sent by parties in

P> (to a specific Pr,j) is at most bΛ, since each column

in Al sums up to at most d bits, and there are at most

b/(d/Λ) columns to be considered here. Thus, in order

to accommodate all P> we need at most bΛ/2d different

parties p′ ∈ Pr,j . Summing these two parts, the total

number of parties in Pr,j needed to accommodate both

P< and P>, is bounded by bΛ/d ≤ |Pr,j |.
The above is being performed, in parallel, for each

block of Al. Recall that the block-diagonal form of Al
implies a partition of the parties into disjoint sets {Pr}
corresponding to each block, where each relay happens

only within the block. Moreover, within each block each

party communicates at most O(d) bits and with at most

O(d/Λ) different parties. Thus the joint communication

demand satisfies the conditions of Proposition 1, and we

can perform the relay in O(m2 logm) rounds, reliably.

At the end of this process, each block of size b is trans-

formed into d/Λ disjoint blocks of size at most bΛ/d.

Note that all the parties reliably receive the information

relayed to them, except with a probability of n22−Ω(Λ).

ut

We perform the above process of Lemma 5 recur-

sively, starting from A0 being the incidence matrix of

the the underlying network (i.e., the demands induced

by the Neighbor task). If we set Λ = dc for some con-

stant c < 1, then after ` = m/(1 − c) − O(1) steps we

reach a matrix A` that is block diagonal with block size

at most

n(d/Λ)−` = nd−m
d

Λ
≤ d/Λ.

Specifically, each column in A` sums up to d, each row

sums to 4d, and at each row/column there are O(d/Λ)

non-zero element. We can now use Proposition 1 one

last time to fulfill the communication demand A` and

complete the proof. The entire scheme takes O((`+ 1) ·
m2 logm) = O(m3 logm) rounds, and succeeds with

probability 1−mn22−Ω(Λ) = 1−mn22−Ω(dc). To suc-

ceed with high probability we require d > log1+α n, for

some α > 0 and c > 1/(1 + α).
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It can be easily verified that each step of the proto-

col is computationally efficient, which makes the entire

simulation efficient. ut
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